PATH SPECTRA AND FORBIDDEN FAMILIES

ALLEN G. FULLER AND RONALD J. GOULD

ABSTRACT. The path spectrum, sp(G), of a graph G is the set of
all lengths of maximal paths in G. The path spectrum is con-
tinuous if sp(G) = {¢,£+ 1,...,m} for some ¢ < m. A graph
whose path spectrum consists of a single element is called scenic
and is by definition continuous. In this paper, we determine when a
{K1,3, S}-free graph has a continuous path spectrum where $ is one
of C3, P4, Ps, Ps, Z1,22,23,N,B, or W.

1. INTRODUCTION

All graphs considered in this paper are simple graphs, no loops or mul-
tiple edges are allowed. For terms not defined here, see [4]. A graph G
is hamiltonian if G contains a cycle spanning the vertex set of G. A
path P in G is mazimal if it cannot be extended to a longer path by
adding an edge and a vertex to one of the end vertices of P. A graph G is
{H1,Hs,... ,Hy}-free (k > 1) if G contains no induced subgraph isomor-
phictoan H;, 1<i<k

The path spectrum of a connected graph G, sp(G), is the set of lengths
of all maximal paths in G. The path spectra of graphs have been studied in
[5] and [2]. In [5] and [2], the focus of the work is on determining whether
a given set of integers is in the path spectrum of some graph. Also, in
[5], Jacobson et al. asked about the complexity of computing the path
spectrum of a given graph G. They considered the related question of
whether there is a maximal path of length k. This question is NP-hard
since if k is one less than the order of G, the problem asks whether the
graph has a hamiltonian path. Hence, the path spectrum question for an
arbitrary graph was determined to be NP-complete.

However, Bedrossian in [1] proved the following (see Figure 1 for drawings
of some of the graphs).

Theorem 1. Let R and S be connected graphs with R, S # P, and let
G be a 2-connected graph that is not a cycle. Then G being {R, S}-free
implies G is hamiltonian if and only if (up to symmetry) R = K 3 and
S=P4’P5,P6103’ZI)Z2)BaN) or W.
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Faudree and Gould in [3] improved on the work of Bedrossian to get the
following theorem.

Theorem 2. Let R and S be connected graphs with R, S # P3, and let G
be a 2-connected graph of order n > 10. Then G being { R, S}-free implies G
is hamiltonian if and only if R = K, 3 and S = Py, Ps, Ps, C3, Z1, Z3, Z3, B,
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" FIGURE 1. The graphs B, N, W, Z,, Z,, Zs.

Since we know that these 2-connected, { R, S}-free graphs are hamilton-
ian (and hence have a hamiltonian path), we ask what can be said about
the path spectrum of such graphs. In particular, are they continuous? By
a continuous path spectrum, we mean that sp(G) = {{,¢+1,... ,m} where
¢ is the length of the shortest maximal path in G and m is the length of the
longest maximal path in G. Note a path spectrum consisting of only one
element is continuous. A graph with such a path spectrum is called scenic.
Thomassen characterized when a traceable graph is scenic in [7]. Jacobson,
Kézdy, and Lehel also studied scenic graphs in [6].

We need some notation to state Thomassen’s result. A matching of ¢
edges will be denoted by tK2. A graph that is a complete graph minus
a matching with 1 < ¢ < n/2 will be denoted by K, — tK>. A complete
bipartite graph plus (resp. minus) an edge is denoted by K, + K2 (resp.
Kpp — K3). The graph obtained by adding an edge to each partite set
of K, p is denoted by Ky, + 2K,. If H € {K3,2K3,K) 4}, the graph
Kp p+1 + H denotes the graph formed by adding all the edges of H to the
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largest partite set of K p41. The cube is the graph K44 — 4K, and the
prism is the graph formed from Kg by removing the edges of a six-cycle.
The following result is Thomassen’s characterization of traceable, scenic

graphs.

Theorem 3. [7] A traceable graph is scenic if and only if it belongs to
one of the following families:

®[K,] = {Kn,Kn—tK; (1<t<n/2)},
®[Kpp]l = {KppsKpp— K2,Kpp+ Kz, Kpp+2K>},
®[Kppt+1] = {Kpp+1,Kpp+1+ K3, Kppy1 + 2K,
Kpp+1+ K14 (1< q<p)},
U = {P,,Chp,prism,cube}.

We answer the question concerning the 2-connected, {R, S}-free graphs
in Theorem 2 that have continuous path spectra in the following result.

Theorem 4. Let G be a 2-connected, {K},3, S}-free graph of order n > 10
where S is one of Cs3, Py, Ps, Ps,Zy,22,2Z3,N,B, or W. Then G has a
continuous path spectrum if and only if S is one of the graphs Cs, Py, Z;
or Z,. Furthermore, G is scenic if and only if G is one of K, K,, — tK> or
Chn.

The proof of this theorem is in Section 3. Two preparatory propositions
are in the next section.

2. Two RESULTS

Proposition 2.1. Let G be a 2-connected, {K} 3, Z2 }-free graph of order
n. Let P be a maximal u—v path of order m < n. Then P can be extended
to a maximal u—v path of order m + 1.

Proof. Let P be u = x1,x3,... ,Zm = v. Since G is connected, m < n, and
P is maximal, there is a vertex w in V(G) — V(P) such that w is adjacent
to a vertex zj, 1 < j < n, on P. Also, since G is 2-connected, there is at
least one other path from w to P. Consider the collection C of these paths
that have the shortest length. Let @ be the path from C that hits closest
to z;. Suppose that @ hits P at z; and with out loss of generality that
j<k<n. Let Q be zx = 21,22,...,2¢ = W.

CASE 1: Suppose that k > j+3. We first note that ({z;-1,;, Zj+1,w})
is a claw centered at z; and that ({Tx—1,%Zk,Tr+1,22}) forms a claw cen-
tered at zx. Observe that w cannot be adjacent to z;_; or zj4; otherwise
Q would not be the closest path to z; from w to P. Also, 23 is not adjacent
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to zx— or else @ would not hit closest to z;. Now if z; is adjacent to zx4,,
then P can be easily extended as follows:

U=T1,T2y. 00 yTky 22, Tht1ye o+ »Tm = V.

Thus, suppose that z2 is not adjacent to zx—; or zxy+1. Consequently,
Zj-1%j41 and Tx_1Tr4+1 must be edges of G.

Now, if @ has 3 or more vertices, then ({z¢—1,Zk, Zk+1, 22, 23}) forms a
Zy. Thus, either z—129, Tpt122, Tk—123, Tk+123, OF Zx23 is an edge of G.
Since @ is the shortest path from w to P, 123, Ti+123, and 423 cannot
be edges in G. Since @ hits closest to z;, £x_1 2, cannot be an edge in G.
I x4, is adjacent to 23, then P can be extended as above. Therefore, we
assume that @ has only two vertices; that is, w is adjacent to zy.

Next, we note that {z;_1,Z;,Zj+1,w,zr} induces a Z,. Hence at least
one of the following edges is in G: zj_1%k, Zj412, or z;z¢. (The pairs
wz;—1 and wzj4; were eliminated since @ hits closest to x;.) If z;_;z (or
similarly z;412) is an edge, then P can be extended as follows:

U= 21,22y 3 Tj—1Thy Wy Tj, Tjt1, - - 3 Th—1y Tht1--+ T = V.

Therefore, assume that z;zx is an edge in G.

Note that by a symmetric argument on zj, the edges wziy1, zk—12;,
and zx+1z; can shown to extend the path P.

Before proceeding, we make the following notational convention and two
observations. We will denote the subpath {z4,Za41,... ,Z3} of P as [z,, 2s).
Now we observe that if x;_; and x4, are adjacent to adjacent vertices of
[%j+1,Zk—1], then P can be extended. To see why, suppose that zj_y is
adjacent to z; and that zz4, is adjacent to z;4,. Then a path of order
m + 1 can be formed as follows:

U=T1,T2y..+ 1 Tj—1,T§, Ti—15--+ , Tj, W, Tk, Th—1 ... ,
Tit1yTh41y--- T = .

Secondly, we note that if z; and x; are adjacent to adjacent vertices of
[Zj+1,Zk-1], then P can be extended to a path of order m + 1. To see
this, suppose without loss of generality that z; is adjacent to z; and z; is
adjacent to z;4;. Then a path of order m + 1 is formed as follows:;

U=T1,L2y--- 3 T5—13Tj41y0++ 3 Tiy T, Wy Thy Tit 1y -«
Tk—1yTk+1y-++ yTm = V.

Now, notice that ({w,z;, T, Zk-1,Zk-2}) and ({w,z;,zk, Tjt1,Tjq2})
each forms a Z;. We will only consider the Z; induced by {w, z;, z¢, zx-1,
Tk-2} in detail since the Z; ({w,z;, Tk, Zj+1,Zj42}) is symmetric. We see
that at least one of the following pairs is an edge of G: z;zx—2, ZjTk—1,
or zx—azk. If either of the edges z;zx_2 or z;zx—; is an edge of G, then
zj—1 and Tr4; are adjacent to adjacent vertices in [zj41,Zk-1], and thus
P can be extended. Hence, we assume that z;z;-2 and z;zx_, are not
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edges in G but that zx_oxx is an edge in G. By symmetry, we assume that
TyZTj4e and TxZj4 are not edges in G but that z;z;4 0 is an edge in G. If
J+2 = k-2, then z; and z are adjacent to adjacent vertices in [z;+1, Zk—1]
and P can be extended. If j 42 # k — 2, we apply arguments similar to the
preceding arguments to the following Z»'s: ({w,z;,zk, k-2, Tk-3}) and
({w,zj, Tk, Tj12,Tj+3}). We see that the only edges that do not immedi-
ately lead to a path of length m + 1 are ;.3 and x4, z¢—3. We continue
the process until the path extends or we reach a point where z; and z; are
adjacent to adjacent vertices in [zj4+1,2x—1] which also implies P can be
extended.

Thus, we see that if £ > j + 3, P can be extended to a path of length
m+ 1.

CASE 2: Suppose that k = j + 2. Then, by the arguments of Case
1, we may assume that the edges z;—1T;j41 and Tx_1Zx41 and that w is
adjacent to ;. Thus P can be extended as follows:

UZT1y0 00 3 Tjm1, Tkl Tjy Wy Thy Tkt 1y - - - 1 Tm = V.

CASE 3: Suppose that k£ = j + 1. Note that if w is adjacent to both z;
and zx, P can easily be extended by exactly one vertex. Thus, we assume
that w is not adjacent to z;; that is, @ has at least three vertices. Thus,
{{zj, Tk, Tk+1, 22}) forms a K 3 centered at zy. If either z;25 or Tx4122 is
an edge in G, P is easily seen to be extendable. Hence, we suppose that
T;Tk41 is an edge of G. Since ({z;, 2k, Z;j—1,w}) forms a claw centered at
z;, we assume by symmetry that z;_1zx € E(G).

Now, we note that if Q has more than three vertices, a Z, is formed by
{{zj,Zk, Tk+1,22,23}). Observe that Zx,123 cannot be an edge of G or Q
would not be the shortest path from w to P. If 2, is adjacent to zg41, P is
easily seen to be extendable to a path of length m + 1. Thus, we suppose
that 223 is an edge of G. Observe that this is really the case when @ has
exactly three vertices as z3 assumes the role of w.

Thus, suppose that @ has three vertices, say w, z, and zx. Note that
({w,zj-1, Tj, Tr+1}) forms a claw centered at z;. Since Q is the shortest
path from w to P (except for wz;),z;—1%x—1 must be an edge in G. How-
ever, we see that {z;_1,Zk+1,Zk, 2,w} induces a Z;. Since Q is the shortest
path, the only possible edges that can exist are z;_;2 and zx412. Clearly
if 4412 is an edge of G, P can be extended. Now, if z;_;z € E(G), P can
be extended as follows:

U=T1y.001Tj-1,2, Tk, L5y Tht1y--- ,Tm = V.
Thus, when k = j + 1, P can be extended to a path of length m+1. O

Proposition 2.2. Let G be a 2-connected, {K} 3, P4}-free graph of order
n. Let P be a maximal u—v path of order m < n. Then P can be extended
to a maximal u—v path of order m + 1.
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Proof. Let P be u =21,%2,... ,Zm = v. Since G is connected and m < n,
there is a vertex w in V(G) — V (P) such that w is adjacent to a vertex z; on
P. Also, since G is 2-connected, there is at least one other path from w to
P. Consider the collection C of these paths that have the shortest length.
Among this collection let @ be the path that hits closest to z;. Suppose
that Q hits P at z; and with out loss of generality that j < k < n. Let Q
be T = 21,22, .. ,2¢ = w. Observe that since G is Py-free, £ < 3.

CASE 1: Suppose that k > j + 2. First, we note that since G is claw-
free, zj—1%;+1 and Tx_12x+1 are edges in G. Next, we observe that £ = 2.
To see why, suppose £ = 3. Then wzszpx—; forms a Py. Note that the
addition of any edge to this Py contradicts the choice of Q. Hence, £ = 2;
that is, w is adjacent to xj.

Now, we see that if k = 7 + 2, P can be extended as follows:

U=21,%2y--- 13T, W, Ty Th—1, Th41y- - yTm = 0.

Thus, we assume that k > j + 2 and observe that ({z;-1,z;,w,zx}) forms
a P;. The vertex w cannot be adjacent to z;_; (contradicts the choice of
Q). If z;_, is adjacent to zy, then P can be extended as follows:

U =12y,T2,... 1 Z5—1,Thy Wy Ty Tjtlseer s Th=1;Thtly--- yTm = V.

Thus, we suppose that z; is adjacent to z.
Now, we see that ({zj+1,%;, %k, Tk+1}) forms a Py. If z;4, is adjacent
t0 Zp4+1, then P can be extended as follows:

U=T1,T2,.-+ 1 T5, W, Tgy Th—11Tk—2y -+ - 3 Tj417Tht15--+ yTm = V.
If 24, is adjacent to xx, then P can be extended as follows:
U=T1,T2.+- 1 T3, W, Tk Tjt19Tj+2y « +  Thk=1,Th41 « - - , T = V.
Finally, if z; is adjacent to Zx41, then P can be extended as follows:
U=T1,T2y000 3 Tj=11Tj4+1,Tj429 - - - y Thy W, T, Thtly o - Ty = V.

CASE 2: Suppose that k = j+ 1. If £ = 2, then P is easily extendable.
Hence, we assume that £ = 3. Then ({w, 22, Zk,Zt+1}) forms a P;. The
edges wzr and wzr4+1 cannot be in G by the choice of Q. Thus, Tg4122
must be an edge in G. Consequently, P is easily seen to be extendable. O

3. PROOF OF THEOREM 4

Proof. First we note that if G is a 2-connected, { K 3, C3}-free graph, then
G isacycle, Cn,n > 10. Also note that a 2-connected, { K1 3, Z; }-free graph
is either a cycle or a complete graph minus a matching. By Theorem 3,
the only 2-connected, {K}3,S}-free scenic graphs of order n > 10 are
K,, K, —tK>, and C,. Thus, these graphs have continuous path spectra.

Now suppose G is a nonscenic, 2-connected, {K} 3, S}-free graph of order
n > 10 where S is P, (or Z3). Then by choosing the shortest maximal path
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in G and repeatedly applying Proposition 2.2 (or Proposition 2.1), we see
that the path spectrum of G is continuous.

Finally, suppose that G is a nonscenic, 2-connected {K} 3, S}-free graph
of order n > 10 where S is one of B,N,W, Ps, Pg, or Z3. We consider
the graph H in Figure 2. The path spectrum of H is easily seen to be

K, K,

FIGURE 2. The graph H withb>a+1, a > 4.

sp(H) ={a-1,a+1,a+2,...,a+b—1}. The graph H is also free of
claws, B’s, N'’s, W’s, Py’s, Pg's, and Z3’s. O
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