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Abstract

A graph G is (p,q,r)-choosable, if for every list assignment L
with |L(v)| > p for each v € V(G) and |L(z) N L{v)| < p — v when-
ever u,v are adjacent vertices, G is g-tuple L-colorable. We give
an alternative proof of (4t,t,3t)-choosability for the planar graphs
and construct a triangle-free planar graph on 119 vertices which is
not (3, 1, 1)-choosable (and so neither 3-choosable). We also propose
some problems.

1 Introduction

The concept of the list colorings and choosability was introduced by Viz-
ing [6] and independently by Erdds, Rubin, and Taylor[1]. A list assignment
of G is a function L that assigns to each vertex v € V(G) a list L(v) of col-
ors. An L-coloring is a function A : V(G) = |, L(v) such that A(v) € L(v)
for each v € V(G) and A(u) # A(v) whenever u, v are adjacent vertices of G.
If G admits an L-coloring, it is called L-colorable. Graph G is m-choosable
if for every list assignment L with |L(v)| > m for each v € V(G), there
exists an L-coloring of G. The list chromatic number (or choice number)
x1(G) of G is the smallest number m for which G is m-choosable.

A list assignment L with |L(v)| > p for each v € V(G) and |L(u) N
L(v)] < p — r for every pair of adjacent vertices u,v € V(G) is called
(p,7) list assignment. A graph G is (p, q,7)-choosable if for every (p,r) list
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assignment L, we can choose for every vertex v € V(G) a subset A(v) C
L(v) with |A(v)| = ¢ so that A(u) N A(v) = @ for every pair of adjacent
vertices u,v € V(G). This concept was recently introduced by Kratochvil,
Tuza, and Voigt [3], and it is called choosability with separation (see also
Tuza [5]). They proved that every planar graph is (4t, ¢, 3t)-choosable and
every triangle-free planar graph is (3¢, ¢, 2t)-choosable. In fact, this is also
true for graphs embeddable in the torus, projective plane or the Klein
bottle. One can prove this using Theorem 4.1 from [3] and Euler’s formula
for graphs on surfaces. Using Wagner’s Theorem [9] one can similarly show
that Kj-minor-free graphs are also (4, ¢, 3t)-choosable.

Voigt [7] constructs a triangle-free planar graph on 166 vertices which
is not (3,1,1)-choosable. Gutner [2] constructs such graph on 164 vertices.

In this paper, we give an alternative proof of (4t, ¢, 3t)-choosability of the
planar graphs. Combining the above mentioned constructions, we obtain
a triangle-free planar graph on 119 vertices which is not (3,1, 1)-choosable
(and so neither 3-choosable). Finally, we propose several problems.

2 The (4t,t,3t)-choosability of planar graphs

The proof in [3] of (4¢,¢,3t)-choosability of the planar graphs relies on
Euler’s formula and Hall’s theorem. Here we give straightforward proof
of this assertion. The (4,1, 3)-choosability of planar graphs is an easy
consequence of the following lemma. The proof of this lemma is similar to
the proof of planar 5-choosability [4].

Lemma 1 Let G be a connected planar graph with outerwalk C = . ---
Znxy. Let L be a list assignment of G such that |L(z)| > 3 for every
z € V(C), |L(z)| > 4 for every z € V(G) \ V(C), and |L(z) N L(y)| < 1
whenever z,y are adjacent vertices of G. Let A(z;) € L(z1) and Mz,) €
L(zn) \ {M(z1)}. Then, X can be extended to an L-coloring of G.

Proof. Suppose that the lemma is false and G is a counterexample with
|V(G)| as small as possible.

(1) C is 2-connected. Suppose that C is not 2-connected. Now, by the
minimality, extend A to the block which contains z, and z;. After that
repeat the following procedure until G is colored: choose block B with
precisely one colored vertex, say u. Let v € V(B) be a neighbor of u on the
outerwalk of B. Set A(v) € L(v) \ {A(u)} and by the minimality, extend A
of {u,v} to B.

(2) C is a chordless cycle. Suppose that edge uv is a chord of C. Let C;
and C; be the two chordless cycles of the graph CU{uv}. Let G; = Int(C)
and G2 = Int(C:). We may assume that z,z; € E(G;). Now, by the
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minimality, extend X of {z,,z:} to G; and after that extend A of {u,v} to
G2, a contradiction.

(3) C has a chord. Suppose that C is chordless. Note that, by the
assumptions of L, we can choose A(z2) € L(zz) \ {A(z1)} so that the
following is satisfied: if n = 3 then A(z2) # A(z3) and if n # 3 then
AMz2) € L(z3). Now, let G' = G\ {z2} and L' be the list assignment of G’
such that L'(z) = L(z) \ {\(z2)} if z € N(z2) \ {zn, 21} and L'(z) = L(z)
otherwise. By (1) and (2), G' and L' satisfy the assumptions of the lemma.
So, by the minimality, we can extend A to G’, a contradiction.

Obviously, by (2) and (3), we obtain a contradiction which completes
the proof. O

Note that this lemma and its proof can be easily generalized to the
g-tuple colorings and then we obtain (4¢, ¢, 3t)-choosability for the planar

graphs.

3 A not (3,1, 1)-choosable triangle-free planar
graph

We leave the reader to verify the following lemma.

Lemma 2 Graph G' from Figure 1 is not L'-colorable.

Now we will construct graph G and a list assignment L of G as follows.
Take nine copies G, =0,...,8 of G'. Fori = 0,...,8, let L; be the the
list assignment of G obtained from L' by replacing the colors (21, z,y, 22)
with that from the tuple #;:

to = (7) 5781 9) t
ts = (5,6,10,7) t4
te =(7,6,9,8) tr

(81 5, 9, 10) ta = (9’ S, 101 6)
(6,7,10,9) t5 = (10,7,9,6)
(9,6,8,7) s = (6,7,8,5).

Identify all nine u vertices of the graphs G;, ¢ = 0,...,8 and afterward
identify all nine v vertices of these graphs; finally identify w; of G; with
wy of Giyq for i = 0,...,8 (index modulo 9). Let L(u) = {5,6,7} and
L(v) = {8,9,10} and for every other vertex z € V(G) let L(z) = Li(x)
whenever z € G;. Note that it is well defined since L;(wz) = Liy1(w;) for
i=0,...,8 (index modulo 9).

It is not hard to observe that G is a triangle-free planar graph and L is
a (3,1) list assignment of G. Graph G is of order 12-9+9+2 =119. In
every L-coloring of G, there always exists ¢ € {0, ..., 8} such that colors of
the vertices u and v are equal to the second and the third color of the tuple
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Figure 1: Graph G’ with list assignment L'

t;, respectively. Then from Lemma 2, it follows that the coloring of u and
v cannot be extended to G; and so to G. This contradicts the existence of
an L-coloring of G. Thus, we obtain the following result.

Proposition 1 G is a triangle-free planar graph on 119 vertices which is
not (3,1,1)-choosable (and so neither 3-choosable).

We conclude this paper with the following problems. In [3], it was asked
if planar graphs are (4,1,2)-choosable. But the answer of the following
problem is not known also.

Problem 1 Is every planar graph (3,1, 2)-choosable?

Let f : N = N be a function, G be a graph, and let x = x(G). Denote
by L(G, f) the set of lists assignments L of G such that L assigns at least
one color to every vertex of G and |L(u) N L{v)| > f(x) whenever u,v are
adjacent vertices of G. Note that the condition on the list assignments
from £(G, f) is in some way opposite to that in the concept of choosability
with separation. Instead of forbidding, it requires that adjacent vertices
have many colors in common.

Problem 2 Is there a function f such that every graph G is L-colorable
for every L € L(G, f)?
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By Voigt and Wirth [8], if such a function f exists, then f(z) > z + 1.
Similarly for the planar graphs one can ask the following two problems.
If these problems are true, then they will be beautiful generalizations of
The Grotzsch Theorem and The Four Color Theorem (in the concept of
list colorings).

Problem 3 Let G be a connected nontrivial triangle-free planar graph and
let L be an arbitrary list assignment of G such that |L{(u) N L(v)| > 3
whenever u,v are adjacent vertices of G. Is G L-colorable?

Problem 4 Let G be a connected nontrivial planar graph and let L be an
arbitrary list assignment of G such thet |L(u)N L(v)| > 4 whenever u,v are
adjacent vertices of G. Is G L-colorable?

Remark. Problem 2 was recently solved by Graham Brightwell from Lon-
don School of Economics. He proved that such a function does not exist.
Moreover, in the realm of bipartite graphs, exists such a function. Bellow
is his proof.

Solution of Problem 2 (Brightwell). We show the following.

(i) If G is bipartite, and L is a list assignment such that |L(u)| > 1 for
all vertices u and |L(u) N L(v)| > 2 whenever u and v are adjacent,
then (G, L) admits a list coloring.

(ii) For any k € N, there is a 3-colorable graph G and a list assignment
L such that |L(u) N L(v)| > k for every adjacent pair (u,v), and yet
(G, L) does not admit a list coloring.

In the language of the problem, this means that f(2) can be taken to
be 2, while no value of f(3) suffices.

(i) Suppose that G is bipartite, and let the two bipartite classes be U and
V. Given a list assignment L such that |L(u)| > 1 and |L(u) N L(v)] > 2
whenever v and v are adjacent, we define a list-coloring of G as follows.

First we take a total order < of the set of colors used. Then, for each
vertex v of U, we assign the <-least color in L(u), while for each vertex
v of V, we assign the <-greatest color in L(v). The condition on the lists
now ensures that different colors are assigned to u and v whenever u and
v are adjacent.

(i) Given any positive integer k, define the %raph G as a complete 3-
partite graph, with each vertex class of size (3;). For each subset A of
{1,...,3k} of size 2k, there is one vertex in each part with A as its list.
Note that any two vertices of G have lists with at least k colors in common,
so the lists satisfy the given condition. On the other hand, at least k + 1
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colors must be used for each part, in any list coloring, since if only % colors
are used on some part then there is some vertex that is assigned a color
not in its list. Since the graph is complete 3-partite, the sets of colors used
for each part must be disjoint, so at least 3k + 3 colors are used in all. But
this is a contradiction, since only a total of 3k colors appear in the lists.
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