A New Perspective on the Union-Closed Sets Conjecture

Klaus Dohmen

Humboldt-Universität zu Berlin Institut für Informatik Unter den Linden 6 D-10099 Berlin, Germany

Abstract. We establish a connection between the principle of inclusion-exclusion and the union-closed sets conjecture. In particular, it is shown that every counterexample to the union-closed sets conjecture must satisfy an improved inclusion-exclusion identity.

The following conjecture, known as the union-closed sets conjecture, was proposed by P. Frankl in 1979:

Conjecture (Frankl). Let X be a non-empty finite union-closed set of non-empty sets. Then, there exists an element $x \in \bigcup X$ which is contained in at least half of the sets in X.

Here, union-closed means that $X \cup Y \in \mathcal{X}$ for any $X, Y \in \mathcal{X}$, and $\bigcup \mathcal{X}$ is a shorthand for $\bigcup_{X \in \mathcal{X}} X$.

Although the union-closed sets conjecture is easily stated and comprehensible even to non-mathematicians, it still remains unsolved for twenty years now. Proofs only exist for some very special cases [2, 3, 5-7].

Our main result, stated subsequently, gives a necessary condition on counterexamples to the conjecture.

We use the following notations and terminology: For any set A, I(A) denotes the indicator function (or characteristic function) of A, that is, I(A)(x) = 1 if $x \in A$ and I(A)(x) = 0 if $x \notin A$. $|\cdot|$ is used to denote cardinality. A set-system $\mathfrak X$ is a *chain* if $X \subseteq Y$ or $Y \subseteq X$ for any $X, Y \in \mathfrak X$.

Theorem 1. Any counterexample X to the union-closed sets conjecture satisfies the following inclusion-exclusion identity:

$$I\left(\bigcup \mathcal{X}\right) = \sum_{\substack{y \subseteq x \\ 0 < |y| \le |x|/2 \\ y \text{ is a chain}}} (-1)^{|y|-1} I\left(\bigcap \mathcal{Y}\right).$$

Remarks. Note that the usual inclusion-exclusion identity for $\bigcup \mathfrak{X}$ is

$$I\left(\bigcup \mathcal{X}\right) = \sum_{\substack{\mathcal{Y} \subseteq \mathcal{X} \\ \mathcal{Y} \neq \emptyset}} (-1)^{|\mathcal{Y}|-1} I\left(\bigcap \mathcal{Y}\right),$$

valid for every finite set-system X. If X is a counterexample to the unionclosed sets conjecture, then Theorem 1 says that the sum in the identity can be restricted to *chains of cardinality less than* |X|/2.

Also note that $\bigcap \mathcal{Y} \in \mathcal{Y}$ for any non-empty chain \mathcal{Y} . In fact, $\bigcap \mathcal{Y}$ is the minimum of \mathcal{Y} with respect to set inclusion. Thus, the identity in Theorem 1 can equivalently be stated as

$$I\left(\bigcup \mathcal{X}\right) = \sum_{\substack{\mathcal{Y} \subseteq \mathcal{X} \\ 0 < |\mathcal{Y}| < |\mathcal{X}|/2} \\ \mathcal{Y} \text{ is a chain}} (-1)^{|\mathcal{Y}|-1} I\left(\min \mathcal{Y}\right).$$

This, of course, does not apply to the usual inclusion-exclusion identity.

We further remark that the identity in Theorem 1 can be integrated with respect to any measure (e.g., the counting measure) on the Boolean algebra generated by \mathfrak{X} , thus resulting in a statement involving measures rather than characteristic functions.

The proof of Theorem 1 relies on an improvement of the inclusion-exclusion principle, which goes back to Narushima [4] (see also [1]). In order to state this improvement, some further definitions are needed.

A partially ordered set P is a *join-semilattice* if any $x, y \in P$ have a least common upper bound $x \vee y$ in P, which is called the *join* of x and y. A *chain* in a partially ordered set P is a subset Q of P such that any two elements of Q are comparable with respect to the ordering relation on P.

Proposition (Narushima). Let $(A_p)_{p\in P}$ be a finite family of sets, indexed by some join-semilattice P such that $A_x \cap A_y \subseteq A_{x\vee y}$ for any $x,y\in P$. Then,

$$I\left(\bigcup_{p\in P}A_p\right) = \sum_{\substack{Q\subseteq P,Q\neq\emptyset\\Q\text{ is a chain}}} (-1)^{|Q|-1} I\left(\bigcap_{q\in Q}A_q\right).$$

We now apply this proposition to prove Theorem 1.

Proof of Theorem 1: Define $P := \mathfrak{X}$ and $A_X := X$ for any $X \in \mathfrak{X}$. Since \mathfrak{X} is union-closed, the proposition gives

$$I\left(\bigcup \mathfrak{X}\right) = \sum_{\substack{\mathfrak{Y} \subseteq \mathfrak{X}, \mathfrak{Y} \neq \emptyset \\ \mathfrak{Y} \text{ is a chain}}} (-1)^{|\mathfrak{Y}|-1} I\left(\bigcap \mathfrak{Y}\right).$$

Since \mathfrak{X} is a counterexample to the union-closed sets conjecture, $\bigcap \mathfrak{Y} = \emptyset$ for any $\mathfrak{Y} \subseteq \mathfrak{X}$ satisfying $|\mathfrak{Y}| \geq |\mathfrak{X}|/2$, whence Theorem 1 is proved.

Theorem 1 can equivalently be stated in terms of the Euler characteristic. Recall that an abstract simplicial complex S is a set of non-empty subsets of some finite set such that $S \in S$ and $T \subset S$ imply $T \in S$. The Euler characteristic $\chi(S)$ of an abstract simplicial complex S is defined by

$$\chi(S) := \sum_{S \in S} (-1)^{|S|-1}$$
.

The equivalent formulation of Theorem 1 follows.

Theorem 1'. Let X be a counterexample to the union-closed sets conjecture. Then, for any $x \in \bigcup X$ the abstract simplicial complex

$$S(x) := \{ \mathcal{Y} \mid \mathcal{Y} \text{ is a chain, } 0 < |\mathcal{Y}| < |\mathcal{X}|/2, x \in \min \mathcal{Y} \}$$

has Euler characteristic 1.

Proof: The left-hand side and the right-hand side of the identity in Theorem 1, evaluated at x, give 1 resp. $\chi(S(x))$, whence the result.

References

- K. Dohmen, An improvement of the inclusion-exclusion principle. Arch. Math. 72 (1999), 298-303.
- [2] R.T. Johnson and T.P. Vaughan, On union-closed families I. J. Comb. Theory Ser. A 85 (1999), 112–119.
- [3] G. Lo Faro, A note on the union-closed sets conjecture. J. Aust. Math. Soc. Ser. A 57 (1994), 230-236.
- [4] H. Narushima, Principle of inclusion-exclusion on semilattices. J. Comb. Theory Ser. A 17 (1974), 196-203.
- [5] B. Poonen, Union-closed families. J. Comb. Theory Ser. A 59 (1992), 253-268.
- [6] D.G. Sarvate and J.-C. Renaud, Improved bounds for the union-closed sets conjecture. Ars. Comb. 29 (1990), 181-185.
- [7] D.G. Sarvate and J.-C. Renaud, On the union-closed sets conjecture. *Ars. Comb.* 27 (1989), 149–154.