A combinatorial structure of affine $(\alpha_1, ..., \alpha_t)$ -resolvable (r, λ) -designs

Sanpei Kageyama

Department of Mathematics Faculty of School Education Hiroshima University Higashi-Hiroshima 739-8524 Japan

Tsutomu Shimata

Department of Mathematics Shudo Gakuen Hiroshima 730-0055 Japan

Abstract. Some constructions of affine $(\alpha_1, ..., \alpha_t)$ -resolvable (r, λ) -designs are discussed, by use of affine α -resolvable balanced incomplete block designs or semi-regular group divisible designs. A structural property is also indicated.

1. Introduction

A group divisible (GD) design with parameters $v = mn, b, r, k, \lambda_1, \lambda_2$ is a block design such that the mn treatments are divided into m groups of n treatments each and any two treatments in the same group occur together in exactly λ_1 blocks, while any two treatments in different groups occur together in exactly λ_2 blocks. Furthermore, if $rk - v\lambda_2 = 0$, the GD design is said to be semi-regular. In a semi-regular GD design every block contains k/m treatments from each group (see [5: Theorem 8.5.6]). A GD design with $\lambda_1 = \lambda_2$ (= λ , say) is called a balanced incomplete block (BIB) design with parameters v, b, r, k, λ .

An (r, λ) -design is a block design with parameters v, b, r, k_j , j = 1, ..., b, such that every pair of treatments occurs exactly λ blocks. Note that an (r, λ) -design with constant block size is a BIB design.

A block design with parameters $v, b, r, k_j, j = 1, ..., b$, is said to be $(\alpha_1, ..., \alpha_t)$ -resolvable if b blocks are separated into $t(\geq 2)$ sets S_ℓ of $\beta_\ell(\geq 1)$ blocks such that S_ℓ contains every treatment $\alpha_\ell(\geq 1)$ times, $\ell = 1, ..., t$. Here $b = \sum_{\ell=1}^t \beta_\ell$ and $r = \sum_{\ell=1}^t \alpha_\ell$. When $\alpha_1 = \cdots = \alpha_\ell(=\alpha, \text{ say})$, the design is said to be α -resolvable. In particular, when $\alpha = 1$, it is called simply resolvable. Note that S_ℓ is also called an α_ℓ -resolution set.

In order to introduce the affine $(\alpha_1, ..., \alpha_t)$ -resolvability, attention will be restricted to only those $(\alpha_1, ..., \alpha_t)$ -resolvable block designs which have a constant block size, denoted by k_{ℓ}^* , within each set S_{ℓ} for $\ell = 1, ..., t$ (see [4]).

An $(\alpha_1, ..., \alpha_t)$ -resolvable block design with a constant block size k_t^* in each S_t is said to be affine $(\alpha_1, ..., \alpha_t)$ -resolvable if:

- (i) for $\ell = 1, ..., t$, every two distinct blocks from S_{ℓ} intersect in the same number, say $q_{\ell\ell}$, of treatments;
- (ii) for $\ell \neq \ell' = 1, ..., \ell$, every block from S_{ℓ} intersects every block of $S_{\ell'}$ in the same number, say $q_{\ell\ell'}$, of treatments.

It is evident that for an affine $(\alpha_1, ..., \alpha_t)$ -resolvable block design

$$q_{\ell\ell}(\beta_{\ell}-1)=k_{\ell}^*(\alpha_{\ell}-1), \quad q_{\ell\ell'}\beta_{\ell'}=k_{\ell}^*\alpha_{\ell'}, \quad (\ell\neq\ell'=1,...,t).$$

Some constructions of affine $(\alpha_1, ..., \alpha_t)$ -resolvable (r, λ) -designs are given by Kageyama and Sastry [3]. In this paper, we consider generalizations of two of their methods and present an inner structure property of affine α -resolvability.

In an affine α -resolvable BIB design with parameters v, $b = \beta t (= v + t - 1)$, $r = \alpha t$, k, λ , it holds (cf. [2]) that $q_{\ell\ell} = k(\alpha - 1)/(\beta - 1) = k + \lambda - r$ (= q_1 , say) and $q_{\ell\ell'} = k\alpha/\beta = k^2/v$ (= q_2 , say), for ℓ , $\ell'(\ell \neq \ell') \in \{1, ..., \ell\}$, where $\alpha = \alpha_1 = \cdots = \alpha_\ell$ and $\beta = \beta_1 = \cdots = \beta_\ell$.

For convenience, I_s denotes the identity matrix of order s, $\mathbf{1}_t$ denotes the $t \times 1$ matrix all of whose elements are unity, and $\mathbf{A} \odot \mathbf{B}$

denotes the Kronecker product of two matrices A and B.

2. Constructions

Two methods (i.e. II and III) of construction of affine $(\alpha_1, ..., \alpha_t)$ -resolvable (r, λ) -designs provided by Kageyama and Sastry [3] are generalized as in the following. Their proofs are straightforward and hence omitted.

Method 2.1. Let N be the $v \times b$ incidence matrix of an affine resolvable BIB design with parameters $v = s^2, b = s(s+1), r = s+1, k=s, \lambda=1$. Then $[N':I_{s+1}\otimes 1_s:1_{s(s+1)}1'_p]$ shows an affine (s,1,...,1)-resolvable (s+p+1,p+1)-design with $q_{\ell\ell}=1$ or $0,q_{\ell\ell'}=1,s,s+1,$ or s(s+1), for $\ell,\ell'\in\{1,2,...,p+2\}$ and any non-negative integer p.

Method 2.2. Let N be the $v \times b$ incidence matrix of an affine resolvable BIB design with parameters $v = s^2, b = s(s+1), r = s+1, k = s, \lambda = 1$. Then $[N': (\mathbf{1}_{s+1}\mathbf{1}'_{s+1} - I_{s+1}) \odot \mathbf{1}_s : \mathbf{1}_{s(s+1)}\mathbf{1}'_p]$ shows an affine (s, s, 1, ..., 1)-resolvable (2s + p, s + p)-design with $q_{\ell\ell} = 1$ or $s(s-1), q_{\ell\ell'} = s, s+1$, or s(s+1), for $\ell, \ell' \in \{1, 2, ..., p+2\}$ and any non-negative integer p.

Note that the affine resolvable BIB design used in Methods 2.1 and 2.2 exists if s is a prime or a prime power.

Method 2.3. Let N be the $v \times b$ incidence matrix of an affine resolvable semi-regular GD design with parameters v = mn, b = v + r - m, r, k, λ_1 , $\lambda_2 = \lambda_1 + 1$. Then $[N:I_m \cap I_n: 1_v 1_p']$ shows an affine resolvable $(r + p + 1, p + \lambda_2)$ -design with $q_{\ell\ell} = 0$, $q_{\ell\ell'} = k$, n, v, k^2/v , or k/m, for ℓ , $\ell' \in \{1, 2, ..., r + 1 + p\}$ and any non-negative integer p.

Method 2.4. Let N be the $v \times b$ incidence matrix of an affine resolvable semi-regular GD design with parameters v = mn, b = v + r - m, r, k, λ_1 , $\lambda_2 = \lambda_1 + 1$. Then $[N: (\mathbf{1}_m \mathbf{1}'_m - I_m) \odot \mathbf{1}_a: \mathbf{1}_v \mathbf{1}'_p]$ shows an affine (1, m-1, 1, ..., 1)-resolvable $(r+p+m-1, p+\lambda_2+m-2)$ -design with $q_{\ell\ell} = 0$ or n(m-2), $q_{\ell\ell'} = k$, v, n(m-1), k^2/v , or k(m-1)/m.

for $\ell, \ell' \in \{1, 2, ..., r + 1 + p\}$ and any non-negative integer p. Here the number of 1-resolution sets is p + 1.

Note that there are affine resolvable semi-regular GD designs with $\lambda_2 = \lambda_1 + 1$ can be found in Clatworthy [1], i.e., SR1, SR23, SR38, SR44, SR60, SR71, SR87, SR97, SR105 within the scope of $r, k \leq 10$.

Finally, an inner structure property of affine α -resolvability is given.

Theorem 2.1. The existence of an affine α -resolvable BIB design with parameters $v,b=\beta t,r=\alpha t,k,\lambda,$ $q_1=k+\lambda-r,$ $q_2=k^2/v,$ implies the existence of an affine $(\alpha,...,\alpha,\beta-\alpha,...,\beta-\alpha)$ -resolvable (r^*,λ^*) -design with parameters $v^*=v,b^*=b,r^*=r+c(\beta-2\alpha),k^*=k$ or v-k, $\lambda^*=\lambda+c(\beta-2\alpha),$ $q_{\ell\ell}=k+\lambda-r$ or $v+\lambda-r-k,$ $q_{\ell\ell'}=k^2/v,$ $k-k^2/v$ or $v-2k+k^2/v,$ where c is the number of $(\beta-\alpha)$ -resolution sets and $1\leq c\leq t-1.$

Proof. In the affine α -resolvable BIB design with parameters $v, b = \beta t, r = \alpha t, k, \lambda, \ q_1 = k + \lambda - r, \ q_2 = k^2/v$, assume that any c α -resolution sets are exchanged into their complementary sets, i.e. $(\beta - \alpha)$ -resolution sets, for $1 \le c \le t-1$. Then in the resulting design \mathcal{D} it holds that a replication number r^* is $r^* = r - \alpha c + (\beta - \alpha)c = r + (\beta - 2\alpha)c$. For counting of coincidence numbers of any two treatments in \mathcal{D} , letting that these two treatments have a coincidence number s in the c sets of \mathcal{D} for $0 \le s \le \lambda$, it follows that $\lambda^* = (\lambda - s) + \{\beta c - s - 2(\alpha c - s)\}$ = $\lambda + (\beta - 2\alpha)c$. Furthermore, it can be shown that among block intersection numbers of \mathcal{D} ,

$$q_{tt} = \left\{ \begin{array}{ll} q_1 & \text{in non-complementary sets.} \\ v - 2k + q_1 & \text{in complementary sets.} \end{array} \right.$$

and

$$q_{\ell\ell'} = \left\{ \begin{array}{ll} q_2 & \text{in non-complementary sets.} \\ k - q_2 & \text{between complementary and} \\ & \text{non-complementary sets.} \\ v - 2k + q_2 & \text{in complementary sets.} \end{array} \right.$$

Hence the proof is completed. \Box

Example. Consider an affine resolvable BIB design with parameters $v = 9, b = 12, r = 4, k = 3, \lambda = 1, \alpha = 1, \beta = 3, t = 4, q_1 = 0, q_2 = 1,$ whose incidence matrix is given by

Now exchanging the first and second resolution sets into their complementary sets, we obtain an affine (2,2,1,1)-resolvable (6,3)-design with parameters $v^* = 9, b^* = 12, r^* = 6, k^* = 3$ or $6, \lambda^* = 3, \alpha_1 = \alpha_2 = 2, \alpha_3 = \alpha_4 = 1, \beta = 3, t = 4, q_{11} = 3, q_{12} = 2, q_{13} = q_{14} = 1, q_{22} = 3, q_{23} = 2, q_{24} = 2, q_{33} = 0, q_{34} = 1, q_{44} = 0$, whose incidence matrix is given by

Note that the same design is provided by exchanging any two sets into their complementary sets.

Acknowledgement

Kageyama was supported in part by Grant-in-Aid for Scientific Research (C) 09640272, Japan.

References

- W. H. Clatworthy, "Tables of Two-Associate-Class Partially Balanced Designs", NBS Applied Mathematics Series 63, Washington. D.C, 1973.
- S. Kageyama, On μ-resolvable and affine μ-resolvable balanced incomplete block designs, Ann. Statist. 1(1973), 195-203.
- 3. S. Kageyama and D. V. S. Sastry, On affine $(\mu_1, ..., \mu_t)$ -resolvable (r, λ) -designs, Ars Combinatoria **36**(1993), 221-223.
- 4. R. Mukerjee and S. Kageyama, On resolvable and affine resolvable variance-balanced designs, Biometrika 72(1988), 165-172.
- 5. D. Raghavarao, "Constructions and Combinatorial Problems in Design of Experiments", Dover, New York, 1988.