Cycles Containing Given Subsets in 1-Tough Graphs

Jianping Li*

Institute of Mathematics and Department of Mathematics Yunnan University, Kunming 650091, Yunnan, China

Rugun Shen

Institute of Biophysics, Academia Sinica, Beijing 100101, China

Feng Tian

Institute of Systems Science, Academia Sinica, Beijing 100080, China

Abstract

For a graph G=(V,E) and $X\subseteq V(G)$, let $dist_G(u,v)$ be the distance between the vertices u and v in G and $\sigma_3(X)$ denote the minimum value of the degree sum (in G) of any three pairwise non-adjacent vertices of X. We obtain main result: If G is a 1-tough graph of order n and $X\subseteq V(G)$ such that $\sigma_3(X)\geq n$ and, for all $x,y\in X$, $dist_G(x,y)=2$ implies $\max\{d(x),d(y)\}\geq \frac{n-4}{2}$, then G has a cycle G containing all vertices of G. This result generalizes a result of Bauer, Broersma and Veldinan.

Keywords: X-longest cycle, X-dominating cycle and large degree sums.

AMS Classifications (1990): 05c38, 05c45, 05c35.

1. Results

We use [3] for terminology and notations not defined here and consider finite, simple graphs only.

Throughout this paper, let G be a graph of order n and $X \subseteq V(G)$. A graph G is called 1-tough if $\omega(G-S) \leq |S|$ for every set S of some vertices

^{*}The work was supported by the Science foundation of Yunnan Province.

of G satisfying $\omega(G-S)>1$, where $\omega(G-S)$ is denoted the number of components of G-S. Let $dist_G(u,v)$ be the distance between two vertices u and v as the number of edges in a shortest uv-path in G and $\sigma_k(X)$ denote the minimum value of the degree sum (in G) of any k pairwise nonadjacent vertices of X. A cycle G is called G-longest if no cycle of G contains more vertices of G than G. We say that G is G-cyclable if G has an G-cycle, i.e., a cycle containing all vertices of G. If G is G-cyclable in G is G-cyclable in G-longest cycle in G. In particular, G is Hamiltonian if G is G-cyclable.

Jung got the following result in 1978.

Theorem 1. [5] If G is a 1-tough graph of order $n \ge 11$ such that $\sigma_2(G) \ge n-4$, then G is Hamiltonian.

In 1988, Bauer, Broersma and Veldman generalized Theorem 1 as follows.

Theorem 2. [1] If G be a 1-tough graph of order $n \geq 3$ such that $\sigma_3(G) \geq n$ and, for all vertices $x, y, dist_G(x, y) = 2$ implies $\max\{d(x), d(y)\} \geq \frac{n-4}{2}$, then G is Hamiltonian.

In 1993, we obtained the following result, which completely solved the conjecture proposed by Bauer, G. Fan and Veldman in [2].

Theorem 3. [7] If G be a 1-tough graph of order $n \geq 3$ such that $\sigma_3(G) \geq n$, then $c(G) \geq \min\{n, 2\rho_2^*(G) + 4\}$, where $\rho_2^*(G) = \min\{|N_G(u) \cup N_G(v)| \mid dist_G(u, v) = 2\}$.

Recently, Broersma, H. Li, J.P. Li, F. Tian and Veldman considered some problems involving some cycles through given sets of some vertices in 2-connected graphs. The details could be found in [4].

Motivated by the above facts, we can obtain the following result that extends Theorem 2, whose proof will be postponed to section 3.

Theorem 4. If G is a 1-tough graph of order n and $X \subseteq V(G)$ such that $\sigma_3(X) \ge n$ and, for all vertices $x, y \in X$, $dist_G(x, y) = 2$ implies $\max\{d(x), d(y)\} \ge \frac{n-4}{2}$, then G is X-cyclable.

As a remark, we could obtain the following strong result, whose proof is almost modeled along the proof of Theorem 4, whenever a contradiction is obtained in the proof of Theorem 4, we could either obtain a contradiction or construct the exceptional graph I_n in the proof of Theorem 5. We omit its details here.

Theorem 5. If G is a 1-tough graph of order n and $X \subseteq V(G)$ such that $\sigma_3(X) \ge n$ and, for all vertices $x, y \in X$, $dist_G(x, y) = 2$ implies

 $\max\{d(x),d(y)\} \ge \frac{n-5}{2}$, then either G is X-cyclable or else n is odd and G is a spanning subgraph of the exceptional graph I_n .

The exceptional graph I_n is obtained from $\overline{K}_{\frac{n-1}{2}} \cup K_{\frac{n-5}{2}} \cup K_3$ by joining every vertex in $K_{\frac{n-5}{2}}$ to all other vertices and adding a matching between the vertices of K_3 and three vertices of $\overline{K}_{\frac{n-1}{2}}$.

Theorem 5 admits the following corollaries.

Corollary 6. If G is a 1-tough graph of order $n \ (n \ge 15)$ and $X \subseteq V(G)$ such that $\sigma_2(X) \ge n - 5$, then either G is X-cyclable or else n is odd and G is a spanning subgraph of the exceptional graph I_n .

Corollary 7. If G is a 1-tough graph of order n such that $\sigma_3(G) \geq n$ and, for all vertices $x, y \in X$, $dist_G(x, y) = 2$ implies $\max\{d(x), d(y)\} \geq \frac{n-5}{2}$, then either G is Hamiltonian or else n is odd and G is a spanning subgraph of the exceptional graph I_n .

2. Notations and Preliminary Lemmas

In order to prove our main result, we introduce some additional terminology and notations.

Let C be a cycle of G and $X \subseteq V(G)$. A cycle C is called X-dominating if all neighbors of each vertex of X-V(C) are on C. We denote by \overline{C} the cycle C with a given orientation and by \overline{C} the same cycle with the reverse orientation. If $u,v\in V(C)$, then $u\overline{C}v$ denotes the set of consecutive vertices or the subpath of C from u to v in the direction specified by \overline{C} . The same vertices or the subpath, in reverse order, are given by $v\overline{C}u$. We consider $u\overline{C}v$ and $v\overline{C}u$ both as paths and vertices sets. We use u^+ to denote the successor of u along \overline{C} and u^- its predecessor. We use u^{+k} and u^{-k} to denote $(u^{+(k-1)})^+$ and $(u^{-(k-1)})^-$ for an integer $k\geq 2$, respectively.

Our proof of Theorem 4 heavily relies on the following two lemmas.

Lemma A. [6] Let G be a graph of order n and $X \subseteq V(G)$ such that $\delta(X) \geq 2$ and $\sigma_3(X) \geq n$. Suppose that G contains an X-longest cycle G that is X-dominating. If $x_0 \in X - V(G)$ and $N(x_0) = \{v_1, v_2, \ldots, v_m\}$, then $(X - V(G)) \cup \{x_1, x_2, \ldots, x_m\}$ is an independent set of vertices, where x_i is the first vertex of X on $v_i^+ \stackrel{.}{C} v_{i+1}^-$ for any $i \in \{1, 2, \ldots, m\}$.

Lemma B. [6] If G is a 1-tough graph of order $n \geq 3$ and $X \subseteq V(G)$ satisfies $\sigma_3(X) \geq n$, then G contains an X-longest cycle C that is X-dominating. Furthermore, if G is not X-cyclable, then $\max\{d(x)|x\in X-V(C)\}\geq \frac{\sigma_3(X)}{3}$.

3. Proof of Theorem 4

Throughout this section, we may assume that G satisfies the assumptions of Theorem 4, but G is not X-cyclable. By Lemma B, we choose an X-longest cycle C that is X-dominating and a vertex $x_0 \in X - V(C)$ such that $d(x_0) = \max\{d(x)|x \in X - V(C)\}$ among the set of all X-longest cycles that are X-dominating. Hence $d(x_0) \geq \frac{\sigma_3(X)}{3}$.

Let $A = N(x_0)$ and $v_1, v_2, \ldots, v_{|A|}$ be the vertices of A, occuring on \overrightarrow{C} in consecutive order. Since C is X-longest, we have $X \cap (v_i^+ \overrightarrow{C} v_{i+1}^-) \neq \emptyset$ for each $i \in \{1, 2, \ldots, |A|\}$. For any $i \in \{1, 2, \ldots, |A|\}$, let x_i be the first vertex of X on $v_i^+ \overrightarrow{C} v_{i+1}^-$ and y_i the last vertex of X on $v_i^+ \overrightarrow{C} v_{i+1}^-$. Then $(X - V(C)) \cup \{x_1, x_2, \ldots, x_{|A|}\}$ $((X - V(C)) \cup \{y_1, y_2, \ldots, y_{|A|}\}$, respectively) is an independent set of vertices by Lemma A. A segment $v_i^+ \overrightarrow{C} v_{i+1}^-$ is called t-segment if $|v_i^+ \overrightarrow{C} v_{i+1}^-| = t$. A 1-segment $v_i^+ \overrightarrow{C} v_{i+1}^-$ is called a proper 1-segment if this 1-segment (vertex) has no neighbor out of C. Let S denote the set of 1-segments and S' denote the set of proper 1-segments, respectively. Put s = |S| and s' = |S'|.

Claim 1. If $i \neq j$, then $ab \notin E(G)$, where either $a \in v_i^+ \overrightarrow{C} x_i$, $b \in v_j^+ \overrightarrow{C} x_j$ or $a \in y_i \overrightarrow{C} v_{i+1}^-$, $b \in y_j \overrightarrow{C} v_{j+1}^-$.

Proof of Claim 1. Suppose that there exist two vertices $a \in v_i^+ \overrightarrow{C} x_i$ and $b \in v_j^+ \overrightarrow{C} x_j$ such that $ab \in E(G)$, then the cycle $x_0 v_j \overleftarrow{C} x_i \overleftarrow{C} ab \overrightarrow{C} x_j \overrightarrow{C} v_i x_0$ contains more vertices of X than C, a contradiction. Similarly, if there exist two vertices $a \in y_i \overrightarrow{C} v_{i+1}^-$ and $b \in y_j \overrightarrow{C} v_{j+1}^-$ such that $ab \in E(G)$, then the cycle $x_0 v_{i+1} \overrightarrow{C} y_j \overrightarrow{C} ba \overleftarrow{C} y_i \overleftarrow{C} v_{j+1} x_0$ contains more vertices of X than C, a contradiction.

Claim 2. If $i \neq j$, then there exits no vertex $z \in x_i^+ \overrightarrow{C} v_j^-$ such that $az^+, bz \in E(G)$, where $a \in v_i^+ \overrightarrow{C} x_i$ and $b \in v_j^+ \overrightarrow{C} x_j$.

Proof of Claim 2. Suppose that there exists a vertex $z \in x_i^+ \overrightarrow{C} v_j^-$ such that $az^+, bz \in E(G)$, where $i \neq j$, $a \in v_i^+ \overrightarrow{C} x_i$ and $b \in v_j^+ \overrightarrow{C} x_j$, then the cycle $x_0v_j \ \overrightarrow{C} z^+ a \overrightarrow{C} x_i \ \overrightarrow{C} z b \overrightarrow{C} x_j \ \overrightarrow{C} v_i x_0$ contains more vertices of X than C, a contradiction.

With the similar arguments to the proof of Claim 2, we obtain the following result.

Claim 3. If $i \neq j$, then there exits no vertex $z \in v_j \overrightarrow{C} v_i^-$ such that

 $az^+, bz \in E(G)$, or $az, bz^+ \in E(G)$, where $a \in v_i^+ \overrightarrow{C} x_i$ and $b \in y_{j-1} \overrightarrow{C} v_j^-$.

Claim 4. $|S| \ge |S'| \ge 2$. Moreover, for each $u \in S'$, $d(u) \le d(x_0)$.

Proof of Claim 4. Put $U = \{x_1, x_2, \ldots, x_{|A|}\} - S$ and $W = \{y_1, y_2, \ldots, y_{|A|}\} - S$. Let $O(U) = N_G(U) - V(C)$ and $O(W) = N_G(W) - V(C)$. Since any two vertices of $\{x_1, x_2, \ldots, x_{|A|}\}$ ($\{y_1, y_2, \ldots, y_{|A|}\}$, respectively) have no common neighbors in V(G) - V(C) and any vertex of $\{x_1, x_2, \ldots, x_{|A|}\}$ ($\{y_1, y_2, \ldots, y_{|A|}\}$, respectively) has no neighbors in X - V(C) by Lemma A, we have

$$n-1-(s-s')-\max\{|O(U)|,|O(W)|\}\geq |V(C)|\geq 3(d(x_0)-s)+2s$$

whence

$$\begin{array}{lcl} s' & \geq & 3d(x_0) - n + 1 + \max\{|O(U)|, |O(W)|\} \\ & \geq & \sigma_3(X) - n + 1 + \max\{|O(U)|, |O(W)|\} \\ & > & 1. \end{array}$$

Suppose s'=1, without loss of generality, we assume that $S'=\{x_1\}$, then the above inequalities imply that $d(x_0)=\frac{1}{3}n$, $\max\{|O(U)|,|O(W)|\}=0$ and $|V(C)|=3d(x_0)-s$; Moreover we get that C contains only 1-segments and 2-segments. Suppose $v_i^+v_{j+1}^-\notin E(G)$ for all $i\neq j$, then all distinct segments are not connected by an edge or a path whose internal vertices are in V(G)-V(C), hence $\omega(G-A)\geq |A|+1$, which contradicts the fact that G 1-tough. Thus, there exists $v_i^+v_{j+1}^-\in E(G)$ for some $i\neq j$.

Since the X-longest cycle C contains only 1-segments and 2-segments, we get v_{i+1}^- , $v_j^+ \in X$ and $i, j \neq 1$. We choose a minimal integer i such that $v_i^+v_{j+1}^- \in E(G)$. Then $v_i^+v_{j'+1}^- \notin E(G)$ for each $t \in \{1, 2, \ldots, i-1\}$. By the fact $\max\{|O(U)|, |O(W)|\} = 0$, the cycle $C' = x_0v_{i+1}\overrightarrow{C}v_{j+1}^-v_i^+ \overleftarrow{C}v_{j+1}x_0$ is another X-longest cycle that is X-dominating and satisfying $v_{i+1}^- \notin C'$. By the choice of C and the fact $v_{i+1}^- \in X$, we have $d(v_{i+1}^-) \leq d(x_0)$. Since x_0, x_1 and v_{i+1}^- are three nonadjacent vertices of X, we have $n \leq d(x_0) + d(x_1) + d(v_{i+1}^-) \leq 3d(x_0) = n$. So $d(x_0) = d(x_1) = d(v_{i+1}^-) = \frac{\sigma_3(X)}{3} = \frac{n}{3}$. Hence, we have $N(x_1) = N(x_0)$.

Suppose i>j, since the fact $N(x_1)=N(x_0)$ leads $v_{j+1}\in N(x_1)$, then the cycle $C''=x_0x_1^+\overrightarrow{C}v_{j+1}^ v_i^+\overrightarrow{C}x_1v_{j+1}$ $\overrightarrow{C}v_ix_0$ contains more vertices of X than C, a contradiction. This shows that i< j. By the choice of i, we have $v_{i+1}^-v_i^+\notin E(G)$, where $t\in\{1,2,\ldots,i-1\}$. If $v_{i+1}^-v_i^+\in E$ for $i+1\leq s\leq j$, we get the cycle $C'''=x_0v_{j+1}\overrightarrow{C}v_i^+v_{j+1}^-\overrightarrow{C}v_s^+v_{i+1}^-\overrightarrow{C}v_sx_0$ containing more vertices of X than C. If $v_{i+1}^-v_j^+\in E$ for $j+1\leq s\leq |A|$, we also get the cycle $C''''=x_0v_2\overrightarrow{C}v_i^+v_{j+1}^-\overrightarrow{C}v_{i+1}^-v_s^+\overrightarrow{C}x_1v_s\overrightarrow{C}v_{j+1}x_0$ containing

more vertices of X than C (note $N(x_1) = N(x_0)$). This shows $N(v_{i+1}^-) \subseteq N(x_0) \cup \{v_i^+\}$ (since |O(W)| = 0). Since C is X-longest and the subpath $v_{j+1} \overrightarrow{C} v_i$ contains the 1-segment x_1 , we can easily obtain that $v_{i+1}^- v_i \notin E$, $v_{i+1}^- v_{j+1} \notin E$ and $v_i \neq v_{j+1}$, so $N(v_{i+1}^-) \subseteq (A \cup \{v_i^+\}) - \{v_i, v_{j+1}\}$. Hence $d(v_{i+1}^-) \leq d(x_0) + 1 - 2 = d(x_0) - 1$, contradicting $d(v_{i+1}^-) = d(x_0)$. Therefore, $|S| \geq |S'| \geq 2$.

Thus, for each $u \in S'$, $d(u) \le d(x_0)$, else we can replace u in C by x_0 .

Claim 5. If G is 1-tough, then $|V(C)| \ge 2|A| + 2$ and the equality holds only if C contains two 2-segments and all other segments are 1-segments.

Proof of Claim 5. Put $Z = V(C) - (A \cup A^+)$. Since C is an X-longer cycle, we have $A \cap A^+ = \emptyset$, then $|V(C)| = |Z| + 2|A| \ge 2|A|$. Suppose $|V(C)| \le 2|A| + 1$, then $|Z| \le 1$, so all segments of C are 1-segments except only a 2-segment. Since C is X-longest and each segment does not connect to the others by an edge or a path whose internal vertices are in V(G) - V(C), we get $\omega(G - A) \ge |A| + 1$, which contradicts the fact C is 1-tough. Hence $|V(C)| \ge 2|A| + 2$.

Suppose |V(C)|=2|A|+2, we get |Z|=2, then all segments of C are 1-segments except that C contains either two 2-segments or a 3-segment. If |V(C)|=2|A|+2 and C contains a 3-segment, say $v_i^+v_i^{+2}v_{i+1}^-$, then all other segments are 1-segments. By Claim 1, we have $v_i^+v_j^+\notin E(G)$ and $v_{i+1}^-v_j^+\notin E(G)$ for any $j\in\{1,2,\ldots,|A|\}-\{i\}$. Suppose $v_i^+v_i^{+2}\in E(G)$ for some $l\in\{1,2,\ldots,|A|\}-\{i\}$, then $N(v_i^+)\cap V(C)\subseteq A\cup\{v_i^{+2}\}$ and $N(v_{i+1}^-)\cap V(C)\subseteq A\cup\{v_i^{+2}\}$ by Claims 1-3. By the fact that any two vertices of $A^+\cup\{v_{i+1}^-\}$ do not connect to each other by an edge or a path whose internal vertices are in V(G)-V(C), we obtain $\omega(G-(A\cup\{v_i^{+2}\}))>|A|+1$, which contradicts the fact G is 1-tough. So $v_j^+v_i^{+2}\notin E(G)$ for any $j\in\{1,2,\ldots,|A|\}-\{i\}$. Moreover, we get $\omega(G-A)>|A|$, which also contradicts the fact G is 1-tough. Hence G contains no 3-segment.

Thus, the equality |V(C)| = 2|A| + 2 leads that C contains two 2-segments and all other segments are 1-segments.

Claim 6. At most one vertex of $\{x_1, x_2, \ldots, x_{|A|}\}$ $\{\{y_1, y_2, \ldots, y_{|A|}\}\}$, respectively) has degree smaller than $\frac{n-4}{2}$.

Proof of Claim 6. Suppose that there exist two vertices x_i , x_j $(i \neq j)$ of $\{x_1, x_2, \ldots, x_{|A|}\}$ such that $d(x_i) < \frac{n-4}{2}$ and $d(x_j) < \frac{n-4}{2}$. Since $x_i x_j \notin E(G)$ by Claim 1, we get $dist_G(x_i, x_j) \geq 2$. If $N(x_i) \cap N(x_j) \neq \emptyset$, we have $dist_G(x_i, x_j) = 2$. By the second degree condition of Theo-

rem 4, we have $\max\{d(x_i), d(x_j)\} \ge \frac{n-4}{2}$, which contradicts our assumptions $d(x_i) < \frac{n-4}{2}$ and $d(x_j) < \frac{n-4}{2}$. This shows that $N(x_i) \cap N(x_j) = \emptyset$. By Lemma A and the claims above, we have $(N(x_i) \cup N(x_j)) \cap V(C) \subseteq V(C) - \{x_1, x_2, \dots, x_{|A|}\}$. It follows that

$$d(x_{i}) + d(x_{j}) = |N(x_{i}) \cup N(x_{j})| + |N(x_{i}) \cap N(x_{j})|$$

$$= |(N(x_{i}) \cup N(x_{j})) \cap V(C)|$$

$$+ |(N(x_{i}) \cup N(x_{j})) - V(C)|$$

$$\leq |V(C) - \{x_{1}, x_{2}, \dots, x_{|A|}\}|$$

$$+ |(N(x_{i}) \cup N(x_{j})) - V(C)|$$

$$= |V(C)| - |A| + |(N(x_{i}) \cup N(x_{j})) - V(C)|$$

$$= |N(x_{i}) \cup N(x_{j}) \cup V(C)| - |A|$$

$$\leq n - 1 - d(x_{0})$$

Hence $\sigma_3(X) \le d(x_i) + d(x_i) + d(x_0) \le n - 1$, a contradiction.

Similarly, at most one vertex of $\{y_1, y_2, \dots, y_{|A|}\}$ has degree smaller than $\frac{n-4}{2}$.

By Claim 4, we have some vertex $u \in S'$ satisfying $d(u) \leq d(x_0)$. Since $dist_G(u,x_0)=2$, we get $d(x_0)=|A|\geq \frac{n-4}{2}$. By Claim 5 and the fact $|A|\geq \frac{n-4}{2}$, we obtain

$$n-2 \le 2|A|+2 \le |V(C)| \le n-1 \le 2|A|+3$$

Note that $|A| \leq \frac{n-3}{2}$. By the fact $n-1 \leq |V(C) \cup \{x_0\}| \leq n$, we get $|V(G) - (V(C) \cup \{x_0\})| \leq 1$. Below, we will distinguish the two cases, in each of which we obtain a contradiction. For convenience, we set $\epsilon(q) = |N_G(q) - V(C)|$ for any $q \in V(G)$.

Case 1.
$$|V(C)| = 2|A| + 2$$

By Claim 5, C contains two 2-segments, say $v_1^+\overrightarrow{C}v_2^-$ and $v_i^+\overrightarrow{C}v_{i+1}^-$, and all other segments are 1-segments. By Claims 1-3 and the fact that G is 1-tough, we obtain either $v_1^+v_{i+1}^-\in E(G)$ or $v_2^-v_i^+\in E(G)$. Without loss of generality, we may assume $v_1^+v_{i+1}^-\in E(G)$, then $v_2^-, v_i^+\in X$ by Claim 1. We note that $|V(C)|\geq n-2$, i.e., $|V(G)-(V(C)\cup\{x_0\})|\leq 1$.

Case 1.1 i > 5

Since x_2 , x_3 and x_4 are all 1-segments and $\epsilon(x_2) + \epsilon(x_3) + \epsilon(x_4) \le 1$, then at least two vertices of $\{x_2, x_3, x_4\}$ are proper 1-segments. By

Claim 6, we can choose a proper 1-segment $x_j \in \{x_2, x_3, x_4\}$ satisfying $d(x_j) \ge \frac{n-4}{2}$. Note that $|A| \le \frac{n-3}{2}$, we obtain at least one vertex of $\{v_1, v_{i+1}\}$, say v_1 , such that v_1 is adjacent to x_j . So we can construct a cycle $C' = x_0 v_{i+1} \overrightarrow{C} v_1 x_j \overrightarrow{C} v_{i+1}^- v_1^+ \overrightarrow{C} v_j x_0$ containing more vertices of X than C, a contradiction.

Case 1.2 i = 4

In this case, suppose that $v_1 \neq v_5$, by the facts $v_1, v_5 \notin N(x_2) \cup N(x_3)$, we get $(N(x_2) \cup N(x_3)) \cap V(C) \subseteq A - \{v_1, v_5\}$, then we obtain

$$\min\{d(x_2), d(x_3)\} \leq |A| - 2 + \min\{\epsilon(x_2), \epsilon(x_3)\}$$

$$\leq \frac{|V(C)| - 2}{2} - 2 + \frac{\epsilon(x_2) + \epsilon(x_3)}{2}$$

$$= \frac{|V(C)| + \epsilon(x_2) + \epsilon(x_3)}{2} - 3$$

$$< \frac{n-4}{2}$$

Without loss of generality, we may assume that $d(x_2) \leq d(x_3)$, then $d(x_2) < \frac{n-4}{2}$. By the fact $|V(G)-(V(C)\cup\{x_0\})| \leq 1$, we get $\epsilon(v_2^-)+\epsilon(x_3)+\epsilon(x_4) \leq 1$, so at least two vertices of $\{v_2^-, x_3, x_4\}$ have no neighbors out of C. By the facts $N(v_2^-)\cap V(C)\subseteq A\cup\{v_1^+\}-\{v_1,v_5\}, N(x_3)\cap V(C)\subseteq A-\{v_1,v_5\}$ and $N(x_4)\cap V(C)\subseteq A\cup\{v_5^-\}-\{v_1,v_5\}$, we get

$$\min\{d(v_2^-),d(x_3),d(x_4)\} \leq (|A|+1)-2 \leq \frac{n-3}{2}-1 < \frac{n-4}{2}$$

Since $d(x_2) < \frac{n-4}{2}$ and $v_2^-, x_2, x_3, x_4 \in \{y_1, y_2, \dots, y_{|A|}\}$, so at least two vertices of $\{y_1, y_2, \dots, y_{|A|}\}$ have degree smaller than $\frac{n-4}{2}$, which contradicts Claim 6. Thus, $v_1 = v_5$, i.e., |V(C)| = 10.

For the case i = 4 and $v_1 = v_5$ (and |V(C)| = 10), we obtain

$$\sigma_3(X) \leq d(x_2) + d(x_3) + d(x_0)
\leq (3 + \epsilon(x_2)) + (3 + \epsilon(x_3)) + 4
= |V(C)| + \epsilon(x_2) + \epsilon(x_3)
\leq n - 1$$

a contradiction.

Case 1.3 i < 3

Claim 4 implies $v_1 \neq v_{i+1}$. It is easy to see that v_2^- , x_2 , $v_i^+ \in X$ and $dist_G(v_2^-, x_2) = 2$, so we get $\max\{d(v_2^-), d(x_2)\} \geq \frac{n-4}{2}$. On the other hand, since $v_2^-v_1, v_2^-v_{i+1} \notin E(G)$, we get $N(v_2^-) \subseteq A \cup \{v_1^+\} - \{v_1, v_{i+1}\}$, and by the fact $|A| \leq \frac{n-3}{2}$, we obtain

$$d(v_2^-) \le |A| + 1 - 2 \le \frac{n-3}{2} - 1 < \frac{n-4}{2}.$$

Similarly, since x_2v_1 , $x_2v_{i+1} \notin E(G)$, we get $N(x_2) \subseteq A \cup \{v_3^-\} - \{v_1, v_{i+1}\}$ (here, $x_2 = v_i^+$ when i = 2), and by the fact $|A| \leq \frac{n-3}{2}$, we obtain

$$d(x_2) \le |A| + 1 - 2 \le \frac{n-3}{2} - 1 < \frac{n-4}{2}$$
.

Hence, $\max\{d(v_2^-), d(x_2)\} < \frac{n-4}{2}$, which contradicts our result $\max\{d(v_2^-), d(x_2)\} \ge \frac{n-4}{2}$.

Case 2. |V(C)| = 2|A| + 3

Put $Z = V(C) - (A \cup A^+)$. By the fact $|A| \ge \frac{n-4}{2}$, we obtain |V(C)| = n-1, $|A| = \frac{n-4}{2}$ and |Z| = 3. Note that $\epsilon(q) = 0$ for any $q \in V(G) - A$. We consider the following three possibilities.

Case 2.1 C contains a 4-segment

Without loss of generality, we assume that $v_1^+, v_1^{+2}, v_2^{-2}, v_2^-$ are the vertices of the 4-segment. Suppose that neither v_1^{+2} nor v_2^{-2} is adjacent to any 1-segment, then $\omega(G-A)>|A|$ by Claim 1, a contradiction. This shows that at least one vertex of $\{v_1^{+2}, v_2^{-2}\}$ is adjacent to some 1-segments. Without loss of generality, we may assume that $v_1^{+2}x_i\in E(G)$ for some 1-segment x_i . Claims 2-3 imply that v_2^{-2} is not adjacent to any 1-segment, while the same is true for v_2^- by Claims 1-2. So we obtain $\omega(G-(A\cup\{v_1^{+2}\}))>|A\cup\{v_1^{+2}\}|$, a contradiction.

Case 2.2 C contains a 3-segment and a 2-segment

In this case, we assume that v_1^+ , v_1^{+2} , v_2^- are the vertices of the 3-segment and that v_i^+ , v_{i+1}^- are the vertices of the 2-segment.

Suppose that $v_1^+v_{i+1}^- \notin E(G)$ and $v_2^-v_i^+ \notin E(G)$. If $v_1^+v_2^- \notin E(G)$, then we get $\omega(G - (A \cup \{v_1^{+2}\})) > |A \cup \{v_1^{+2}\}|$ by Claim 1, a contradiction. If $v_1^+v_2^- \in E(G)$, then v_1^{+2} is not adjacent to any vertex in $(A^+ \cup A^-) - \{v_1^+, v_2^-\}$ by Claim 2 or Claim 3, so we also get $\omega(G - A) > |A|$, a contradiction. This shows that either $v_1^+v_{i+1}^- \in E(G)$ or $v_2^-v_i^+ \in E(G)$. Below, we only consider the case $v_1^+v_{i+1}^- \in E(G)$. (For the case $v_2^-v_i^+ \in E(G)$, we consider the cycle C on the reverse orientation \overline{C} , we also obtain a contradiction). Claim 1 implies that $v_i^+ \in X$, i.e., $v_i^+ = x_i$.

Case 2.2.1 $i \ge 4$

We consider the two vertices x_2 and x_3 . By the facts $\epsilon(x_2)=0$, $\epsilon(x_3)=0$ and Claims 1-3, it is very easy to obtain that $N(x_2)\subseteq A-\{v_1,v_{i+1}\}$ and $N(x_3)\subseteq A-\{v_1,v_{i+1}\}$. So we get $\max\{d(x_2),d(x_3)\}\leq |A|-1=\frac{n-6}{2}<\frac{n-4}{2}$. On the other hand, $dist_G(x_2,x_3)=2$ implies $\max\{d(x_2),d(x_3)\}\geq \frac{n-4}{2}$, a contradiction.

Case 2.2.2 i = 3

In this case, the subpath $v_{i+1}\overrightarrow{C}v_1$ contains at least one proper 1-segment by Claim 4, so we get $v_1 \neq v_4$. By the facts $\epsilon(x_2) = 0$, $\epsilon(x_3) = 0$ and Claims 1-3, it is very easy to obtain that $N(x_2) \subseteq A - \{v_1, v_4\}$ and $N(v_3^+) \subseteq (A \cup \{v_4^-\}) - \{v_1, v_4\}$, hence we get $\max\{d(x_2), d(x_3)\} \leq |A| + 1 - 2 = \frac{n-6}{2} < \frac{n-4}{2}$. On the other hand, $dist_G(x_2, x_3) = 2$ implies $\max\{d(x_2), d(v_4^-)\} \geq \frac{n-4}{2}$, a contradiction.

Case 2.2.3 i = 2

In this case, by Claims 1-4, it is very easy to obtain that $N(x_2) \subseteq (A \cup \{v_3^-\}) - \{v_1, v_3\}$ and $v_1 \neq v_3$, so we get $d(x_2) \leq |A| + 1 - 2 < \frac{n-4}{2}$.

By Claims 4 and 6, the subpath $v_3\overrightarrow{C}v_1$ contains at least two (proper) 1-segments and we get $d(x_k) \geq \frac{n-4}{2}$ for any (proper) 1-segment $x_k \in v_3\overrightarrow{C}v_1$. Again by Claims 1-3, we get the fact $N(x_k) \subseteq A$. Moreover we get $N(x_k) = A$ by the facts $d(x_k) \geq \frac{n-4}{2}$ and $|A| = \frac{n-4}{2}$. This follows that $x_k v_2 \in E(G)$ for any 1-segment $x_k \in v_3\overrightarrow{C}v_1$. Below, we consider the last vertex y_1 of X on $v_1^+\overrightarrow{C}v_2^-$.

- If there exists a 1-segment $x_k \in v_3 \overrightarrow{C} v_1$ such that $y_1 x_k^- \in E(G)$, we can construct a cycle $C' = x_0 v_3 \overrightarrow{C} x_k^- y_1 \overrightarrow{C} x_1 v_3^- \overrightarrow{C} v_2 x_k \overrightarrow{C} v_1 x_0$ containing more vertices of X than C, a contradiction.
- If $y_1x_k^- \notin E(G)$ for any 1-segment $x_k \in v_3\overrightarrow{C}v_1$, we get $N(y_1) \subseteq \{v_1^+, v_1^{+2}, v_2^-, v_2\} \{y_1\}$. So we obtain that

$$\sigma_3(X) \le d(y_1) + d(x_2) + d(x_0) < 3 + \frac{n-4}{2} + \frac{n-4}{2} < n,$$

a contradiction, too.

Case 2.3 C contains three 2-segments

In this case, we may assume that $v_1^+ \overrightarrow{C} v_2^-$, $v_i^+ \overrightarrow{C} v_{i+1}^-$ and $v_j^+ \overrightarrow{C} v_{j+1}^-$ (1 < i < j) are the three 2-segments. If no vertex in any 2-segment is adjacent to any vertex in a different 2-segment, then we get $\omega(G-A) > |A|$, a contradiction. Hence, we only consider that $v_1^+ v_{i+1}^- \in E(G)$ or $v_1^+ v_{j+1}^- \in E(G)$ or $v_1^+ v_{j+1}^- \in E(G)$. (For the other cases, we consider the cycle C on the reverse orientation \overrightarrow{C} , we also obtain a contradiction).

Case 2.3.1 $v_1^+ v_{i+1}^- \in E(G)$

In this case, we get that $v_2^-, v_2^+ \in X$ (by Claim 1) and $dist_G(v_2^-, v_2^+) = 2$, so $\max\{d(v_2^-), d(v_2^+)\} \ge \frac{n-4}{2}$. On the other hand, it is easy to see that $v_1 \ne v_{i+1}$ (since the subpath $v_{i+1} \overrightarrow{C} v_1$ contains the 2-segment $v_j^+ \overrightarrow{C} v_{j+1}^-$)

and that $N(v_2^-) \subseteq (A \cup \{v_1^+\}) - \{v_1, v_{i+1}\}$ and $N(v_2^+) \subseteq (A \cup \{v_{i+1}^-\}) - \{v_1, v_{i+1}\}$ (here, $N(v_2^+) \subseteq A - \{v_1, v_{i+1}\}$ for the 1-segment v_2^+), then we get $\max\{d(v_2^-), d(v_2^+)\} \le (|A|+1) - 2 < \frac{n-4}{2}$, a contradiction.

Case 2.3.2 $v_i^+ v_{i+1}^- \in E(G)$

In this case, with the similar arguments in Case 2.3.1, we can easily obtain a contradiction.

Case 2.3.3 $v_1^+ v_{i+1}^- \in E(G)$

In this case, we only consider the facts $v_1^+v_{i+1}^- \notin E(G)$, $v_i^+v_{j+1}^- \notin E(G)$ and $v_1^+v_{j+1}^- \in E(G)$, otherwise we get a contradiction by the similar arguments in Case 2.3.1.

- If the subpath $v_2\overrightarrow{C}v_j$ contains (at least) two proper 1-segments, say $x_{i'}$ and $x_{j'}$, it is easy to see that $N(x_{i'}) \subseteq A \{v_1, v_{j+1}\}$ and $N(x_{j'}) \subseteq A \{v_1, v_{j+1}\}$, then we get $\max\{d(x_{i'}), d(x_{j'})\} \leq |A| 1 < \frac{n-4}{2}$, which contradicts Claim 6.
- If the subpath $v_2\overrightarrow{C}v_j$ contains only one proper 1-segments, say $x_{i'}$, then $v_1 \neq v_{j+1}$ by Claim 4. Without loss of generality, we may assume that $x_{i'} \in v_2\overrightarrow{C}v_i$. So $x_{i'} = v_2^+$, i = 3 and j = 4. We consider the two vertices v_2^- and $x_2 = v_2$. Since $v_2^- \in X$ by Claim 1 and $dist_G(v_2^-, x_2) = 2$, we get $\max\{d(v_2^-), d(v_2^+)\} \geq \frac{n-4}{2}$. On the other hand, it is easy to see that $N(v_2^-) \subseteq (A \cup \{v_1^+\}) \{v_1, v_5\}$ and $N(x_2) \subseteq A \{v_1, v_5\}$, then we get $\max\{d(v_2^-), d(v_2^+)\} \leq (|A|+1) 2 < \frac{n-4}{2}$, a contradiction.
- If the subpath $v_2 \overrightarrow{C} v_j$ contains no (proper) 1-segments, then i = 2, j = 3 and $v_1 \neq v_4$ (by Claim 4). Since $v_2^+ \overrightarrow{C} v_3^- \cap X \neq \emptyset$, we get that at least one of the two vertices $\{v_2^+, v_3^-\}$ belongs to X.

When $v_2^+ \in X$, we consider the two vertices v_2^- and v_2^+ . Since $dist_G(v_2^-, v_2^+) = 2$, we get $\max\{d(v_2^-), d(v_2^+)\} \ge \frac{n-4}{2}$. On the other hand, it is easy to see that $N(v_2^-) \subseteq (A \cup \{v_1^+\}) - \{v_1, v_5\}$ and $N(v_2^+) \subseteq (A \cup \{v_3^-\}) - \{v_1, v_5\}$, then we get $\max\{d(v_2^-), d(v_2^+)\} \le (|A| + 1) - 2 < \frac{n-4}{2}$, a contradiction.

When $v_3^- \in X$, we consider the two vertices v_3^- and v_3^+ . Since $dist_G(v_3^-, v_3^+) = 2$, we also get $\max\{d(v_2^-), d(v_2^+)\} \ge \frac{n-4}{2}$. On the other hand, it is easy to see that $N(v_3^-) \subseteq (A \cup \{v_2^+\}) - \{v_1, v_5\}$ and $N(v_3^+) \subseteq (A \cup \{v_4^-\}) - \{v_1, v_5\}$, then we get $\max\{d(v_2^-), d(v_2^+)\} \le (|A|+1) - 2 < \frac{n-4}{2}$, a contradiction, too.

This completes the proof of Theorem 4.

Acknowledgments

We thank one anonymous referee for the suggestion to this revised version.

References

- [1] D. Bauer, H.J. Broersma and H.J. Veldman, On generalizing a theorem of Jung, preprint (1989).
- [2] D. Bauer, G. Fan and H.J. Veldman, Hamiltonian properties of graphs with large neighborhood unions, Discrete Math. 96 (1991), 33-49.
- [3] J.A. Bondy and U.S.R. Murty, Graph Theory with its Applications, Macmillan, London and Elsevier, New York, 1976.
- [4] H.J. Broersma, H. Li, J.P. Li, F. Tian and H.J. Veldman, Cycles through subsets with large degree sums, Discrete Math. 171 (1997), 43-54.
- [5] H.A. Jung, On maximal circuits in finite graphs, Annals of Discrete Math. 3(1978), 129-144.
- [6] J.P. Li, Cycles containing many vertices of subsets in 1-tough graphs with large degree sums, ARS Combinatoria 48 (1998), 195-212.
- [7] J.P. Li, R.Q. Shen and F. Tian, A further generalization of Jung's theorem, Systems Sciences and Mathematical Sciences, Vol 6. No.1 (1993), 52-62.