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Abstract

For a graph G = (V,E) and X C V(G), let distg(u,v) be the
distance between the vertices u and v in G and o3(X) denote the
minimum value of the degree sum (in G) of any three pairwise non-
adjacent vertices of X. We obtain main result: If G is a 1-tough
graph of order n and X C V(G) such that ¢3(X) > n and, for all
z,y € X, diste(z,y) = 2 implies max{d(z),d(y)} > 25%, then G
has a cycle C containing all vertices of X. This result generalizes a
result of Bauer, Broersma and Veldinan.

Keywords: X-longest cycle, X-dominating cycle and large
degree sums.
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1. Results
We use [3] for terminology and notations not defined here and consider
finite, simple graphs only.

Throughout this paper, let G be a graph of order n and X C V(G). A
graph G is called I-tough if w(G — S) < |S| for every set S of some vertices
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of G satisfying w(G — S) > 1, where w(G — S) is denoted the number of
components of G — S. Let distg(u,v) be the distance between two vertices
u and v as the number of edges in a shortest uv-path in G and o (X)
denote the minimum value of the degree sum (in G) of any k pairwise
nonadjacent vertices of X. A cycle C is called X-longest if no cycle of G
contains more vertices of X than C. We say that G is X-cyclable if G has
an X-cycle, i.e., a cycle containing all vertices of X. If X = V(G), then
we use the common terminology circumference (denoted by ¢(G)) to mean
the length of an X-longest cycle in G. In partlcular G is Hamiltonian if G
is V(G)-cyclable. :

Jung got the following result in 1978.

Theorem 1. [5] If G is a 1-tough graph of order n > 11 such that
o2(G) > n — 4, then G is Hamiltonian.

In 1988, Bauer, Broersma and Veldman generalized Theorem 1 as fol-
lows.

Theorem 2. [1] If G be a 1-tough graph of order n > 3 such that
03(G) > n and, for all vertices z, y, distg(z,y) = 2 implies max{d(z), d(y)}
> 234 then G is Hamiltonian.

In 1993, we obtained the following result, which completely solved the
conjecture proposed by Bauer, G. Fan and Veldman in [2].

Theorem 3. [7] If G be a 1-tough graph of order n > 3 such that
o3(G) > n, then ¢(G) > min{n, 2p2(G) + 4}, where p3(G) = min{|Ng(u)U
NG(v)I | distg(u,v) = 2}

Recently, Broersma, H. Li, J.P. Li, F. Tian and Veldman considered
some problems involving some cycles through given sets of some vertices in
2-connected graphs. The details could be found in [4).

Motivated by the above facts, we can obtain the following result that
extends Theorem 2, whose proof will be postponed to section 3.

Theorem 4. If G is a 1-tough graph of order n and X C V(G) such
that o3(X) > n and for all vertices z,y € X, distg(z,y) = 2 implies
max{d(z), d(y)} > 224 then G is X-cyclable.

As a remark, we could obtain the following strong result, whose proof is
almost modeled along the proof of Theorem 4, whenever a contradiction is
obtained in the proof of Theorem 4, we could either obtain a contradiction
or construct the exceptional graph I, in the proof of Theorem 5. We omit
its details here.

Theorem 5. If G is a 1-tough graph of order n and X C V(G) such
that g3(X) > n and, for all vertices z,y € X, distg(z,y) = 2 implies
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max{d(z),d(y)} > 252, then either G is X-cyclable or else n is odd and G
is a spanning subgraph of the exceptional graph I,.

The exceptional graph I, is obtained from fgi_l UK 25t UK3 by joining
every vertex in K azs to all other vertices and adding a matching between

the vertices of K3 and three vertices of ?3;_1 .

Theorem 5 admits the following corollaries.

Corollary 6. If G is a 1-tough graph of order n (n > 15) and X C V(G)
such that o2(X) > n — 5, then either G is X-cyclable or else n is odd and
G is a spanning subgraph of the exceptional graph I,,.

Corollary 7. If G is a 1-tough graph of order n such that o3(G) > n
and, for all vertices z,y € X, distg(z,y) = 2 implies max{d(z),d(y)} >
"T‘s, then either G is Hamiltonian or else n is odd and G is a spanning
subgraph of the exceptional graph I.

2. Notations and Preliminary Lemmas

In order to prove our main result, we introduce some additional termi-
nology and notations.

Let C be a cycle of G and X C V(G). A cycle C is called X-dominatin
if all neighbors of each vertex of X — V(C) are on C. We denote by g
the cycle C with a given orientation and by T the same cycle with the
reverse orientation. If u,v € V(C), then uCv denotes the set of consecutive
vertices or the subpath of C from u to v in the direction specified by C.
The same vertices or the subpath, in reverse order, are given by vC'u. We
consider «Cv and vTu both as paths and vertices sets. We use u* to
denote the successor of u along C and u~ its predecessor. We use u** and
u~* to denote (u+(*~1)+ and (u~(*~1)~ for an integer k > 2, respectively.

Our proof of Theorem 4 heavily relies on the following two lemmas.

Lemma A. [6) Let G be a graph of order n and X C V(G) such that
§(X) > 2 and 03(X) > n. Suppose that G contains an X-longest cycle C
that is X-dominating. If zo € X — V(C) and N(zo) = {v1,v2,...,%m},
then (X —V(C))U{z1,z2,..., :c%(} is an independent set of vertices, where
x; is the first vertex of X on v,T" vy, forany i€ {1,2,...,m}.

Lemma B. [6] If G is a 1-tough graph of order n > 3 and X C V(G)
satisfies 03(X) > n, then G contains an X-longest cycle C that is X-
dominating. Furthermore, if G is not X-cyclable, then max{d(z)|z € X —

v(C)} > 2.
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3. Proof of Theorem 4

Throughout this section, we may assume that G satisfies the assump-
tions of Theorem 4, but G is not X-cyclable. By Lemma B, we choose
an X-longest cycle C that is X-dominating and a vertex z9 € X — V(C)

such that d(zo) = max{d(z)|z € X — V(C)} among the set of all X-longest

cycles that are X-dominating. Hence d(zo) > M

Let A = N(zo) and vy, v2,...,v)4| be the vertices of A, occuring on c

in consecutive order. Since C is X-longest, we have X N (v} 61),7_,,1) #0
for each i € {1,2,...,|A|}. For any i € {1,2,...,|A|}, let z; be the first

vertex of X on v} Cvj}, and y the last vertex of X on v} C'vj},. Then

(X=-V(C)U{z1,22,..., 2141} (X=V(C))U{n1,92, .. ,y|,4|},respectively)
is an independent set of vertices by Lemma A. A segment v} Cv; i+1 18

called t-segment if |v;} Ty v;| =1. A l-segment v] ?v, i+1 is called a proper
1-segment if this l-segment (vertex) has no nelghbor out of C. Let S
denote the set of 1-segments and S’ denote the set of proper 1-segments,
respectively. Put s = |S| and s’ = |¥'|.

Claim 1. If i # j, then ab ¢ E(G), where either a € v"'?:c,, be v+'6z_,
orac y,avﬂ_l, be yjﬁ

Proof of Claim 1. Suppose that there exist two vertices a € v"'az. and

be v"'?zg such that ab € E(G), then the cycle zovjﬁz,sabaz,_dv,zo
contams more vertices of X than C, a contradiction. Similarly, if there
exist two vertices a € g C vj; vy, and b € y; T} 741 such that ab € E(G), then

the cycle xw..,.;?yj abaﬁy, 51)].“ 2o contains more vertices of X than C,
a contradiction.

[m]

Claim 2. If i # j, then there exits no vertex z € z"'av such that
az*,bz € E(G), where a € v} Cz; and b € v"'a:c_,

Proof of Claim 2. Suppose that there exists a vertex z € z"’av such that
azt, bz € E(G), where i # j, a € v} 6z. and b € v"’@z,, then the cycle

Zovj ﬁz"’aaz, Z’zbﬁ:g ﬁv,zo contains more vertices of X than C, a
contradiction.

O

With the similar arguments to the proof of Claim 2, we obtain the
following result.

Claim 3. If i # j, then there exits no vertex z € vjav,-‘ such that
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azt, bz € E(G), or az,bzt € E(G), where a € v?'a:c,- and b € yj_lavj‘.
m]
Claim 4. |S| > |S’| > 2. Moreover, for each u € S, d(u) < d(zo)-

Proof of Claim 4. Put U = {z;,23,...,%4)}-Sand W = {y1,92, ..., ¥4/}
—S. Let O(U) = Ng(U) — V(C) and O(W) = Ng(W) — V(C). Since any
two vertices of {z1,z,..., 141} ({#1,92,-.. Y4}, respectively) have no
common neighbors in V(G) — V(C) and any vertex of {z), z2, ..., 24}
({v1, w2, ..., Y41}, respectively) has no neighbors in X — V(C) by Lemma
A, we have

n—1-(s =) - max{|O(V),|0(W)I} 2 [V(C)| 2 3(d(xo) — 5) + 25

whence
3d(z¢) — n + 1 + max{|O(U)|,|O(W)|}
tlrs(X) —n+1+max{|0(U)|,|O(W)|}

VIVIV

Suppose s’ = 1, without loss of generality, we assume that S’ = {z,},
then the above inequalities imply that d(zo) = in, max{|O(U)|, |O(W)|} =
0 and |V(C)| = 3d(z0)—s; Moreover we get that C contains only 1-segments
and 2-segments. Suppose v}v;,, ¢ E(G) for all i # j, then all distinct
segments are not connected by an edge or a path whose internal vertices
are in V(G) — V(C), hence w(G — A) > |A| + 1, which contradicts the fact
that G 1-tough. Thus, there exists v} v;11 € E(G) for some i # j.

Since the X-longest cycle C contains only 1-segments and 2-segments,
we get v, v}" € X and 7,j # 1. We choose a minimal integer ¢ such that
v} vy, € E(G). Then v v}, ¢ E(G) foreacht € {1,2,...,i—1}. By the
fact max{|O(U)},|O(W)|} = 0, the cycle C' = zov.-+16v;+1v?' ﬁvj+1zo
is another X-longest cycle that is X-dominating and satisfying v, ¢ C'.
By the choice of C and the fact v;,; € X, we have d(v;},) < d(zo). Since

zg, z1 and vj, are three nonadjacent vertices of X, we have n < d(zo) +
d(z1) + d(v7,) < 3d(zo) = n. So d(zo) = d(z1) = d(v},) = 2&) = 8.
Hence, we have N(z,) = N(zo).

Suppose i > j, since the fact N(z1) = N(zo) leads vj41 € N(z1), then
the cycle C" = :0:0:1:'1"3}111-‘+1 v;" Z1j41 61).-::0 contains more vertices of
X than C, a contradiction. This shows that i < j. By the choice of i, we
have v} v} ¢ E(G), where t € {1,2,...,i—1}. If vj;v} € Efori+1<
s < j, we get the cycle C" = zqvj4+1Cvf Vi ‘C—‘v;" Vip 61},::0 containing
more vertices of X than C. If v v} € E for j+1 < s < |A|, we also

get the cycle C"" = zovzav;" Vi1 v vF 63:111,511,-.,.130 containing
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more vertices of X than C (note N(z1) = N(zo)). This shows N(v;,,)
C N(zo)U{v}} (since |O(W)| = 0). Since C is X-longest and the subpath
vj+1Cv; contains the 1-segment z;, we can easily obtain that v}, v; ¢
E, vi;,vj41 € E and v # vj41, 50 N(vy,) C (AU {of )= {vi, 0511}
Hence d(v;},) < d(z0) + 1 —2 = d(z0) — 1, contradicting d(v;,,) = d(zo).
Therefore, |S| > |S'| > 2.

Thus, for each u € §', d(u) < d(zo), else we can replace u in C by zo.
o

Claim 5. If G is 1-tough, then |V(C)| > 2|A| + 2 and the equality holds
only if C contains two 2-segments and all other segments are 1-segments.

Proof of Claim 5. Put Z = V(C) — (AU A*). Since C is an X-longer
cycle, we have AN A% = @, then |V(C)| = |Z| + 2|A| > 2|A|. Suppose
[V(C)| < 2|A] + 1, then |Z]| < 1, so all segments of C are 1-segments
except only a 2-segment. Since C is X-longest and each segment does not
connect to the others by an edge or a path whose internal vertices are in
V(G) — V(C), we get w(G — A) > |A| + 1, which contradicts the fact G is
1-tough. Hence |V(C)| > 2|A] + 2.

Suppose |V (C)| = 2|A| + 2, we get |Z]| = 2, then all segments of C are
1-segments except that C contains either two 2-segments or a 3-segment.
If [V(C)| = 2|A| + 2 and C contains a 3-segment, say v} v} 2y v;,;, then all
other segments are 1-segments. By Claim 1, we have ] v"' ¢ E(G) and

vipv] ¢ E(G) for any j € {1,2,...,|A]} — {i}. Suppose v"' 2 € E(G)
for some ! € {1,2,...,]A|} - {i}, then N@})nV(C) C AU {v+2} and
N(vi,)nV(C) € A U {v}?} by Claims 1-3. By the fact that any two
vertices of A* U {v;},} do not connect to each other by an edge or a path

whose internal vertices are in V(G)—V(C), we obtain w(G (Au{v}?}) >
|A]+ 1, which contradicts the fact G is 1-tough. So v}v}2 ¢ E(G) for any
Jj € {1,2,...,]A]} — {i{}. Moreover, we get w(G — A) > | A}, which also
contradicts the fact G is 1-tough. Hence G contains no 3-segment.

Thus, the equality |V(C)| = 2]|A| + 2 leads that C contains two 2-
segments and all other segments are 1-segments.

@]
Claim 6. At most one vertex of {z1,Z2,...,2)41} ({»1,%2,.-.,94]}, re-
spectively) has degree smaller than 254,
Proof of Claim 6. Suppose that there exist two vertices z;, z; (¢ # j)
of {z1,z2, ..., 24} such that d(z;) < "2,;4 and d(z;) < "—;4-. Since

z;z; ¢ E(G) by Claim 1, we get distg(zi,z;) > 2. If N(z;) " N(z;) # 0,
we have distg(z;,2;) = 2. By the second degree condition of Theo-
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rem 4, we have max{d(z,) d(z;)} > 252, which contradicts our assump—
tions d(:c,) < 234 and d(z;) < 25 n=4_ This shows that N(zi) N N(zj) =
By Lemma A and the claims above, we have (N(z;) U N(z;)) nV(C) C
V(C) = {z1,23,...,2)4)}. It follows that

d(zi) +d(z;) = |N(zi)UN(z;)|+|N(2:) N N(z;)|
= |(N(z:) UN(z;))nV(C)|
+ [(N(z;) U N(z;)) - V(C)]

< V(€)= {z1,z2,..., 214 }|
+ (N (z:) U N(z;)) - V(O)
= |[V(O) = |Al+|(N(z:) U N(z;)) - V(C)]
= |N(zi) UN(=z;) VV(C)| - |A|
< n—1-—d(zo)

Hence o3(X) < d(z;) + d(z;) + d(z0) < n — 1, a contradiction.

Similarly, at most one vertex of {yl,yz,...,y| 4|} has degree smaller
than 232

]

By Claim 4, we have some vertex u € S’ satisfying d(u) < d(zo). Since
distg(u,z0) = 2, we get d(zo) = |A| > 25%. By Claim 5 and the fact
|A] > 252, we obtain

n-2<2A|+2< [V(C) <n—-1<2/A|+3

Note that |A] < 253, By the fact n — 1 < |[V(C) U {zo}| < n, we get
[V(G) — (V(C) U {z0})| < 1. Below, we will distinguish the two cases, in
each of which we obtain a contradiction. For convenience, we set €(q) =
INa(g) - V(C)| for any g € V(G).

Case 1. |V(C)|=2|A|+2

By Claim 5, C contains two 2-segments, say vi"av; and v} 61),-' +1,and
all other segments are 1-segments. By Claims 1-3 and the fact that G is
1-tough, we obtain either v ;1 € E(G) or vy v € E(G) Without loss

of generality, we may assume vl i+1 € E(G), then vy ,v} € X by Claim 1.
We note that |[V(C)| > n—2,1ie., |[V(G) - (V(C)U {z0})| < 1.

Case 1.1 i2>5

Since z2, 3 and z4 are all 1-segments and e(z2) + €(x3) + €(z4) <
1, then at least two vertices of {z2,z3,z4} are proper l-segments. By
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Claim 6, we can choose a proper 1-segment z; € {z2, 3,4} satisfying
d(zj) > 251, Note that |4| < 232, we obtain at least one vertex of
{v1,vi41}, say v, such that v, is adjacent to z;. So we can construct
a cycle C' = zovi41 Cu12; v}'_,,wi"ﬁvjzo containing more vertices of X
than C, a contradiction.

Case 1.2 i=14

In this case, suppose that v; # vs, by the facts vy, vs € N(z2) UN(z3),
we get (N(z2) U N(z3)) NV (C) C A— {v,vs}, then we obtain
min{d(z2),d(z3)} < |A|— 2+ min{e(z2),¢(x3)}
< |V§C!I—2 -2+ e(ra)+e(zs)
: IV!(?!!-I-C!:.'Q !+£!z;! - %
= p)

n—4

2

A

Without loss of generality, we may assume that d(z3) < d(z3), then d(z2) <
854, By the fact [V(G)—(V(C)U{zo})| < 1, we get €(v5 ) +e(z3) +€(zq) <
1, so at least two vertices of {v; , z3, z4} have no neighbors out of C. By
the facts N(v; )NV(C) C AU{v]}—{v1, 95}, N(z3)NV(C) C A—{v1,v5}
and N(z4) NV(C) C AU {vg } — {v1,vs}, we get

. -3 -4
min{d(v;), d(z3), d(za)} < (A1 +1) - 2< =~ 1< =5
Since d(zé) < "—;—‘* and v;,:cz,:cs,z;; € {y1,¥2,---,9,4)}, s0 at least two
vertices of {y1,¥2,...,94} have degree smaller than %, which contra-

dicts Claim 6. Thus, v; = vs, i.e., |[V(C)| = 10.
For the case i = 4 and v, = vs (and |V (C)| = 10), we obtain
Us(X) d(xz) + d(zs) + d(.’to)
(3 +¢(22)) + (3 + ¢(za)) +4
[V(C)| + e(z2) + €(z3)

n-1

IA 1IN A

a contradiction.

Case 1.3 i<3

Claim 4 implies v; # v;41. It is easy to see that v7, z2, v} € X and
distg(vy , T2) = 2, so we get max{d(vy),d(z2)} > 252. On the other hand,
since v; 1, v; vig1 € E(G), we get N(v3) C AU{v{} — {v1,vi41}, and by
the fact |A| < 252, we obtain

d(v;)5|A|+l—2$n;3—l<n;4.
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Similarly, since z2v), 22vi41 € E(G), we get N(z2) C AU{v3}—{v1,vi41}
(here, z2 = v when i = 2), and by the fact |4| < 252, we obtain

n—3_1<n—4
7

Hence, max{d(v;), d(z2)} < 252, which contradicts our result max{d(v; ),
d(z2)} > 252

d(zz) <|Al+1-2%<

Case 2. |V(C)|=2]A]+3

Put Z = V(C) - (AU AY). By the fact |A| > 252, we obtain |V(C)| =
n—1, |A| = 232 and |Z| = 3. Note that ¢(q) = 0 for any ¢ € V(G) — A.
We consider the following three possibilities.

Case 2.1 C contains a 4-segment

Without loss of generality, we assume that vf,v}?,v7%,v; are the
vertices of the 4-segment. Suppose that neither v'l"2 nor v, 2 is adjacent
to any l-segment, then w(G — A) > |A| by Claim 1, a contradiction.
This shows that at least one vertex of {v}%,v;2} is adjacent to some 1-
segments. Without loss of generality, we may assume that v}%z; € E(G)
for some 1-segment z;. Claims 2-3 imply that v 2 is not adjacent to any
1-segment, while the same is true for vy by Claims 1-2. So we obtain
w(G — (AU {v1?)) > |AU {v}?}], a contradiction.

Case 2.2 ( contains a 3-segment and a 2-segment

In this case, we assume that v, v]?, v; are the vertices of the 3-
segment and that v}, v;,, are the vertices of the 2-segment.

Suppose that v{v, ¢ E(G) and v;vf ¢ E(G). If vl v; & E(G),
then we get w(G — (A U {v{?})) > |]A U {v}?}| by Claim 1, a contra-
diction. If v}v; € E(G), then v}? is not adjacent to any vertex in
(AtUA~)—{v{,v5 } by Claim 2 or Claim 3, so we also get w(G—A) > |A],a
contradiction. This shows that either v v}, € E(G) or v5 v} € E(G). Be-
low, we only consider the case v v;; € E(G). (For the case v; v € E(G),
we consider the cycle C on the reverse orientation (C", we also obtain a con-
tradiction). Claim 1 implies that v} € X, i.e., v} = z;.

Case 2.2.1 i>4

We consider the two vertices z2 and 3. By the facts e(z3) = 0, ¢(z3) =
0 and Claims 1-3, it is very easy to obtain that N(z2) C A - {v1,vi4+1} and
N(z3) C A — {v1,vi41}. So we get max{d(z,),d(z3)} < |A|—1= 255 <
"2;4. On the other hand, distg(z2,z3) = 2 implies max{d(zz),d(zs)} >

24, a contradiction.
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Case 2.2.2 i=3

In this case, the subpath v; 1 601 contains at least one proper 1-segment
by Claim 4, so we get v; # vs. By the facts e(z2) = 0, ¢(z3) = 0 and
Claims 1-3, it is very easy to obtain that N(z;) C A—{v1,v4} and N(v}) C
(Au{vz })—{v1,v4}, hence we get max{d(z2),d(z3)} < |A|+1-2 = 258 <
2-4 On the other hand, distg(z2,z3) = 2 implies max{d(z2),d(vy)} >
224, a contradiction.

Case 2.2.3 1=2

In this case, by Claims 1-4, it is very easy to obtain that N(z3) C
(AU {v3}) — {v1,vs} and v; # vs, so we get d(z2) < |A|+1-2< 252

By Claims 4 and 6, the subpath va-avl contains at least two (proper) 1-
segments and we get d(zx) > "2—'3 for any (proper) 1-segment zx € v3Cv;.
Again by Claims 1-3, we get the fact N(zx) C A. Moreover we get N (zx) =
A by the facts d(zx) > 252 and |A| = 252, This follows that zxv, € E(G)
for ary 1-segment zx € vaavl. Below, we consider the last vertex y; of X
on vy Cv; .

- If there exists a 1-segment = € vaavl such that y,z,; € E(G), we can

construct a cycle C' = xovat}x;yl z1v3 Cvozi Cvizg containing more
vertices of X than C, a contradiction.

- If yiz, ¢ E(G) for any 1-segment zx € 113601, we get N(y1) C
{v},v}2,v5,v2} = {;}. So we obtain that

n—-4 n-—4
+

o3(X) < d(y1) + d(z2) + d(z0) <3+ 9 2

<mn,
a contradiction, too.

Case 2.3 C contains three 2-segments

. +A@ - A - + -
In this case, we may assume that v] 602 ) Y] 61}; +1 and vj 61),-_,,1

(1 < i < j) are the three 2-segments. If no vertex in any 2-segment is
adjacent to any vertex in a different 2-segment, then we get w(G — A) >
|Al, a contradiction. Hence, we only consider that v{v;,, € E(G) or

vfvj,, € E(G) or v}vy,, € E(G). (For the other cases, we consider the
cycle C on the reverse orientation ‘5, we also obtain a contradiction).

Case 2.3.1 v}, € E(G)

In this case, we get that v5,v] € X (by Claim 1) and distg(vy ,v]) =
2, so max{d(v3 ), d(v§)} > 252. On the other hand, it is easy to see that
vy # viy1 (since the subpath v.-.Hﬁvl contains the 2-segment v;"avj'“)
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and that N(vy) C (AU {v}}) — {v1,vi41} and N(v§) C (AU {v;,}) -
{v1,vi41} (here, N(v]) C A—{v1,vis} for the 1-segment v7 ), then we get
max{d(v;),d(v3)} < (|A] + 1) — 2 < 252, a contradiction.

Case 2.3.2 v v}, € E(G)

In this case, with the similar arguments in Case 2.3.1, we can easily
obtain a contradiction.

Case 2.3.3 vi"vj'_,,l € E(G)

In this case, we only consider the facts v v, ¢ E(G), v}vj,, ¢ E(G)
and v] vj,1 € E(G), otherwise we get a contradiction by the similar argu-
ments in Case 2.3.1.

~ If the subpath vzavj contains (at least) two proper 1-segments, say
zi» and zjr, it is easy to see that N(zy) C A — {v1,vj41} and N(z;) C
A — {v1,vj41}, then we get max{d(z:'),d(z;)} < |A| -1 < 252, which
contradicts Claim 6.

— If the subpath vzavj contains only one proper l-segments, say s,
then v; # vj41 by Claim 4. Without loss of generality, we may assume that
zy € v9Cv. So zpr = v; , 2 =3 and j = 4. We consider the two vertices
v; and z2 (= y2). Since v; € X by Claim 1 and distg(vy,z2) = 2, we
get max{d(vy),d(v3)} > 25%. On the other hand, it is easy to see that
N(v;) C (AU {v{}) — {v1,vs} and N(z3) C A — {vy,vs}, then we get
max{d(v;),d(v§)} < (|A] + 1) — 2 < 25, a contradiction.

~ If the subpath vzavj contains no (proper) 1-segments, then i = 2,
j =3 and v; # vq (by Claim 4). Since v} vag NX # 0, we get that at
least one of the two vertices {v§, v } belongs to X.

When v} € X, we consider the two vertices v and v§. Since distg (v,
v) = 2, we get max{d(v;),d(v3)} > 252. On the other hand, it is easy to
see that N(v;) C (AU{v{})—{v1,vs} and N(v§) C (AU{vz})— {v1,vs},
then we get max{d(v;),d(v)} < (JAl+ 1) — 2 < 252, a contradiction.

When v3 € X, we consider the two vertices v; and v3. Since distg (v,
v¥) = 2, we also get max{d(v;),d(v§)} > 252. On the other hand, it
is easy to see that N(vy) C (AU {v}) — {v1,vs} and N(v) C (AU
{v; })— {v1,vs)}, then we get max{d(v;),d(v3)} < (|A|+1)-2< 2%, a
contradiction, too.

This completes the proof of Theorem 4.
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