ON EXACT »n-STEP DOMINATION

LAUREN K. WILLIAMS

ABSTRACT. A graph G with vertex set V(G) is an ezact n-step dom-
ination graph if there is some subset S C V(G) such that each vertex
in G is distance n from exactly one vertex in S. Given aset A C N, we
characterize cycles C; with sets S C V(C;) that are simultaneously
a-step dominating for precisely those a € A. Using Polya’s method,
we compute the number of n-step dominating sets for a cycle C; that
are distinct up to automorphisms of C;. Finally, we generalize the
notion of exact n-step domination.

1. INTRODUCTION

The topic of domination in graphs has recently been the subject of much
research. Indeed, two books on this subject ([4] and [5]) appeared in De-
cember of 1997. In this paper we study exact n-step domination, the gen-
eralization of exact 2-step domination, which was introduced by Chartrand
et al. [2].

A vertex u in a graph G is said to n-step dominate a vertex v if d(u,v) =
n. If there exists a subset S C V(G) such that each v € V(G) is n-step
dominated by exactly one vertex in S, then G is an ezact n-step domination
graph and S is called an ezact n-step dominating set.

Figure 1 has examples of exact 4-step, 5-step, and 6-step domination
graphs with |S| = 4. These graphs support Hersh’s [6] conjecture that for
each n > 4 there is an exact n-step domination graph G with dominating
set S C V(G) such that |S| < n.

In Section 2 we prove the following theorem, generalizing Hersh’s result
[6, Proposition 4] characterizing cycles that are n-step dominated for some
n € N. We denote a cycle with ¢ vertices by C;.

Theorem 2.8. Let A be a nonempty set of natural numbers and let t = 2%t
where 1 > 0 and t' is odd. There ezists S C V(C;) such that S simultane-
ously a-step dominates C; for precisely those numbersa € A if and only if A
is the set {t/2}, or A is of the form {c,3c, ..., (2m—1)c}, wherec|t, 27! { c
and (2m — 1)c is the greatest odd multiple of ¢ such that (2m — 1)c < t/2.

In Section 3 we prove the theorem below, where we call two sets equiva-
lent if there is an automorphism that carries one to the other.
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FIGURE 1. 4-Step, 5-Step, and 6-Step Domination Graphs
with |S| =4 ’

Theorem 3.5. Let C, be n-step dominated, and let d = ged(n,t), where
d = 2d' for some odd d'. Then the number of inequivalent n-step dominat-
ing sets for Cy; is 1 if t = 2n, and otherwise is

dl
1 i+2
d—2 § : ged(2d,2'T41)
2 * 8d =1 2 .

In Section 4 we introduce k-exact m-step domination, and generalize
Hersh’s results [6, Propositions 1, 2] about the orders of n-step dominating
sets of a graph and the product of two domination graphs. In addition, we
prove that there exists a k-exact n-step domination graph for every pair of
positive integers k and n.

2. DOMINATION IN CYCLES

If the distance between two vertices in a cycle C; is m, we refer to the
vertices as being both m and ¢ — m steps apart. We use S to denote the
complement of S. For the sake of brevity, we may omit the word ezact
when we speak of exact n-step domination.

In this section we extend the following result.

Proposition 2.1 (Hersh [6, Proposition 4]). A cycle C, is an ezact n-step
domination graph if and only if either t = 2n, or t > 2n and 2i+2|t where
2¢ is the largest power of 2 that divides n.

The following results will be useful to us.

Proposition 2.2. Ift > 2n, a cycle C; is n-step dominated by S C V(Ct)
if and only if ezactly one of any two vertices that are 2n steps apart is in

S.
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Proof. Suppose C; is n-step dominated by S, and consider any two vertices
u,w € V(C;) that are 2n steps apart. There is a vertex v € V(C;) such
that the only two vertices that are distance n from v are u and w. Thus,
exactly one of v and w is in S.

Conversely, it is easy to see that if exactly one of two vertices that are
2n steps apart is in S, then C; is n-step dominated by S. O

Corollary 2.3. Suppose a € N and we have a cycle C; that is n-step dom-
inated by S C V(C;) where t > 2n. If a is even then two vertices that
are 2na steps apart are either both in S or both in S, and if a is odd then
ezactly one of two vertices that are 2na steps apart is in S.

Corollary 2.4. If C; is n-step dominated by S C V(C,) then it is nl-step
dominated by S for every odd positive integer | such that 2nl < t.

Proposition 2.5. If a cycle C; can be both m-step and n-step dominated,
then it can be simultaneously m-step and n-step dominated by a set S C
V(C:) if and only if 2 divides m and n with the same multiplicity.

Proof. (=) Write m = 2'm’ and n = 2n’ for m' and n’ odd, and assume
that ¢ < j. Clearly we can find a solution to 2ma = 2nb for some even
a and odd b. Note that S cannot be V(C;) so t > 2n and ¢ > 2m. By
Corollary 2.3, two vertices that are 2ma steps apart are both in S or both
in S, and exactly one of two vertices that are 2nb steps apart is in S. Since
2ma = 2nb, this is a contradiction. We conclude that ¢ = j.

(<) Let m = 2'm’ and n = 2'n’ for odd m' and n'. Since C; can be
m-step and n-step dominated, Proposition 2.1 implies that ¢t > 2n, ¢ > 2m,
and 2i+2|t. Label the consecutive vertices of C; with v;,vs,...,v;. Let
S = {v|j =1,2,3,...,2¢*! (mod 2**2)}. This set includes one vertex out
of every pair that are either 2m or 2n steps apart. By Proposition 2.2, C;
is both m-step and n-step dominated by S. a

Proposition 2.6. If C; is m-step and n-step dominated by S C V(C}),
and d = ged(m,n), then C; is d-step dominated by S.

Proof. Proposition 2.5 implies that 2 divides m and n with the same mul-
tiplicity, so 2 divides d with that multiplicity. Write d = ma + nb where a
and b are integers. Now a and b must have different parity, or 2 will divide
the right side of the equation with higher multiplicity than the left side.
Without loss of generality, assume a is even and b is odd. By Corollary 2.3,
two vertices that are |2ma| steps apart are either both in S or both in S;
also, exactly one of two vertices that are |2nb| steps apart is in S. Thus
exactly one of two vertices that are 2ma + 2nb = 2d steps apart is in S.
But this implies that C; is d-step dominated by S. O

Proposition 2.7. A cycle C; where t > 2n is n-step dominated by S C
V(C;) if and only if C; is d-step dominated by S, where d = gcd(n, t).
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Proof. (=) Write 2d = 2na + 2tb for a,b € Z. Since n is an odd multiple of
d, the integer @ must be odd. Corollary 2.3 implies that exactly one of two
vertices that are 2na steps apart is in S. Clearly two vertices that are 2tb
steps apart are the same vertex. But then exactly one of two vertices that
are 2na + 2tb = 2d steps apart is in §. Therefore C; is d-step dominated
by S.

(<) Note that n is an odd multiple of d, because Proposition 2.1 implies
that 2 has a greater multiplicity in ¢ than in n. But then Corollary 2.4
implies that C; is n-step dominated by S. O

We now have the tools to prove the following,.

Theorem 2.8. Let A be a nonempty set of natural numbers and let t = 2it'
where 1 > 0 and t' is odd. There ezists S C V(C;) such that S simultane-
ously a-step dominates C; for precisely those numbersa € A if and only if A
is the set {t/2}, or A is of the form {c,3c, .. .,(2m—1)c}, where c|t, 2" t ¢
and (2m — 1)c is the greatest odd multiple of ¢ such that (2m — 1)c < t/2.

Proof. (=) Consider a dominating set S and let A C N be the set of
numbers such that C; is a-step dominated by S for precisely those numbers
in A. If (¢/2) € A then S = V(C;) and clearly A can have no other
elements. If (£/2) ¢ A, then a < ¢/2 for all a € A because (¢/2) is the
diameter of C;. Let d be the greatest common divisor of all elements of A,
and let ¢ = ged(d, t). By Proposition 2.6, C; is d-step dominated by S, and
then Proposition 2.7 implies that C; is c-step dominated by S. But now
Corollary 2.4 implies that C; is cl-step dominated by S for all odd [ such
that 2¢! < t. By Proposition 2.5 the set A can contain no other numbers
and has the form given in the theorem.

(<) Consider aset A C N of the form given in the theorem. If A = {t/2},
then S = V(C) is the required subset. Now suppose A = {¢, 3c,...,(2m —
1)c} where c|t. Label the consecutive vertices of C; with vy,vs,...,v;.
Consider the set S = {v;]j = 1,2,...,2¢c (mod 4c)}. Note that 4c|t and
that S is not n-step dominating for any n < ¢. For any a € A we have
a = cl for some odd !, so by Corollary 2.4, C; is a-step dominated by S for
all @ € A. Since c is the greatest common divisor of all the elements of A,
and there are no other multiples of c that have the same multiplicity of 2 as
¢, we find that C; is a-step dominated by S for precisely thosea € A. O

3. THE NUMBER OF INEQUIVALENT SETS DOMINATING A CYCLE

Given a cycle C;, we define two subsets S; and Sz of V(C}) to be equiv-
alent if there is an automorphism ¢ of C; such that ¢(S;) = S;. We now
use Polya’s method to compute the number of inequivalent sets that n-step
dominate C;. :
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Polya’s method utilizes Burnside’s Lemma, which states that the numher
of orbits of a group action is equal to the average number of fixed points
of the elements. (For more detail, see [3, p. 437]). It allows us to count
inequivalent dominating sets by counting dominating sets that are fixed by
the elements of the dihedral group.

Burnside’s Lemma. Let G be a finite group acting on a finite set X.
Then the action has 3, | X9|/|G| orbits, where X9 is the set of elements
of X invariant under g.

First we examine the reflections of the dihedral group. Since we are
considering only even cycles, there are two types of reflections: those that
fix no vertices, and those that fix two vertices. We need consider only one
reflection in each conjugacy class.

Proposition 3.1. For any c € N and any fized-point free reflection, there
are 2" n-step dominating sets for Can. that are fized by that reflection.

Proof. Label consecutive vertices of Cyne with {1,2,...,4nc}, and consider
the reflection r defined by r(i) = 4nc — i + 1. We show that there is
a bijection between the collection of all subsets of {1,2,...,n} and the
collection of all dominating sets for Can.. Given S’ C {1,2,...,n}, let
S" = 8'Ur(S’'), where r(S') = {r(s') | s’ € §'}. Note that S” is a subset
of the 2n consecutive vertices T = {1,2,...,n} U {4dnc —n +1,...,4nc}.
Proposition 2.2 implies that there is a unique dominating set S such that
SNT = 8". S is the set of all w € V(Cync) such that w = v + 2na
for some v € T where either v € S” and a is even, or v ¢ S” and a is
odd. By construction, S is fixed by the reflection r, and conversely every
dominating set fixed by r can be obtained by this construction. Since there
are 2" subsets of {1,2,...,n}, there are 2" n-step dominating sets for Cy,c
that are fixed by each fixed-point free reflection. a

Proposition 3.2. For any c € N and any reflection fizing two points, there
are no n-step dominating sets for Canc that are fized by that reflection.

Proof. Label consecutive vertices of Cipn. with {0,1,...,4nc— 1}, and con-
sider the reflection r defined by r(i) = 4nc — i, that fixes vertex 0 and
vertex 2nc. Suppose that an n-step dominating set S is fixed by r. Since
7(n) = 4nc — n, either both vertices are in S or both are in 5. But vertex
4nc—n and vertex n are also 2n steps apart, so Proposition 2.2 implies that
exactly one of them is in S. This contradicts the previous statement. O

Now we examine the rotations of the dihedral group. We will use 2¢||n
to mean that 2¢ is the largest power of 2 which divides n.

Propositiop 3.3. Suppose we have an n-step dominated cycle Cyn. where
¢ € N and 2*||n for some non-negative integer i. Then there are no n-step
dominating sets that are fived by a rotation of r steps unless 2°+2|r.

17



Proof. Suppose that an n-step dominating set S is fixed by a rotation of r
steps, where 2¢+2 { r. Write ¢ = 2/¢/ where ¢’ is odd, and let o(r) denote
the order of r in the additive group Z4n,. Then r - o(r) = 4nca for some
a € N. Note that a is odd because otherwise r-(o(r)/2) = 4nc-(a/2), which
implies that o(r) is not the order of r. Since r - o(r) = 4nca = 2¢+7*2n/c'q,
where n'c’a is odd, we must have 29+1|o(r). So we may write o(r) = 2917
where ' € N. Now 727+ = r. o(r) = 4nca = 27+2nc'a, which simplifies
to r - ' = 2nc'a where c'a is odd. But two vertices that are a multiple of 7
steps apart must either both be in S or both be in S, while exactly one of
two vertices that are an odd multiple of 2n steps apart must be in S. This
is a contradiction. ]

Proposition 3.4. Suppose we have an n-step dominated cycle Cyn where
¢ € N and 2i||n for some non-negative integer i. Then for each r € N such
that 27+2|r, exactly 25°92™™) n-step dominating sets for Cync are fized by
the rotation of r steps.

Proof. Label the consecutive vertices of Cyne with {1,2,...,4nc}. Let d =
ged(2n,r). We will show that there is a bijection between the collection of
all subsets of {1,2,...,d} and the collection of all exact n-step dominating
sets for Cyn. that are fixed by the rotation of r steps. Then since there are
24 subsets of {1,2,...,d}, we find that exactly 26°4(?™") n_step dominating
sets for Ciync are fixed by the rotation of r steps.

Let S’ be a subset of {1,2,...,d}. We can write each w € V(Cync) in
the form w = v + (2na +rb) for v € {1,2,...,d} and a,b € Z. Then we
define S to be the set of all such w where

e vy € S and a is even, or
e v ¢ S and ais odd

It suffices to show that every w can be written in the form v+ (2na+rb),
and that furthermore, if w = v + (2na +rb) and w = v' + (2na’ +rb'), then
v = ', and a and @' have the same parity. These conditions are sufficient
because, combined with the definition of S, they show that S is n-step
dominating and is fixed by the rotation of r steps. Conversely, every n-step
dominating set that is fixed by the rotation of r steps must be of this form.

Note that each w € V(Cync) can be written uniquely in the form w =
v+ de where v € {1,2,...,d}, and e € Z. But the vertices v + (2na + rb)
for a,b € Z are precisely those vertices of the form v + de, because d =
ged(2n, 7). Thus every w can be written in the form v + (2na + rb) where
a,b € Z and v is unique.

Now suppose that w = v + (2na + rb) and w = v + (2na' + rb'), where a
and a' have different parity. Then 0 = 2n(a ~ a') + (b — b'), which implies
that 2ng = rh for odd g and h € Z. Write r = 2"*2p' where r’ € N,
and n = 2in’ where n' is odd. Then 2¢tin'g = 2¢+27'h where n'g is odd.

18



Now 2i+2|2i+2p'g but 2¢+2 | 2¢+1n/g. This is a contradiction. Therefore
the parity of a is a well-defined function of w, and we have a bijection
between the collection of all subsets of {1,2,...,d} and the collection of all
dominating sets for Cyy. that are fixed by the rotation of r steps. (]

Now we prove the following theorem.

Theorem 3.5. Let C; be n-step dominated, and let d = ged(n,t), where
d = 2'd’ for some odd d'. Then the number of inequivalent n-step dominat-
ing sets for C; is 1 if t = 2n, and otherwise is

d,
1 i+2
9d—2 zzgcd(Zd,Z 0
* 8d =1

Proof. Clearly if ¢ = 2n the unique set that n-step dominates C; is S =
V(Cy). .

Now consider the case t = 4nc where ¢ € N and n = 2'n’ for odd n.
Proposition 2.1 implies that the cycles Cypn, comprise all n-step dominated
cycles with length a multiple of n. Burnside’s Lemma tells us that the
average number of elements that are fixed by the action of the dihedral
group of 8nc elements is the number of orbits of the group action, that is,
the number of inequivalent n-step dominating sets for Cy,.. Using Proposi-
tions 3.1, 3.2, and 3.3, we find that the only elements of the dihedral group
that fix n-step dominating sets for Cyn. are the fixed-point free reflections
and the rotations of r steps such that 2¢+2|r. Each of the 2nc fixed-pcint
free reflections fixes 2" dominating sets, and by Proposition 3.4, a rota-
tion of 2i+2 steps fixes 26°4(2%2**) dominating sets. Thus the number of
inequivalent n-step dominating sets for Cyn., where ¢ € N and 2¢||n, is

i n+1 < ged(2n,2°120)y _ on—-2 i - ged(2n,2:+20)

8nc(2 nc+c;2 )=2 +8n;2 .
Now consider any n-step dominated cycle C;. Proposition 2.7 tells us
that if d = ged(n, t), the cycle C; is n-step dominated by S C V(C:) if and
only if C; is d-step dominated by S. Thus, the number of n-step dominating
sets for C; is equal to the number of d-step dominating sets for C;. But t is
a multiple of d, so t = 4dc for some c € N, and we have already calculated
the number of inequivalent d-step dominating sets for Cyq.. O

Corollary 3.6. An n-step dominating set for a cycle C; is unique if and
only if t = 2n or gcd(t,n) = 1.

If we consider n-step domination where n is a power of 2 or n is prime,
we get cleaner formulas for the number of inequivalent n-step dominating
sets.
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Corollary 3.7. The number of 2™~2-step dominating sets for a cycle Cam,,

where c € N, is
22"‘“-m-1 +22"‘"—2.

Corollary 3.8. The number of inequivalent p-step dominating sets for a
cycle Capc, where p is prime and c € N, is
22p=2 4 p.2"l 4 p—1
2p

4. k-EXACT n-STEP DOMINATION

We generalize the definition of exact n-step domination as follows. A
graph G with vertex set V(G) is a k-ezact n-step domination graph if there
is some subset S C V(G) such that each vertex in G is distance n from
exactly k vertices in S. Notice that exact n-step domination is equivalent
to l-exact n-step domination. Our first two results generalize some of
Hersh’s [6] results on exact n-step domination.

Proposition 4.1. All k-ezact n-step dominating sets of a graph have equal
order.

Proof. Suppose a graph G has two dominating sets S; and S;. Let X =
{(z1,22) | z1 € S1,22 € S2,d(z1,22) = n}. Every vertex in S; is n-step
dominated by exactly k vertices in S;, so every vertex in S} is distance n
from exactly k vertices in S;. Thus, |X| = k|S1]. Similarly, | X| = &|S2|, so
151] = |S2]. O

Proposition 4.2. If G has diameter m and is k-exact m-step dominated
by S1, and H has diameter n and is l-ezact n-step dominated by So, then
the cartesian product G x H haes diameter m+n and is kl-ezact (m+n)-step
dominated by S, x Ss.

Proof. Consider a vertex (v,w) € V(G) x V(H). Note that because of
the diameter conditions, the distance between any two vertices in G x H
is at most m + n. Thus, we have d((v,w), (v',w')) = m + n if and only
if both v is m-step dominated by v’ in G and w is n-step dominated by
w' in H. For every (v,w) € V(G) x V(H) there are exactly kl such pairs
(v',w') € 81 x Sz, so G x H has diameter m +n, and S; x S; is a kl-exact
(m + n)-step dominating set for G x H. 0

In order to prove the next result, we must define multiplication of ver-
tices. Suppose we have a graph G with vertex set V(G) and edge set E(G),
such that v € V(G). We use uv to denote an edge between vertices u and
v. We can multiply the vertex v by a positive integer m > 1 as follows.
Let M(v) = {v2,v3,...,vm} be a set of vertices, and construct a graph G’
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such that V(G') = V(G) U M(v). We refer to vertex v as both v and v,.
Let E(G') = E(G)U{viw | v; € M(v),w € V(G),vw € E(G)} U {vi |
v; € M(v)}. Then we say that we have multiplied vertex v by m, and the
elements of M (v) are the multiples of v. When m = 2, we say that we have
doubled v.

Proposition 4.3. There ezists a k-ezact n-step domination graph of di-
ameter n for every pair of positive integers k and n.

Proof. For n > 2, we construct a k-exact n-step domination graph G’ of
diameter n with dominating set S’ by taking an exact n-step domination
graph G of diameter n such that S = V(G), and multiplying each vertex
of V(G) by k. Then we let S’ = V(G'). For example, we can form G’ by
multiplying each vertex of Cs, by k and letting S' = V(G').

Now we show that such a graph G’ is k-exact n-step dominated by S'.
Consider any two vertices u,w € V(G'). Note that v = v; for some v €
V(G) and i € {1,2,...,k}, and w = z; for some z € V(G) and j €
{1,2,...,k}. Because of the way we constructed G', we have d(u,w) =
d(v,z). This shows that the diameter of G’ is equal to the diameter of G.
In particular, it implies that if v is n-step dominated by w in G, then u is n-
step dominated by precisely those vertices wy,ws,...,w; in G'. Therefore
G' is a k-exact n-step domination graph of diameter n. O

Another example of a k-exact n-step domination graph of diameter n
can be constructed as follows. Let T = {1+ (2n —2)m |m =0,...,[£]}.
The circulant graph C = Cagn—2k+2(T) is the graph on 2kn — 2k + 2 nodes
V1, - -, V2kn—2k+2 With vertex v; adjacent to each vertex vi+s; (mod 2kn—2k+2)
forallt; € T.

Proposition 4.4. There is no upper bound on the order of the vertezx set
of a k-ezact n-step domination graph.

Proof. Consider any k-exact n-step domination graph G with dominating
set S. We can construct a new graph G' by multiplying a vertex v € V(G)
by any m € N. Now G’ is k-exact n-step dominated by S, and |V (G')| =
V(@) +m-1. a

In [6] Hersh raised the question of whether all exact n-step domination
graphs G of diameter n satisfy S = V(G). We find that the answer is
no. Given any exact n-step domination graph G of diameter n that is
dominated by S C V(G), construct G' by doubling a vertex v € V(G).
Now G' is n-step dominated by S but S # V(G'). For example, in Figure
[2] we have doubled one vertex of Cs. The vertices of S are denoted by
squares. Note that this is an exact 3-step domination graph of diameter 3,
but S # V(G). .
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FIGURE 2. An Exact 3-Step Domination Graph of Diam-
eter 3 with S # V(G)

There are several open questions related to exact n-step dominaticn.
These include finding the number of inequivalent dominating sets for graphs
other than cycles, and finding a lower bound on the order of a k-exact n-step
dominating set.
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