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Abstract

A generalized p-cycle is a digraph whose set of vertices is parti-
tioned in p parts that are cyclically ordered in such a way that the
vertices in one part are adjacent only to vertices in the next part. In
this work, we mainly show the two following types of conditions in
order to find generalized p-cycles with maximum connectivity:

1. For a new given parameter ¢, related to the number of short
paths in G, the diameter is small enough.

2. Given the diameter and the maximum degree, the number of
vertices is large enough.

For the first problem it is shown that if D < 2¢ + p — 2, then the
connectivity is maximum. Similarly, if D < 2¢+ p — 1, then the
edge-connectivity is also maximum. For problem two an appropriate
lower bound on the order, in terms of the maximum and minimum
degree, the parameter £ and the diameter is deduced to guarantee
maximum connectivity.

1 Introduction

The study of connectivity properties in graphs and digraphs has some appli-
cations to the design of reliable communication or interconnection networks.
In particular, it is interesting to have sufficient conditions for a (di)graph
to be maximally connected; see, for instance, the survey of Bermond et al.
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[5]. One particular aspect of this problem involves (di)graphs with small di-
ameter; and another one large (di)graphs, that is, those with large number
of vertices for a given degree and diameter. Both of them have been widely
studied as good models for interconnection networks with small transmis-
sion delay.

Next, we define some graph concepts and present the notation we are
going to use in this paper. A (finite) simple digraph G consists of a set of
vertices V = V(G) and a set of (directed) edges E = E(G) without loops
or multiple edges. For any pair of vertices z,y € V, a path from z to y is
called an z — y path. A digraph G is said to be (strongly) connected when
for any pair of vertices z,y € V, an ¢ — y path always exists. The distance
from z to y is denoted by d(z,y), and D = max; yev{d(z,y)} stands for
the diameter of G. The distance from z to U C V, denoted by d(z,U),
is the minimum over all the distances d(z,u), v € U. The distance from
U to z, d(U, z), is defined analogously. Given a set of edges A C E, we
define d(z, A) = ming, v)ea d(z,u) and d(A,z) = ming ,)eq d(v, ). Let
I'"(z) and I'*(z) denote respectively the sets of vertices adjacent to and
from z. Their cardinalities are respectively the in-degree of z, 6~ (z), and
out-degree of z, §+(z). The minimum degree § [mazimum degree A] of G
is the minimum [maximum) over all the in-degrees and out-degrees of the
vertices of G. We will always assume that our digraphs are connected,
hence § > 1.

Given a subset of vertices F, let 't (F) = [ ep ' (z) and I'~(F) =
Uzer T~ (2). The positive and negative boundaries of F are 81 F =Tt (F)\
Fand 8F = '~ (F) \ F, respectively. The corresponding concepts for
edges are the positive and negative edge-boundaries, wtF = {(z,y) € E :
z€ Fandye V\Flandw F = {(z,y) € E: z € V\Fandy € F}.
Moreover, note that w*F = w=(V \ F).

Clearly, if FUB*F #£V [FUO™F # V] then 8*F [0~ F] is a cutset of
G. Similarly, if F is a proper (non-empty) subset of V, then w*F [w™ F]
is an edge cutset. Hence, by using these concepts, the (vertez) connectivity
and edge-connectivity of G can be respectively defined as

k=min{|0*F| : FCV,FU38*F #V or |F|=1}
A=min{lw*F| : FCV,F#0,V}.

It is well-known that, for any digraph G, & < A < 4, ( see [12]). Hence,
G is said to be mazimally connected when £ = A = §, and mazimally
edge-connected if A = 4.

Following Hamidoune [14, 15], a subset F of vertices of a connected
digraph G is a positive fragment of G if |01 F| = x and F # @, where
F =V \ (FUQ8*F). Analogously, F is a negative fragment if |0~ F| = &
and F # 0, where now F = V \ (0~ F U F). Note that F is a positive
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fragment if and only if F is a negative one, and 8+ F = 8~ F. The set of
vertices F is called a positive a-fragment of G if |w* F| = X and, similarly,
F is a negative a-fragment if |w™F| = A

In order to study the connectivity of digraphs, a new parameter related
to the number of shortest paths was used in [8] (see also [10]):

Definition 1.1 For a given digraph G with diameter D, let £ = £(G),
1 <2< D, be the greatest integer so that, for any z,y €V,

(a) if d(z,y) < £, the shortest  — y path is unique and there are nox — y
paths of length d(z,y) + 1;

(b) if d(z,y) = ¢, there is only one shortest x — y path.

Note that £ is well defined if G has no loops.

In recent years, several results relating the connectivity of a (di)graph
with the aforementioned parameters, n, A, §, £ and D, have been given.
For instance, Imase, Soneka and Okada [17] proved that when the minimum
and maximum degrees, J, A and diameter D of a connected digraph are
fixed, the maximum connectivity is attained if the order is big enough. See
the survey of Bermond, Homobono and Peyrat [5] for more details.

The line digraph technique is a good general method for obtaining large
digraphs with fixed degree and diameter. In the line digraph LG of a
digraph G, each vertex represents an edge of G. Thus, V(LG) = {uv :
(u,v) € E(GQ)}; and a vertex uv is adjacent to a vertex wz if and only
if v = w, that is, when the edge (u,v) is adjacent to the edge (w,z) in
G. For any k > 1 the k-iterated line digraph, L*G, is defined recursively
by L¥G = LLF-'G. From the definition it is evident that the order of
LG equals the size of G, |V(LG)| = |E(G)|, and that their maximum and
minimum degrees coincide, A(LG) = A(G) = A, §(LG) = 6(G) = 4.
Moreover, if G is d-regular (§=(z) = 6*(z) = d, forany z € V), d > 1,
and has order n and diameter D, then L*G is also d-regular and has d*n
vertices and diameter

D(L*@) = D(G) + k. (1)

See, for instance, Fiol, Yebra and Alegre [11} and Reddy, Kuhl, Hosseini
and Lee [18]. In fact, (1) still holds for any (strongly) connected digraph
other than a directed cycle (see Aigner [2]). In [8), it is shown that for any
digraph G with § > 2 the parameter £ also satisfies an equality like (1).
Namely,

UL*G) = 4G) + k. 2

In addition, as the vertices of LG represent the edges of G, it can be easily
shown that £(LG) = A(G).
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Fiol and Fabrega in [8] showed for any digraph with parameter £ and di-

ameter D that
k=6 ifD<2-1;

A=4 ifD<2¢L ®)
For bipartite digraphs similar results involving this parameter and the di-
ameter are given in [9]:

k=48 ifD<2

A=6 fD<L2041.

For both general digraphs and bipartite digraphs, some recent work has

shown that, roughly speaking, the larger the order the larger the connec-

tivities. For instance, the following conditions for general digraphs are

shown in [7):
k=6 ifn>(6—1){n(AL-1)+n(A,D—8)—2}+A+1;
A=4 ifn>(@—-1{n(AL—-1)+n(A,D—-£-1)} + AL

where n(A,£) = i_o A,

Concerning to bipartite digraphs the following results were proved in [4]:
k=06 ifn>(6—-1){nAL0+nAD-€-1)—-2}+2,62>3;
A=6 ifn>(—-1){nA0+n(AD-£-2)}.

The purpose of this paper is to state sufficient conditions to assure max-

imum connectivity in a special kind of digraphs: generalized cycles. A

generalized p-cycle is a digraph G in which its set of vertices can be parti-
tioned in p parts,

4)

(5)

(6)

V= U Vs

a€Z,

in such a way that the vertices in the partite set V,, are only adjacent to
vertices in V11, where the sum is in Z,. Observe that any digraph can be
shown as a p-cycle with p = 1. Moreover, bipartite digraphs are generalized
p-cycles with p = 2.

Gémez, Padré and Perennes showed in [13] that a digraph is a general-
ized p-cycle if and only if its line digraph is a generalized p-cycle as well. In
the same paper it is proved that a digraph G is a generalized p-cycle if and
only if, for any pair of vertices z,y, the lengths of all paths from z to y are
congruent modulo p. Therefore, when p > 2 the definition of parameter £
can be simplified by saying that it is the greatest integer such that, for any
pair of vertices z,y € V at distance d(z,y) < £, the shortest z — y path is
unique.

In this paper we are concerned with the two following types of conditions
in order to find generalized p-cycles with maximum connectivity:
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1. For a given parameter £ the diameter is small enough.

2. Given the diameter, the maximum and minimum degrees and param-
eter ¢, the number of vertices is large enough.

We offer some solutions to these problems which generalize the above
mentioned conditions (3), (4), (5) and (6), given for the cases p = 1 (general
digraphs), and p = 2 (bipartite digraphs).

For all definitions not given here we refer the reader to the book by
Chartrand and Lesniak [6].

2 Generalized cycles with small diameter

In this section we give results that generalize the above mentioned (3) and
(4) for all generalized p-cycles. With this aim, we present the following con-
cepts which were introduced in [3]. The deepness of a positive fragment F is
u(F) = maxzer d(z, 8% F). Similarly, the deepness of a negative fragment
F is p(F) = maxzer d(0~ F, z). With respect to a-fragments, the deepness
of a positive a-fragment F is v(F) = maxzer d(z,wt F). The deepness of a
negative a-fragment F is defined analogously, v(F) = maxzer d(w™F, z).

In 8] it was implicitly shown that the parameter £ is related to the
deepness of any fragment or a-fragment. For the sake of convenience we
repeat the proof of this useful fact in the following lemma.

Lemma 2.1 Let G be a digraph with parameter £, minimum degree §, di-
ameter D and connectivities &k and A. Let F denote a positive fragment or
a-fragment of G. Then,

(a) if K < 8, then u(F) > £ and p(F) > ¢;
(b) if A <4, thenv(F) > L and v(V\F) > ¢.

Proof. Let F be a positive fragment, that is, |0t F| = & < § — 1, and
assume that u(F) < £ — 1. Let = be a vertex of F such that d(z,8%7F) =
#(F) and consider ¢ of its out-neighbors, 1, 2, ..., £5. For each z; let f;
be a vertex in 8% (F) at minimum distance from z;. Hence, f; = f; for some
1 # 7, and then there would be two different z — f; paths of length £—1 or
£, which is a contradiction with the definition of parameter £. Considering
the converse digraph of G, we can also prove u(F) > £.

(b) The edge case is proved in a similar way if ¥(F') > 1. Let us see that
the assumption A = [w* F| < §, implies v(F) > 0. Indeed, clearly, |F| > 1.
If v(F) = 0 then |F| < § and the number of edges, 3, which have their initial
and final vertices in F satisfies |F|(|F| —1)> 8= cp 0" (z) — |w*F| >
|F|6 — 4. Then |F| > 4, which is a contradiction. ®
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Our main result of this section is the following theorem.

Theorem 2.1 Let G be a connected generalized p-cycle, p > 2, with param-
eter ¢, minimum degree 8, diameter D and connectivities & and \. Then,

(¢)k=6if D<2+p—2;
(b)A=6ifD<2+p—1.

Proof. To prove (a) let us assume that x < § and let F be a positive
fragment. As any path from F to F goes through 8+ F we can consider a
vertex z € F and a vertex y € F so that d(z,y) > d(z,0" F) +d(8+ F,y) >

w(F) + u(F), where #(F) and u(F) are the deepness of the positive and
negative fragment F and F, respectively. Hence D > u(F)+ u(F); without
loss of generality, suppose p(F) < u(F) (if not use the converse digraph of
G.) Therefore, from Lemma 2.1 it follows £ < u(F) < u(F), and hence, we
can consider the non-empty sets:

F(¢) ={z € F,d(z,0*F) > ¢}, F({)={y€F,d0tF,y)>1¢)}.

As G is a p-cycle, its set of vertices can be partitioned in p parts, V =
Uaez Va, in such a way that the vertices in the partite set V,, are only
adJacent to vertices in V41, where the sum is in Z,. We claim that for each
0<a<p-1, F(®)NV, # 0. Indeed, we can take a vertex o € F(£)NV,,
for some a, such that d(zo,0*F) = £. Then I'*(z¢) N F(¢) # 0, since
otherwise, there would be two distinct paths from zg to some vertex of
81 F of length ¢, which contradicts the definition of this parameter. Hence,
we can consider a vertex z; € F(£)NVaq4 so that d(z1,01 F) = d(z1,z,) +
d(z,, 0% F) = d(z1, z,) + ¢, where obviously z, € V,,, for some 1 < r and
s0 F(£)NVayj # 0, for each 0 < j < r. Since d(z,, 81 F) = £ we find again
that T+ (z,.) N F(€) # 0, and thus F(£) N Vayrs1 # 0. This shows that in
F(£) vertices of every partite set must exist. Similarly, it is proved that for
each 0 < a < p—1, F(€) NV, # 0, that is, F(£) contains vertices of every
partite set.

Now, let us consider the integer 7, 0 < r < p—1,sothat D+1 =
r(mod p). If z € F(£) NV, then for all vertices y € F(£) N Vyyr we find for
some integer h > 1 that 2¢ < d(z,y) = D+1—hp < D — p+ 1, because
the lengths of all paths from V, to V., are congruent with » modulo p.
This means that, D > 2¢ + p — 1, which contradicts the hypothesis.

Case (b) can be shown to be a corollary of (a). Indeed, assume that
(b) does not hold. Then, there would be a generalized p-cycle with § > 1,
parameter £, edge-connectivity A < §, and D < 2¢+p— 1. Thus, according
to the results (1) and (2), its line digraph LG would be a generalized p-cycle
(see [13]), and would have the same minimum degree, parameter ¢’ = £+1,
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vertex-connectivity s’ = A < § and diameter D’ = D+1 < 2¢' +p—2
contradicting (a). M

As a consequence of the above proof, the deepness of the fragments
increases at least in one unit if the minimum degree is small enough. This
is shown in the following corollary.

Corollary 2.1 Let G be a connected generalized p-cycle with parameter £,
minimum degree 6 so that p > &, diameter D and connectivities & and .
Let F be a positive fragment or a-fragment. Then,

(a) if K < 8, then u(F) > £+ 1 and u(F) > £+ 1;
() if A< 9, thenv(F)>2€+1andv(V\F)>£+1.

Proof. (a) Assume that x < § and let F be a positive fragment. Suppose
that u(F) = £ and let F(£), F(£) be as in the proof of Theorem 2.1. We
know that foreach 0 < a <p—1, F(€)NV, #0, F@) NV, #0. Ask < §
and p > 6, there exists some « so that V, N 8+ F = 0. Now we consider
a vertex € F(€) N V,—y; the vertices of 81 F at distance £ from z must
belong to V4, and then V, N&*F # 0, which is a contradiction, and hence,
£+ 1 < p(F). Considering the converse digraph of G, we can also prove
p(F)>L+1.

(b) Let us assume that A < d and let F' be a positive a-fragment. From
Lemma 2.1 it follows that £ < v(F). Let us consider the non-empty sets
Fo={z€eF :(z,y)ewtF},Fo={yeV\F : (z,9) € wtF}. Now we
define the following sets:

F@)={z€F :d(z,Fo)>¢}, F@)={yecV\F : d(Fo,y)>¢}.
As in the proof of Theorem 2.1 we find that for each 0 < a < p—1,
F(£)NV, # 0, and F(£) NV, # 0. Hence, reasoning as in case (a) we reach
the desired result. W

In fact this result was implicitly proved for bipartite digraphs with min-
imum degree § = 2 in [4]. The following corollary gives an improvement of
Theorem 2.1 for p-cycles with p > 4.

Corollary 2.2 Let G be a connected generalized p-cycle with parameter £,
minimum degree 0, so that p > 8, diameter D and connectivities k and ).
Then,

(e) k=6 DL<2U+p—1;
(b)X=6if D<2+p.
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Proof. (a) Assume that £ < § and let F be a positive fragment. By
Corollary 2.1 we can take a vertex = € F, so that d(z,0%" F) = p(F) > £+1.
Suppose that z € V,. Then, we consider a vertex y € F(£) N Voypy1, in
such a way that 2+ 1 < d(z,y) £ D —p+ 1. This leads to D > 2¢ + p,
which contradicts the hypothesis.

Case (b) is analogous to case (a) by considering a-fragments. B

From the above results (1) and (2) together with Theorem 2.1 and
Corollary 2.2 we can deduce the following sufficient condition for the k-
iterated line digraph to be maximally connected.

Corollary 2.3 Let G be a connected generalized p-cycle, p > 2, with pa-
rameter ¢, minimum degree 6, diameter D and connectivities £ and M.
Then,

(a) K(L*G)=6 ifk>D—-20—p+2;
Y ML*G)=6 ifk>D—-20—p+1.

() Ifp 234,
k(L¥G) =6 ifk>D-20—p+1;
ML*¥G) =6 ifk>D-2—p. =

3 Large generalized cycles

This section is devoted to deducing sufficient conditions which guarantee
that generalized p-cycles are maximally connected if they have enough ver-
tices for a given maximum degree A and diameter D. These conditions
extend the previously known results (5) and (6). To begin with, let us
consider the case of (vertex) connectivity. First, we compute the minimum
and the maximum deepness of any positive or negative fragment.

Lemma 3.1 Let G be a generalized p-cycle with minimum degree 4, con-
nectivity k < 0, diameter D and parameter £. Then, for all positive or
negative fragments F,

(i) (F)2Land y(F) <D —L—p+1;
() W(F) 2 €+ 1 and u(F) < D—L—pifp> 6.

Proof. To prove (i) let F' be a positive fragment of a generalized p-cycle
G, hence |87 F| = x and D > 2¢+ p — 1, for otherwise Theorem 2.1 holds
and G is maximally connected. From now on, we denote by x4 = p(F) and
¢ = pu(F). From Lemma 2.1 , ' > £. Besides, the sets F' and F can be
partitioned into subsets F;, 0 < i < p, and 7,-, 0 < j </, according to
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their distance to and from 8% F, that is, F; = {z € F; d(z,0*F) = i} and
F; = {y € F; d(8*F,y) = j} (Fo = Fo = 8 F.) As any path from F to
F goes through % F, the distance from a vertex in F,, to one in F,, is at
least 1 + ' < D. Now, we are going to see that p’ < D —-£—p+ 1 Asin
the proof of Theorem 2.1 we have that F(£)NV, # 0. Then, let us consider
a vertex z, in each partite set V,, 0 < a < p— 1, so that z, € F({),
and d(Ta,%a+1) = 1. Suppose that @ >D—£¢—p+2 and consider a
vertex y € Fp—_¢—pt2. Hence, d(za,y) 2€+D—£L—-p+2>D—-p+2,
for 0 < o < p— 1. In particular, d(zp—1,y) = D — p+ 2 + k, for some
0 < k < p-—2,since d(z,-1,¥) < D. Hence, from vertex z; to vertex y we
have two paths, namely, a shortest path of length d(zk,y), and the path
Tk, Tkt1s- -+, Zp—1 — Y Of length d(xp—1,¥) +p—1—k = D + 1. Since the
length of these two paths are congruent modulo p and d(zx,y) < D, we find
that d(zx,y) = D+ 1— hp for some positive integer h. But this contradicts
the fact that d(zk,y) > D — p+ 2. Therefore, p’ <D —{—-p+1.

To prove (ii) notice that from Corollary 2.1 it follows that b= wF) >
¢+1, since p > &. Reasoning again as in case (i) we find that u' = u(F) <
D—t¢—p n

As an inmediate consequence of Lemma 3.1 (ii) it follows that (6) also
holds for bipartite digraphs with § = 2, and hence, the hypothesis § > 3
of (6) can be eliminated. The next theorem contains a similar result to (6)
for p > 3.

Theorem 3.1 Let G be a generalized p-cycle with p > 3, connectivity k,
order n, mazimum and minimum degrees A and 8, respectively, diameter
D and parameter £. Then,

(i)k<é=>n<r{n(ALl+p-2)+n(A,D—L—p+1)—1} 25+ 2.
(i) Ifp> 6, k < 6 = n < k{n(A, €4+p—2)+n(A, D—l—p+1)—1-A+2},

Proof. We use the same notation as in Lemma 3.1. Note that |Fj| <
AlF;_y|, 1 € i < p, and [F;| < AJFj_|, 1 £ j < ¢/, Without loss of
generality suppose 1 < p’. By means of Lemma 3.1, we have to study the

following cases:
(a) ¢/ < D—£2—p+1 (Note that this is the only case in which p > 4.)
(a.1) If £ < p < €+ p— 2 the order of G must satisfy that

u woo_
n= §|E|+ Zole|—|6+F[ < k{n(A,p) +n(A,D—2—p) -1}
==l J:
< k{n(A,+p—2)+n(A,D—€—p+1)—1} —xkAP-E-PH!
<k{n(Al+p—-2)+n(A,D—-El—p+1)—1} -26+2,
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because in this case £ < p < p/ < D — £ — p, hence D > 2¢ + p and then
KRAD—EPHL > ABHL > A2 > 9(5 — 1),

Note that if p > é from Lemma 3.1 (ii) it follows £+ 1 < p < o/ <
D —¢—p, and hence kAD=4-P+1 > xAl+2 obtaining the desired result (ii)
of theorem as well.

(a.2) If u > £+ p — 1 the order of G must satisfy that

u o
n= Z%IFH-F ZOIFJ'I —10*F| < k{n(A, p) +n(A,D — £~ p) ~ 1}
1= J=

=k{n(A,l+p—-2)+n(A,D—C—-p+1)—1} +«{ f: A
i=L+p—
AD—t—p+1} el

<k{n(A,£+p—2)+n(A,D—€—p+1) -1} — kAH?
<k{n(Al+p—-2)+n(A,D—C0—p+1)—1} — 28 + 2,

since K (% — AD-t-p+l) <« (AD"_'Z‘—IA”'"_I — AD—-t-p+1) =

25 ((2— A)AD=E-pH1 _ AlRP=1) < B (1 — A)AHPTL < _gABE <
~26+2, because £+p-1<p <y <D~L~-pandp>3.

(b) ' =D —£€—p+ 1. From Lemma 3.1 it follows p < § and so § > 3.
Besides, £ < p < £+p—1. Indeed, since all the paths fromz € F, toy € F,/
go through 8*F, it must be that D > d(z,y) > d(z,0%F) + d(0* F,y) =
p+p =p+D—€—p+1. Therefore, u < l+p—1.

(b.1) If 4 = £+ p— 1 we can consider a vertex ¢ € F, and y € F.
Therefore, d(z,y) > p+ 4 =€+p—1+D—£—p+ 1= D. Moreover, for
all z € Fypp-1, I't(z) C Fyyp-2; otherwise, let 2’ € I'H(z) N Foyp—y. As
before, all the paths from z’ to y go through 8*F, and also d(z',y) = D.
Then, we would have two different paths from z to y, one of length D and
the other, zz’ — y, of length D + 1, which is impossible in a generalized p-
cycle with p > 2. Hence, for all z € Fgy,—1, I't(z) C Fgqp—2, which implies
that |Fe4p-1| < 41Fesp—2|- In a similar way, we prove that for any vertex
Yy € Fp_z_p.{.l, I'(y) C ?D_e_p, and therefore |Fp_e_p+1| < %!_F—D—e—pl-
In this way we obtain that

£4p—2 D—t-p __ _

n= 3 |F|+ 'Eo |F;| = [0F F| + [Fe4p-1| + |[Fp-t—pt1l

i=

1=

< k{n(A,0+p—2) +n(A, D —£—p) — 1} + ${A%P~1 4 AD-¢-p+1}
= k{n(A,8+p—2)+n(A, D—L—p+1) -1} +5{AHP-1 L AD-t-pH1}
KAD=EPH1 < o{n(A,6+p—2)+n(A,D—L—p+1) -1} — 26 +2,

since n(%{A“-}-A“'}—A"') < n(%—l)A“' < —26+2,because 3 < £4+2 <
£+p—1=p<y and 6 > 3.

224



(b.2) If p = £+ p— 2, we can consider vertex z € F, and y € F . As
all the paths from = € F, to y go through 8*F, it must be that d(z,y) >
d(z,0*F)+d(@*F,y)=p+p' =€+p-2+D—€¢—p+1=D-1.In
addition, either for all z € Fyyp—2, I'T(z) C Fgyp—3 or there exists a vertex
z € Fpqp_o with some outnelghbor ' elt (z)NFp4p—2. In the first case we
would find that [Fpyp2| < & &|Fpp-3|- In the second case we obtain that
d(z’,y) > D —1. In this case, notice that if d(x,y) = D —1 then the length
of the path zz’ — y must be 1 + d(z',y) = D — 1 + hp for some integer
h >0. From d(z’,y) > D~—1followsh > 1,s0d(z',y) > D—-2+p>D+1
because p > 3, which is a contradiction. Hence, the only possibility is
that d(z,y) = D, d(z’,y) = D — 1 and T*(2’) C Feyp-3. Thus we have
proved that |Feyp—2| < A|Fg4p-3| — (6 — 1). In a similar way we obtain
that |Fp_¢—p41] < A|Fp—e-p| — (6 — 1). Therefore, the order of G must

satisfy that
£+p-3

n= Z% |Fil + Z "1 = 0% F| + | Feap—al + [Fo—t-pii]

j=
< k{n(A, e+ p= 2)+n(A,D C—p+1)—1} —20+2.

(b.3) Finally, ife< p, < ¢+ p—3 then,
D-t—p+
n—ZlFI+ Z IFJ'I—I5’+F|

< /s{n(A Z+p 2) +n(A,D—£€—p+1)— 1} — sAL+P~2
<k{n(Al+p-2)+n(A,D—L—p+1)—-1}-26+2. =
The following corollary, which is just a restatement of the above theo-

rem, gives a sufficient condition on the number of vertices for any general-
ized p-cycle with p > 3 to have maximum connectivity.

Corollary 3.1 Let G be a generalized p-cycle with p > 3, connectivity k,
order n, mazimum and minimum degrees A and 0, respectively, diameter
D and parameter . Then, kK =6 if

(i)n>@-1D){nAL+p-2)+n(A,D-0—p+1)-3}.
(it) If p> 8, n > (6 —1){n(A,€+p—2)+n(A,D—£—p+1)— 1 - A2},

Recalling that a digraph is a generalized p-cycle if and only if its line
digraph is, we can apply the line digraph technique to Theorem 3.1. So, we
obtain a sufficient condition on the number of edges for G to have maximum
edge-connectivity.

Corollary 3.2 Let G be a generalized p-cycle with p > 3, connectivity A,
size m, mazimum and minimum degrees A and 8, respectively, diameter D
and parameter £. Then,
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()A<d=>mIAMn(AL+p-1)+n(A,D—€—p+1) -1} —20+2.
(#) Ifp > 8, A <6 = m < AMn(A, {4+p—1)+n(A, D—L—p+1)—1- A3},

Proof. Suppose that the result is not true. Then there would be a gen-
eralized p-cycle with p > 3, m edges, parameters 8, A, ¢, D and edge-
connectivity A < § so that
m>Mn(Al+p—1)+n(A,D—C—p+1)—1} - 26 +2.
Then, the line digraph of G, LG, would have n’ = m vertices, minimum
and maximum degree 6 and A, diameter D’ = D + 1, parameter ¢ = £+ 1,
and connectivity £’ = A < 4§, satisfying
' >k{n(Al+p-2)+n(AD -0 —p+1)—1} — 26 +2,
which contradicts Theorem 3.1. The case p > § is proved similarly. m

When the digraph G is d-regular, it has m = dn edges and we get the
following corollary.

Corollary 3.3 Let G be a d-regular generalized p-cycle with p > 3, con-
nectivities K, A, order n, diameter D and parameter £. Then,

(r=difd ®> deP=l 4 @D=t=p+2 _3q 4 1;
yE= n > dHPl 4 Dbt _ (g2 4 1)(d - 1) - 2, if p>d.

g [ n>dtPml g @Dt g,
(#B)A=d Zf{ n > dtrml 4 gD-t-ptl _ gtt2(d _ 1)1, if p > d. "

From the above results we can deduce the following sufficient condi-
tion for the k-iterated line d-regular generalized p-cycle to be maximally
connected.

Corollary 3.4 Let G be a d-regular generalized p-cycle with p > 3, con-
nectivities k, A, order n, diameter D and parameter £. Then,

dP—t-r42 _34 41

(i) k(L*G) = d if k > logy T

dD-e—p+1 -3

(i) A\(L*G) = d if k > logy T u

The above corollary gives the following results to be compared with
those of Corollary 2.3.

w(L*G) =dif k> D — £ — p+2 —logy(n — dttP~1),
ML*G) =dif k> D — £~ p+1—logy(n — d*+?-1),
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An upper bound on the number of vertices for any generalized p-cycle
with edge-connectivity A < § that extends the result (6) for p > 3, can be
obtained by using direct reasoning. With this aim, first we need to bound
the deepness of the a-fragments.

Lemma 3.2 Let G be a generalized p-cycle with minimum degree 6, edge-
connectivity A < 8, diameter D and parameter £. Then, for all positive or
negative a-fragments F,

(i) v(F) > € andv(V\F)<D—-{—p;
(i) v(F) > €+1 and V\F)<D—£—p—1ifp>34.

Proof. To prove (i) let F be a positive a-fragment of a generalized p-cycle
G. Then |w* F| = A and D > 2£ + p, for otherwise Theorem 2.1 holds and
A = 4. In what follows we denote by v = v(F) and v' = v(V \ F). From
Lemma 2.1 it follows that v,/ > £. Let us consider the two non-empty
disjoint sets Fo = {r € F: (z,y) € w*F}and Fo ={y e V\ F: (z,y) €
w"'F} It is clear that |Fy| < |w* F| and [Fo| < |w*F|. Then, we define

={z € F; d(z,Fo) =i},0<i<vand F; = {y € V\F: d(Fo,y) = j},
0 s 4 < V'. As any path from F to V \ F goes throught an arc of w*F it
follows that v + 1 + v/ < D. Reasoning in the same way as in the proof of
Lemma 3.1 it is obtained that v’ < D — £ — p. Corollary 2.1 is sufficient to
prove (ii), since p > 8. As v > £+ 1 and reasoning as in case (i) we find
that /' < D—¢—p—-1. W

Now, we are ready to state the above-mentioned conditions involving
the order of G whose proof is similar to the proof of Theorem 3.1.

Theorem 3.2 Let G be a generalized p-cycle with p > 3, edge-connectivity
A, order n, mazimum and minimum degrees A and 8, respectively, diameter
D and parameter €. Then,

G)A<éd=>n<MnAL+p—-2)+n(A,D—-£—p)}.
(i) Ifp=8, A<d=>n < Mn(A, L+p—2) +n(A,D — £ —p) — A2}

Proof. We use the same notation as in Lemma 3.2 and assume that v < /.
By means of Lemma 3.2, we have to study the following cases:
(a) v’ < D — £ — p (Note that this is the only case in which p > §.)
(a.1) If £ < v < £+ p— 2 the order of G must satisfy that

n_§|F|+Z|Fl<,\{n(Au)+n(AD ¢—p—1)}
< Mn(A+p-2)+n(A,D—-€—p)}.
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If p > 6 by Lemma 3.2 (ii) £+1 < v < V' < D—{£—p—1, hence D > 2¢+p+2
and then AAP=6=? > AA%2 | obtaining the desired result (i) of theorem
as well.

@2 Ifv>e+ p- 1 the order of G must satisfy that
ZIF|+ E [F5l < Mn(A,v) +n(A, D~ £~p~—1)}

=Mn(Al+p-2)+n(A,D—L—-p)}+ 7] 3 Ai-AD-t-p)
i={+p—1
<Mn(A 8+ p—2)+n(A,D —£—p)} - AAH?
< Mn(A,L+p—2)+n(A,D—-2-p)},
since \ ALIA—A_IH": — AD- l—p) <A (AD l—g_lAH-p— AD—l—p) _
o7 (2 - A)APEP - APRL) < 5 (1 - A)AHPTL < MAH?, be-
cause £+ p—1<v<v'<D-{f—p—landp>3.

(b)Y = D—4€—p Then £ < v < £+ p— 1 since all the paths
from z € F, to y € F,s go through w*F, it must be that D > d(z,y) >
d(z,wt F)+1+d(w* F,y) > v+1+v = v+1+D—£—p. Thus, v < £+p—1.

(b.1) If v = £+ p— 1 we can consider a vertex t € F, and y € F,. It
must be that d(z,y) > v+1++v =€+p—1+1+D—£€—p= D. Moreover,
for all z € Fpyp—1, [t (2) C Feqp—o; otherwise, let 2/ € It (z) N Fpyp_y. As
before, all the paths from z’ to y go through w* F, and also d(z',y) = D.
Then, we would have two different paths from z to y, one of length D and
the other, zz’ — y, of length D + 1, which is lmposmble in a generalized p-
cycle with p > 2. Hence, for all z € Fyyp_1, [t (z) C Foyp—2, which implies
that |Fe+,,_1| <% |Fg+p_2| In a similar way, we prove that for any vertex
Yy € Fp_t—p, I (y) C Fp—g—p-1, and therefore [Fp_ e-p| <5 AFp_g—p-1l-

In this way we obtain that
D~t—p—

E lF| + 2 IF,-I + | Feyp-1] + [Fp—e—pl
< )\{n(A (+p— 2) + n(A,D —f—p—1)} + 3{A%P~1 4 AD~E-p}
= Mn(A, £+p—2)+n(A, D—L—p)}+ 2 {AHP-1 L AD=t-P} _\AD~t-p
< Mn(A,£+p—2)+n(A,D -~ p)},
since A(3{AY + AV} —AY) < A3 - 1)A¥" <0, because v < V.
(b.2) Finally, if £e< v £ €+ p—2 then,

20|F|+ ZOPIF|<)\{n(A€+p 9)+n(A,D—t—p)}. ®
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P D< n >

d +d—-d—-1 [17]
20-1 [8] dD=t+1 L odt 9441 [7]
@1 ]

k=d |2 2t [9],[+] dP-t 424+ —2d+2 [4)

>3| 204p—2 [¢] | dP P24 g1 _3d+1 [4]
AP T+ -2 [17]

dP—t 424t —2 [7]
2d02 ]

dP—¢-1 | gé+1 _ 9 [4]
>3 | 2+p—1 [ | dPtpHl L g1 _3 [4]

1 | 2¢ 8

A=d |2 20+1 [9),[%

Table 1: Sufficient conditions for a d-regular generalized p-cycle to have
maximum connectivities. The [*] indicates this paper

It is interesting to note that, since n > m/A, the above theorem also
implies the result of Corollary 3.2 and hence that of Corollary 3.3 as well.
The following corollary gives a sufficient condition on the number of vertices
for any generalized p-cycle to have maximum edge-connectivity.

Corollary 3.5 Let G be a generalized p-cycle with p > 3, edge-connectivity
A, order n, mazimum and minimum degrees A and §, respectively, diameter
D and parameter £. Then,

(A)r=8ifn>0-1){n(AL+p-2)+n(A,D—-£—-p)}
(#) If p > 8, A= 6 ifn > (6 —1){n(A,€+p—2)+n(A,D—L—p) — A2},
In Table 1, we give a more concise comparison between some of the
results of this paper, derived as corollaries of Theorems 2.1, 3.1 and 3.2,
and the corresponding earlier results. For simplicity, we have limited our-

selves to the sufficient conditions for a d-regular generalized p-cycles to be
maximally connected or edge-connected.
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