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Abstract

Let Gi and G; be two graphs of the same size such that V(Gi) =
V(G2), and let H be a connected graph of order at least 3. The graphs
G, and G2 are H-adjacent if Gi and G2 contain copies H; and H> of
H, respectively, such that H; and H2 share some but not all edges and
G2 = G, — E(H,)+ E(H3). The graphs G, and G; are H-connected if Gy
can be obtained from G2 by a sequence of H-adjacencies. The relation H-
connectedness is an equivalence relation on the set of all graphs of a fixed
order and fixed size. The resulting equivalence classes are investigated for
various choices of the graph H.

1 Introduction

A basic problem in drug design consists of finding a compound that satisfies a
spectrum of biological and chemical properties. Although drug design problems
are central to pharmaceutical research, statisticians have yet to become involved
in this area. A major reason for this is that these problems are viewed statisti-
cally as optimization problems, and standard statistical optimization methods
are based on Euclidean space or vector representation. Here the formal repre-
sentations are labeled graphs and/or three-dimensional atomic configurations.
Hence before statistical optimization procedures can be defined on these spaces
whose points are structures and not vectors, very basic mathematical notions
of distance between labeled graphs or graphs in general must be defined and
studied.

There is a commonly recognized principle in chemistry that similar com-
pounds generally have similar properties (see [12]). This principle implies that
we have a metric, or at least a pseudometric, on the set of chemical graphs.
One problem, of course, is choosing the appropriate metric. The Dugundji-Ugi
principle of minimum chemical distance provides an interesting illustration of
choosing the appropriate metric. In this formalism, the reactants and products
of a chemical reaction are represented as graphs with the possible inclusion of
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loops and multiple edges [8, 11]. Two distances are involved. The first, the
“experimental distance”, is the sum over the individual steps of the reaction
of the number of valence electrons that participate in each step. The second,
called the “chemical distance”, can be shown to correspond to the move distance
between the graph of the reactants and the graph of the products. (The move
distance is the minimum number of edges that must be “moved” to transform
one graph into the other.) The principle asserts the equality of the experimental
and chemical distances. Counterexamples are known to exist, however. Such
discrepancies are often attributed to the formation of a bond in a reaction inter-
mediate that is subsequently cleaved in the course of the reaction [8]. It may be
that some of the counterexamples to the principle of chemical distance would
cease to exist if the principle of minimum chemical distance was reformulated
in terms of the appropriate graphical distance. One such possibility is explored
in [11]. Other applications of graphical metrics to problems in chemistry may
be found in [1, 9] and recently a survey was completed on graphical metrics [4].

In this paper we will explore another graphical metric, first defined in [7],
with the idea that fixed parts of the molecule can be moved in one step. It is not
our intention to show that the metric we will define satisfies the Dugundji-Ugi
principle of minimum chemical distance but rather to provide yet another mea-
sure of the distance between two graphs that is, in some sense, more restrictive
than the previously defined metrics.

Let G, and G2 be two graphs of the same order and same size such that
V(G1) = V(G2), and let H be a connected graph of order at least 3.

1.1 Definition. Two subgraphs H; and H, of G} and G2, respectively, are
H-adjacent if H, = H, = H and H, and H, share some but not all edges, that
is, E(H1) N E(H2) # 0 and E(H2) — E(H,) # 0 (so also E(H,) — E(H.2) # 8).
The graphs G; and G, are themselves H-adjacent if G; and G2 contain H-
adjacent subgraphs H, and H, respectively, such that E(H;)—E(H;) C E (Gy)
and G; = G; — E(H,) + E(H3). (For graphs G; and G, we will often write
G = G7 to indicate that the graphs G; and G, are isomorphic. )

1.2 Definition. A G, — G2 H-path is a sequence Gy = Fy, Fi,..., Fr.= Gz of
graphs of the same order and same size such that F; is H-adjacent to Fi4; fori =
0,1,...,k—1. The graphs G, and G, are H-connected if there exists a G, — G2
H-path. For H-connected graphs G; and G, the H-distance dy(G1,G2) from
G1 to G is the minimum number of H-adjacencies required to transform G,
into G»

Let H = P3. In Figure 1, the path H; : u,v,w of G, is H-adjacent to the
path Hj : v, w, u of G3 and, in fact, since G, = Gy — E(H,)+ E(H3), the graphs
G and G; are H-adjacent. The path Hj : w, z,y of the graph G» is H-adjacent
to the path H3 : z,w,y of the graph Gs, shown in Figure 1, and thus since
G3 = G2 — E(H}) + E(H3), the graphs G, and G3 are H-adjacent. Clearly, G;
is not H-adjacent to G3 but since Gy, G2, G3 is an H-path from G; to Gj, the
graph G, is H-connected to G3.

234



Figure 1

The relation H-connectedness is an equivalence relation on the set of all
graphs of the same order and same size, and it is not clear for a given graph H
what these equivalence classes are. In this paper, we investigate the equivalence
classes in some specific cases, namely, when H is a path, a star of order 4, or
a triangle. For a given graph H, the H-distance is a metric on the space of
all graph of a fixed order and fixed size for which it is defined. However, it
is not clear, for a given graph H, when this distance is defined. We will also
investigate some properties of the distance induced by this transformation when
H is P3 and how it is related to some of the other known graphical distances.

2 H-Connected Graphs when H is a Path

We begin by considering H-adjacency when H = P;. Let Gi and G2 be P;-
adjacent graphs. Then G, contains a copy H) of Ps, say H; : u,v,w, and G,
contains a copy Hz of P; with E(H,)NE(H,) # 8 and E(H2)—E(H)) C E(Gh).
Since E(H1) C E(G:) and H, has exactly two edges, it follows that H; and H»
have exactly one edge in common, say uv, and H, contains exactly one edge
that is not present in G;. So Hs : u,v,z or Hy : z,u,v for some z € V(G3).
Thus (1) G2 = G1 — vw + vz or (2) G; = Gy — vw + uz, where u,v,w, and 2
are not necessarily distinct. Hence P;-adjacency is the transfer of an edge from
one graph to another. The transfer of an edge from one graph to another has
been previously studied in many articles, including (2, 5, 3, 6, 10].

2.1 Definition. The graph G, is said to be obtained from G, by an edge move
if G, contains (not necessarily distinct) vertices u, v, w, and z such that uv €
E(G,), wz € E(G,), and G, = G} — uv + wz.

This concept was first defined in [1, 9], and it was shown in [2] that for every
two graphs of the same order and same size, each can be transformed into the
other by a sequence of edge moves.

2.2 Definition. The graph G, is said to be obtained from G; by an edge
rotation if G; contains distinct vertices u,v, and w such that uv € E(G4),
uw ¢ E(G)) and G2 = Gy — uv + uw.

In [6] it was shown that for every two graphs of the same order and same
size, each can be transformed into the other by a sequence of edge rotations.
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2.3 Definition. A graph G, can be obtained from G, by an edge slide if G,
contains distinct vertices u,v, and w such that uv,vw € E(G)),uw ¢ E(G}),
and G2 = G, — uv + uw.

In [10] it was shown that the edge slide preserves connectedness, and that
a graph G; can be obtained from a graph G2 by a sequence of edge slides if
and only if G and G, have the same number of components and corresponding
components of G; and G have the same order and same size.

2.4 Definition. The graph G, is obtained from G; by an edge jump if G,
contains four distinct vertices u, v, w, and z such that uv € E(G,), wz € E(G2)
and Gy = G; — uv + wz.

Observe that an edge jump is any edge move that is not an edge rotation.
In [3] it was shown that for every two graphs of the same order (at least 5)
and same size, each can be transformed into the another by a sequence of edge
jumps.

Of course, a P3-adjacency is a special case of an edge move, in fact, an edge
slide is always a Ps-adjacency. Clearly, if the graphs G, and G are Ps-adjacent,
then G can be obtained from G, by an edge move. If the graphs G; and G are
Ps-adjacent and G2 = G; —vw+ vz as in (1), then G, can be obtained from G,
by an edge rotation. In fact, in this case, P3-adjacency is more restrictive than
edge-rotation since P3-adjacency requires the presence of another edge incident
to v. If w and z are also adjacent, then the Ps-adjacency is an edge slide. Next,
if G1 and G are Pj-adjacent with G2 = G} — vw + uz as in (2) with u,v,w,
and z distinct, then G is obtained from G; by an edge jump.

Our goal is to show that almost every pair of graphs of the same order and
same size are Ps-connected. We begin with the following lemma.

2.5 Lemma. Let G, and G2 be two graphs of the same order and same size
with mazimum degree at least 2 such that G2 can be obtained from G by an
edge rotation. Then Gy and G, are P3-connected by a sequence of at most three
P3-adjacencies.

PROOF. Since G = G — uv + uw, it follows that G, is obtained from G,
by an edge rotation. We now proceed by cases.

CAsE 1. SUPPOSE THAT vw IS AN EDGE OF (NECESSARILY) BOTH G, AND
G2. Then G, is obtained from G; by an edge slide and thus G; and G; are
P3-adjacent.

CASE 2. SUPPOSE THAT u HAS DEGREE AT LEAST 2 IN G; (AND HENCE IN
G2). Then the edge rotation transforming G into G is a Ps-adjacency.

CASE 3. SUPPOSE THAT degg, u = degg, u = 1 AND THAT THERE EXISTS A
VERTEX z, DISTINGT FROM v AND w, WITH DEGREE AT LEAST 2 (NECESSARILY
IN BOTH GRAPHS G AND G3). Let s and t be two vertices (different from u
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by Case 2) adjacent to z. Next, let Fi = G| — {sz, 2t} + {sz,zu} and F; =
Fy — {zu,uv} + {zu,uw}. Since G2 = F; — {uz,zs} + {sz, zt}, we have that
G\, F\, F5,G; is a Ps-path so that G; and G; are P3-connected by a sequence
of three Ps-adjacencies.

CASE 4. SUPPOSE THAT EVERY VERTEX, OTHER THAN v AND w, HAS DE-
GREE AT MOST 1 IN BOTH G; AND G2 AND THAT v AND w ARE NOT ADJA-
CENT. Since G) has maximum degree at least 2, it follows that degg, v > 2
or degg, w > 2. Suppose first that degg, v > 2. If degg, v = 2, then
degg,v = 1 so that degs, w > 2. Then there exists (not necessarily dis-
tinct) vertices s and ¢t such that s is adjacent to v and t is adjacent to w.
Let F\ = G, — {uv, vs} + {sv,vw}. Since G, = F| — {vw, wt} + {uw, wt}, we
have that G; and G; are Ps-connected by a sequence of two Ps-adjacencies.
On the other hand, if degg, v > 2, then there exists distinct vertices z; and z;
adjacent to v in both G, and G2. Let Fy = G — {uv, vz} + {vu,uw}. Since
Gz = Fy -~ {uv,vz2} + {z1v,v23}, we have that G; and G, are Ps-connected
by a sequence of two Ps-adjacencies. Finally, suppose that degg, w > 2. Then,
degg, w > 3. Reversing the process just described for v when degg, v > 2 by
starting with G2 and working with w in place of v, we have that G, and G, are
Pj-connected by a sequence of two Ps-adjacencies. Il

2.6 Theorem. Let G, and G, be two graphs of the same order and the same
size with mazimum degree at least 9. Then G, and G, are P3-connected.

PROOF. Since we may remove an equal number of isolated vertices from both
Gi and G3, we may assume that G; has minimum degree at least 1. Thus, any
graph obtained from G; by a sequence of edge rotations has maximum degree
at least 2. Since G) and G5 have the same order and size, we may transform G,
into G by a sequence of edge rotations. Let Gy = Fo, F1, Fs,...,Fx = Ga be a
sequence of graphs such that Fjy; is obtained from F; by an edge rotation for
0 < i< k- 1. Since each F; has maximum degree at least 2for 1 <i<k-1,
by Lemma 2.5, we have that F; is Ps-connected to Fi;;. Therefore, G is
Ps-connected to G,. l

Thus, the P3-distance is defined for every pair of graphs of the same order
and same size containing Pj as a subgraph. We now compare the rotation and
Jjump distances with the P3-distance. The rotation distance d,(G1,G2) between
two graphs G, and G of the same order and same size is defined as the minimum
number of edge rotations required to transform G, into G2. The jump distance
d;j(G1,G>) is defined analogously. Both distances are metrics on the space of
all graphs of a fixed order (at least 5 for the jump distance) and fixed size. In
[3], it is shown that each edge rotation can be achieved by two edge jumps and
that each edge jump can be achieved by two edge rotations. Thus, for any two
graphs G, and G of the same order (> 5) and same size, the rotation distance
is at most twice the jump distance and the jump distance is at most twice the
rotation distance, that is,

237



d.(G1,G2) < 2dj(Gl,Gz) and dj(Gl.Gz) < 2d,-(G1,Gz).

These inequalities can also be described as

1

-2-d,-(G1,Gz) < d,(G1,G2) < 2d;(G1, G2),
or equivalently,

1
Edr(Gl:Gl') < dj(G1,G2) < 2d:(G1, G2)-

It is also shown in [3] that these bounds are best possible, that is, for every two
positive integers a and b with a/2 < b < 2a, there exists graphs G and G of
the same order and size such that d;(Gy, G2) = a and d.(G1,G2) = b.

Since a P;-adjacency is either an edge rotation or an edge jump and since an
edge jump requires two edge rotations, it follows that the rotation distance is at
most twice the Ps-distance. This, together with Lemma 2.5, gives the following
bounds for each metric in terms of the other.

2.7 Corollary. For any two graphs G; and G2 of the same order and same
size having mazimum degree at least 2,

1

54-(G1,G2) < dpy(G1, Ga) < 3d:(G1, Ga)
or, equivalently,

1

gdP;(Gl,Gz) < d.(Gh1, G2) < 2dp,(G1,G2)-

The bounds provided for each metric in terms of the other are the only
restrictions, as the next result shows.

2.8 Theorem. For every two positive integers a and b with a/2 < b < 3a, there
ezists graphs Gy and G of the same order and same size such that d.(G1,G2) =
a and dp,(G1,G2) = b.

PROOF. First note that dp,(2P;, PsU K1) = 1, dp,(2P3, P4U K2) = 2, and

dp,(2P3 UK;,P3U 2K2) = 3, while d.(2P;, Ps U Kl) = d.(2P;, P4 U K;) =
d,(2P3 UK,, P3U2K,) = 1. We now proceed by cases.

CASE 1. ASSUME THAT 2a < b < 3a. Choose
G =(- 20)(2P3 UR,)U(3a—- b)(2P3) =2aP3U (b— 2¢)K,
and

G2 = (b—2a)(P3U2K3)U(3a—d)(P4UK3) = (3a—b)PyU(b—2a)PsU(b—a)K>.
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Clearly dp,(G1,G2) < 3(b — 2a) + 2(3a — b) = . Note that no matter how the
components of G are P3-transformed, we require at least two P3-adjacencies to
obtain a component isomorphic to K3 or Py and that after this transformation,
every other component is isomorphic to Ps or K;. Thus to obtain the 3a — b
components of G isomorphic to P;, we require at least 2(3a —b) Ps-adjacencies.
If only these Ps-adjacencies were applied, there would be 2b — 4a components of
G isomorphic to K yet to obtain from the remaining components isomorphic
to P3 or Py. Obtaining a K, from a P, requires one P3-adjacency, but another
P4 must then be obtained from the remaining components, all of which are iso-
morphic to P;. This requires yet another two Ps-adjacencies and gives another
K, for a total of three P3-adjacencies. On the other hand, obtaining a K3 from
the remaining components isomorphic to P; requires at least two Ps-adjacencies
giving either P4 U K, or K; 3U K. Now K) 3 U R will not give another K3
with one P;-adjacency, yet when Py U K3 is obtained, one P;-adjacency gives
2K, U P;, for a total of three Ps-adjacencies. Thus, to obtain the remaining
2b —4a components isomorphic to K2, we need at least 3(b—2a) Ps-adjacencies.
Thus, dp,(G1,G2) > 3(b — 2a) + 2(3a — b) = b, and therefore dp,(G1,G2) = b.
Notice also that G and G differ in exactly a edges and that G2 can be obtained
from G, by a edge-rotations. Therefore, d.(Gy, G2) = a.

CASE 2. ASSUME THAT a < b < 2a. Choose
G1 = (b - a)(2Ps) U (2a — b)(2Ps) = 2aPs

and
G2 = (b-a)(PyUK>2) U (2a - b)(Ps U K;).

Clearly, dp,(G1,G2) < 2(b — a) + 2a — b = b. To obtain one copy of K> from
the components of G, we require at least two Ps-adjacencies giving a copy of
K2 U Py. We still have 2a — b copies of Ps to obtain and thus dp,(G1,G2) >
2(b— a) +2a — b = b. As before G; and G differ in exactly a edges and G2 can
be obtained from G by a edge rotations. Therefore, d.(G,G2) = a.

CASE 3. ASSUME THAT a/2 < b < a. Consider the graphs F; and F shown in
Figure 2 below. It is easy to verify that dp,(F}, F2) = 1 while d.(F1, F3) = 2.
Choose G = (a — b)F, U (2b—a)(2P3) and G2 = (a — b)F2 U (2b— a)(Ps UK, ).
Then dp,(G1,G2) = b while d,(Gy,G2) = a.

A vs A
Gl: Gz:
V\oy oY A
% Y Y
Figure 2
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Let G; and G be two graphs of the same order (at least 5) and same size
with maximum degree at least 2. Suppose that G; can be obtained from G,
by an edge jump. It is not hard to verify that G, can be obtained from G,
by at most four Ps-adjacencies. Similarly, if G2 can be obtained from G, by
a Pz-adjacency, then G5 can be obtained from G; by at most two edge jumps.
Hence, we have the following bounds for each of these metrics in terms of the
other:

145(G1, G) < dp, (G1,G2) < 445(Gh, G,

or, equivalently,
1
19P:(G1,G2) £d;(G1,G2) < 2dp, (G1, o).

It is not known whether these bounds are the only restrictions on the jump and
Ps-distances.

The next theorem describes conditions under which two graphs of the same
order and same size are Pj-connected. The proof of next theorem is long and
tedious and can be found in [7].

2.9 Theorem. Let G, and G; be two graphs of the same order and the same
size. Then G, is Py-connected to G if and only if each of Gy and G2 contains
a subgraph isomorphic to Pj.

We have seen that if H is P; or Py, then every two graphs of the same
order and same size containing H as a subgraph are H-connected. Although
we cannot answer the question in general for H = P;, we can show that every
two trees of diameter at least 4 are H-connected by showing that every tree of
diameter at least 4 is Ps-connected to a path.

2.10 Theorem. IfT is a tree of order n and diameter d, then T is P.-connected
to P, for each positive integer k with 3< k < d.

PROOF. Let k be an integer with 3 < k < d. It suffices to show that if
d < n — 1, then there exists a tree T' of diameter at least d + 1 such that T
is Px-connected to T'. Suppose that d < n—1 and let P : vg,v1,...,v4 be a
longest path in T. Since d < n — 1, there is a vertex v, on P with degree at
least 3 where 0 < £ < d. Let w be a vertex of T such that w is adjacent to v,
but not on P. We consider two cases.
Case 1. SuPPOSE THAT £ < k — 1. Then create T’ by replacing the path
V0, V1,...,Vk=1 With w,ve_1,ve_2,..., v, Veg1, Vega,-- -, Vk-1, that is, let T" =
T — {veve—1,veveq1} + {wve—1, voves1 }. Then the path from v, to vg in T” has
length d + 1 and hence T” has diameter at least d + 1.

CAsSE 2. SUPPOSE THAT £ > k— 1. Then create T’ by replacing the path
Vg—k41,Ve—k42, .-+, V¢ Dy the path ve_g41,ve—k42,...,ve—1,w, that is, TV =
T — {veve-1} + {wve—1}. Then the path from vy to vg in T’ has length d + 1
and so T’ has diameter at least d + 1. Il
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Thus if T) and T be trees of order p with d = min{diam T},diam T3}, then
T is Py-connected to T for each positive integer k with 3 < k < d.

3 Other H-Connected Graphs

We have seen that if H = P; or H = P,, then every pair of graphs of the same
order and same size containing H as a subgraph are H-connected. It turns out,
however, that if H = K3, then not every pair of graphs of the same order and
same size containing H as a subgraph are H-connected.

3.1 Theorem. Let H be a connected graph such that every verter has even
degree and let Gy and Ga be two graphs. If G is H-connected to G2, then G,
and G have the same number of odd vertices.

PROOF. Suppose first that Gy has k odd vertices and that G, and G are
H-adjacent. Thus there exist subgraphs H, and H; of Gy and G2, respectively,
such that H, = H, = H and G2 = G, — E(H,) + E(H3). Since every vertex
of H; has even degree, the graph G — E(H,) has k odd vertices. Similarly,
since every vertex of H, has even degree, G2 = G, — E(H,) + E(H2) has k odd
vertices. Hence, if G; and G, are H-adjacent, then G and G have the same
number of odd vertices. Consequently, if Gy and G» are H-connected, then G
and G5 have the same number of odd vertices. Il

It is not known whether the converse of the implication in the previous
theorem is true as well.

We now consider H-adjacency when H = K 3. Consider the graphs G
and G of Figure 3. Now K4 = Gy — {0100,0102,‘011)4} + {vzvo,vzvl,II2U4}
so that G, is H-adjacent to Ky 4. Also, K15 = G, — {viv0,m1v2, 105} +
{v2vo,v2v),v2vs} so that G2 is H-adjacent to K 5. In fact, we show that
every tree of order p is K) s-connected to the star Ky p-;.

Figure 3
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We begin by showing that every tree with maximum degree at least n is
K n-connected to a star.

3.2 Theorem. Let n be a positive integer such that n > 2. IfT is a tree of
order p with A(T) > n, then T is Ky n-connected to Ky p—1.

PROOF. Let H = K, . If n = 2, then the result follows by Theorem 2.6.
Thus, assume that n > 3. If T = K, ,_;, we are done and thus we assume
T % Ky p-1. Let z be a vertex of maximum degree in T. Since T ¥ Kjp-1, it
follows that x has a neighbor ¢ of degree at least 2. Let y and z be two other
neighbors of z, s be a neighbor of {, and N be a set of n — 3 neighbors of =
different from t,y, and z. Then we increase the degree of = using the following
K\ n-adjacencies:

(1) Replace the edge zz with the edge zs.
(2) Replace the edges from z to {s,t, y}UN with the edges from s to {z,y, z}U
N.

(3) Replace the edges from s to {t,y, zZ}UN with the edges from y to {s, z, z}U
N.

(4) Replace the edges from y to {s, z, z}UN with edges from z to {¢t,y,zZ}UN.

Let T’ denote the resulting graph. Since each step above is an H-adjacency,
we have that T is H-connected to 7' and A(T") > A(T). We continue in this
manner, that is let T =T, until T = K p-1.

As a consequence of Theorem 3.2, we have that two trees T} and T3 of order
p are K n-connected if and only if 7} and T3 both have max degree at least n.
We now turn from trees to hamiltonian graphs.

3.3 Theorem. If G, and G2 are two nonisomorphic hamiltonian graphs of the
same order and same size, then G is K 3-connected to Ga.

ProOF. Without loss of generality, let C : vy, va,. .., ¥, v; be a hamiltonian
cycle in both G; and G,. Since G, and G, are not isomorphic, we may assume
that p > 5 and that there exist chords v;v; and vxv, such that v;v; € E(Gy) -
E(G3) and vkve € E(G2) — E(G)). Without loss of generality, we may assume
i< j, k< ¢ and i < k. Assume first that G2 = G1 — vivj + vk ve.

Suppose that v;v; and vkv, are adjacent, that is, j = k. Since i < j < £ and
vivj and vjv, are chords, it follows that i # j—1and [ # j+1. Therefore,

2 = G1 — {vjvi, vjvj-1,vv541} + {vjve, vjvj—1,vjvj41}; so G1 and G2 are
K1 ,s-adjacent. Thus we may assume that i, j, k, and £ are distinct. If any one
of the edges v;vx, vjvk, v;vz, and v;v; is not present in G\, say v;vg, then let

Fi = Gy — {vivi1, vivig1, %v; } + {vivic1, vivig1, vive}
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Since G3 = Fi — {vkvk—1, VkVks1, ¥} + {UkVi-1, VkVk+1, Uk}, We have that
G and G are K s-connected. Therefore, v;vx, vjvk, v;ve, vjve € E(G1). Sup-
pose first that j # £ — 1 and that i # (¢ + 1)(modp). Let Fy = G, —
{vevi, vevj, veve—1} + {vev;, veve—1, vevr }; s0 Fy and G, are K s-adjacent. Then
either vx # vj_1 or v # vj41, say vk # v, where v € N(v;). Hence G2 =
Fy — {vivj, vjvg, vjv} + {vjvi, vjve, vjv}; so F1 and G are K} 3-adjacent, and
Gi and G, are K, 3- connected. Thus we assume that j = ! — 1 and that
i =f+1modp). Hence i = 1, £ =p, j = p—1, vijv; = 193, and
UkU¢ = vkVp. Since p > 5, there exists a vertex v € N(v) such that v lies
between v, and v on C, or v lies between vz and vp—; on C. Let F} =
Gy — {vkv1, vevp_1, vkv} + {vkv, vevp, vv1}; so Fy and G, are K z-adjacent.
Then let G2 = Fi — {vp—19p, Vp—101, Vp—1¥p—2} + {Vp_1Yp, Vp—1Vk, Up—1¥p—2}; SO
Fy is K 3-adjacent to G2. Hence G) and G; are K] s-connected.

So if Gy and G are two nonisomorphic hamiltonian graphs of the same order
and same size such that G2 = Gy — e + f for two edges e and f, then G; and
G are K 3-connected. Thus if G; and G2 are two nonisomorphic hamiltonian
graphs of the same order and the same size, Gy and G» are K 3-connected. |

Thus every two trees of the same order and with maximum degree at least
3 are K 3-connected as are every two hamiltonian graphs of the same order,
same size, and with maximum degree at least 3. For graphs that are not trees
and not hamiltonian, it remains to be determined which pairs of these graphs
are K, 3-connected.
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