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1 Introduction

Dynkin’s algorithm [8] gives all the subsystems of a real root system relating
to a Weyl group. In this algorithm, the concept of the extended Dynkin
diagrams is important. Inspired by these, Hughes [11] introduced what he
called extended Cohen diagrams in order to give an algorithm for obtaining
subsystems of complex root systems. Unfortunately, this algorithm has its
shortcomings, since for type 7(m, 1,n) = B[, he gives the following graph

-1 -1
+@%ﬁo__o_ O_—@ﬁ ((n + 1) points),

as an extended Cohen diagram, where the adjoined root is marked with the
sign “4+”. However, when m is odd, there does not exist a root in ®(m, 1, n)
which can be adjoined in this way. Furthermore, neither Dynkin’s nor
Hughes’ algorithm leads directly to simple systems for subsystems which
are subsets of the positive roots.

Subsystems of complex root systems are useful in giving combinatorial
constructions of representations of complex reflection groups. For example,
they have been used in [3] where the Young tableaux method for generalized
symmetric groups [2] have been further generalized.

As the concept of subsystems of root systems for complex reflection
groups is not as well developed as in the real case, the first author has
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in [5] presented an alternative algorithm for obtaining all subsystems of
a given (real or complex) root system without any reference to extended
diagrams. This algorithm has the further advantage that it simultaneously
obtains a simple system which is a subset of the positive roots.

Moreover, our method is more useful from the computational point of
view. Indeed, in this paper we present a computer program written using
the symbolic computation system Maple for the real crystallographic root
systems. In a future publication this will be extended to complex root
systems. We present the outputs for these root systems for the types Es,
E7, Eg, Fy and G,. The results obtained are a considerable improvement
on the ad hoc methods used by Idowu and Morris [12].

2 Subsystems

We now give a brief resume of the main results of [5] in a form suitable for
our later purposes. We shall assume the basic notation and terminology as
in Can [5], Cohen [7] and Hughes [11]. Let ® be a root system with a fixed
simple system 7 = (B, 8). The subsystems of ® fall into two categories. Let
¥ be a subsystem of & with simple system J = (By, 0;), where B, C B
and 0, = 0|p,. Replacing = by another simple system wr, w € W(x),
would just replace ¥ by its conjugate w¥. All subsystems of ® obtained
in this way are called parabolic subsystems. A subsystem of & which is not
the parabolic is called a non-parabolic subsystem. For example, in the type
A,, all subsystems are parabolic but in all the other root systems this is
not the case.

The set of all parabolic subsystems of @ is obtained by removing one or
more nodes in all possible ways from the Cohen (Dynkin) diagram (and all
equivalent diagrams) of @, that is,

2.1

If ® = (R, f) is a root system with a fixed simple system = = (B, §) then
the pair J = (Bg, 6z), where B, C B and 6, = 0|g,, is a sub-root graph
of 7. Furthermore, J yields a parabolic subsystem of & [5]. If ¥ = (S, g) is
the parabolic subsystem of @ corresponding to J, recall that its conjugates
w¥, w € W(r), are also parabolic subsystems of ®.

The set of all non-parabolic subsystems of @ is obtained by means of the
parabolic subsystems of ® as follows.

2.2

Let ® = (R, f) be a root system with a fixed simple system = = (B, 6)
and &t be the “positive” system determined by 7. Let ¥ = (S,g) be a
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parabolic subsystem of ® with simple system J = (By,8,), where B C B
and 8, = 0| g_ and let ¥* be the “positive” system determined by J. Define
&} = &+\Tt, and let By be a subset of 3, such that

B, C By is linearly independent over C. (1)

Then the pair Jo = (By,6p), where Byp = Bz U By and 6p = f|g,, is a root
graph which is an extension of J which yields a subsystem ¥o = (So, g0)
of ®. If By ¢ wB for all w € W(r), then ¥g = (Sp, go) is a non-parabolic
subsystem of & and if By C wB for some w € W(w), then ¥o = (So, go) is a
parabolic subsystem of & by the above definition [5]. If ¥o = (So, go) is the
nonparabolic subsystem of ® corresponding to Jp, note that its conjugates
w¥p, w € W(wr), are also non-parabolic subsystems of &.

As we run through all the parabolic subsystems, we generate all the non-
parabolic subsystems. Therefore, the above construction shows that all
subsystems of @ can be obtained up to conjugacy.

2.3

If ® is a real root system, then we can replace the hypothesis (1) of (2.2)
by (a,b) <0 for all pairs a # b in By [5].

Let & be a root system with a fixed simple system = and &t be the
“positive” system of ¢ determined by . If ¥ is a subsystem of @ obtained
by means of the above construction, then a simple system J of ¥ can always
be found such that J € &t. We recall that this is also true for its conjugates
w¥, where w € W(r) (for a fuller explanation, see {5]). Therefore, having
fixed a simple system 7 = (B, 8) and the corresponding “positive” system
&t in ®, the above results enable us to construct all subsystems of ® whose
simple systems J = (B’, #’) are such that B’ C $*, so we have the following
result.

24

Let ® = (R, f) be a root system with a fixed simple system 7 = (B, #) and
®t be the “positive” system determined by 7. If ¥ is a subsystem of ®,
then a simple system J = (B’,8’) of ¥ can be chosen such that B’ C &*.
The corresponding result for real crystallographic root systems ® has been
proved in Idowu and Morris [12]. Thus, if ® is a real crystallographic root
system, then we recover the result of Idowu and Morris [12].

3 The construction of subsystems

Here we concern ourselves with the real crystallographic root systems. If ®
is a real crystallographic root system with simple system 7 = {a1,...,an}
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and o € ®, then a = Y[, Aiay where X; € Z. From now on, « is denoted
by A1A2...A,. We now give an interpretation of the ideas of (2.1) and (2.3)
as a computer program written using the symbolic computation system
Maple (see [6]). This will be applied to give a combinatorial construction
of representations of Weyl groups in terms of root systems (see, for example,
[9], [4] and [10)).

enumerate all subsystems of a given root system,
both parabolic and non-parabolic, using H. Can’s algorithm
and the Maple ‘coxeter’ package written by Lee Hawkins,
Department of Mathematics, UWA —- August 1995

set the printlevel to eliminate spurious output
printlevel := -1:
read in necessary packages:linalg for linear algebra commands
combinat for combinatorial commands
share for share library
coxeter for Coxeter group commands
with(linalg):
with(combinat):
with(share):
readshare(coxeter,coxeter):
with(coxeter):
specify the type of root system, e.g. A3, D4, E6, and display the corres-
ponding Dynkin diagram using the coxeter package command ‘diagram’
R :=F4:
print(‘The root system is of type‘,R,‘with diagram‘);
print(diagram(R)):
compute the number of parabolic subsystems of R
num_parabolic_subsystems := 2(rank(R)):
print(*The number of parabolic subsystems is’,num_parabolic_subsystems):
set up the simple system of R and compute its powerset
pi := base(R):
possible_] := convert(powerset(pi),list):
sort the powerset by subset order, largest first
possible_J := sort(possible_J, \
proc(s,t) if nops(s)>nops(t) then RETURN(true); \
else RETURN(false); fi; end):
set up the positive roots of R i) in terms of the basis vectors
e, and ii} in terms of linear combinations of simple roots
positive_roots := pos_roots(R):
pos.root_sim := map(root_coords,positive_roots,R):
two procedures for list manipulation: scalar_mult list takes a scalar x
and a list of numbers 1 and multiplies each entry of 1 by x,
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list_add takes two lists 1 and m and adds them pointwise
scalar_mult list := proc(x,]) local a,b,c:
c:=[:
for a to nops(l) do
b :=x *1[a): ¢ := [op(c),b]:
od:
RETURN(c):
end:
list_add := proc(l,m) local ax,c;
a = nops(l): ¢ == []:
for x to a do ¢ := [op(c),l[x]+m[x]]: od:
RETURN(c): .
end:
procedure: subsystem(set s)
given a set s of roots expressed in terms of standard co- ordinates,
return the type R of the subsystem generated by s (false if no such
type), the simple system ordered in accordance with base(R) and the
corresponding positive roots of the subsystem
note: uses the type of the underlying root system R as global
subsystem := proc(s) local ss, a, sim_sys, subsys_type, \
subsys_canonical_pos_sys, num_entries, \
sim_sys_ordered, y, subsys_pos._sys, z, \
new_root, t, new_component;
global R;
if s = {} then
RETURN(emptyset,[],[]);
else
ss := convert(s,list):
a := traperror(name_of(ss,’p’)):
if a=lasterror then RETURN(false);
else
sim_sys := ss:
subsys_type := a:
subsys_canonical_pos_sys := map(root_coords,pos_roots(a),a):
nurm_entries := nops(subsys_canonical_pos_sys[1}):
sim_sys_ordered := []:
for y to num_entries do
sim_sys_ordered := [op(sim.sys_ordered), \

sim_sys[py]]:
od:
sim_sys_ordered := map(root_coords,sim_sys.ordered,R);

subsys_pos_sys := []:
for z to nops(subsys_canonical_pos_sys) do
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new_root := [0$rank(R)):

for t to num_entries do

new_component := scalar_mult_list(\
subsys_canonical_pos_sys|z][t],sim_sys_ordered|[t]):
new_root := list_add(new_root,new_component):

od:
subsys_pos_sys := [op(subsys_pos_sys),new_root]:
od:
fi:
RETURN(subsys_type,sim_sys_ordered,subsys_pos_sys):
fi:
end:

procedure: list_to_e_form(list j)
given a list j representing a linear combination of simple roots return the
corresponding root in terms of the basis vectors e_i, using the base of R
list_to_e_form := proc(j) local a, b, q;
global R;
a:=0:
b := base(R):
for q to nops(j) do
a = a + (jlq]*blq]):
od:
RETURN(a);
end:
procedure: inner_prod(list 1, list m)
given two lists | and m representing linear combinations of simple
roots, compute their inner product using the coxeter package
‘iprod’ command
note: uses the procedure ’list_to_e_form’ to convert such a
list into the corresponding basis vector representation
inner_prod := proc(l,m);
RETURN(iprod(list_to_e_form(l),list_to_e_form(m)));
end:
for each subset J of pi, compute the type of the subsystem whose
simple system is the chosen subset J and compute its positive
system using the procedure ’subsystem’
print("The parabolic subsystems S are listed below:\ n’);
parabolic_subsystems := [J:
for xx to num_parabolic_subsystems do
par_subsystem_base := possible_J[xx]:
r := subsystem(par_subsystem_base):
if r = false then next;
else
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print(*S=",r[1),’with simple system J=",r[2]);
parabolic_subsystems := [op(parabolic_subsystems), r]];
fi;
od;
now look at the non-parabolic subsystems — we construct these
from the parabolic subsystems using Himmet Can’s algorithm
exhibit the simple system as a list of linear combinations
pi := map(root_coords,pi,R):
apply Himmet Can’s algorithm
nonparabolic_info := []:
for yy to nops(parabolic_subsystems) do
infor := ]
par_subs := parabolic_subsystems[yy]:
if par_subs[l]=emptyset then next; fi:
infor := [op(infor),par_subs[1]):
R_S_plus := convert((convert(pos_root_sim,set) minus \
convert(par_subs[3],set)),list):

J := par_subs|2]:

TS =

condition := proc(s) local u, f;
global J;

for u to nops(J) do
f := inner_prod(s,J[u}):
if f > 0 then RETURN(false): fi:
od:
RETURN(true):
end:
for t to nops(R_S_plus) do
if condition(R_S_plus]t]) then
TS := [op(T-S),R-S_plus]t]]:

fi:
od:
if nops(T-S)>12 then print(’too large’); next; fi;
if TS = ] then

infor := [op(infor),[]]:
nonparabolic_info := [op(nonparabolic_info),infor]:
next;
fi;
permissible_JPsi := []:
possible_JPsi := powerset(T_S):
for f to nops(possible_JPsi) do
chosen_JPsi := possible_JPsi[f]:
K := convert(J,set) union chosen_JPsi:
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if convert(pi,set) union K <> convert(pi,set) then
test_condition := proc(K) local t, u, g;

for t to nops(K) do

for u to nops(K) do

if u>t then
g := inner_prod(K[t],K[u]):
if g>0 then
RETURN(false):
f;
fi;
od;
od;
RETURN(true):

end:
more := test_condition(K):
if more then
Ke:=1:
for g to nops(K) do
K-e := [op(K_e),list_to-e_form(K|[g])):

od:

permissible_JPsi :=
[op(permissible_JPsi), \
[name_of(K_e), chosen_JPsi]):
fi;

fi;

od;
infor := [op(infor), permissible_JPsi:
nonparabolic.info := [op(nonparabolic_info),infor]:
od;
display the results for non-parabolic subsystems
num_nonparabolic_subsystems := 0:
for x to nops(nonparabolic_info) do
num_nonparabolic_subsystems := num_nonparabolic_subsystems + \
nops(nonparabolic_info[x][2]):
od:
print(’\ nThere are’,num_nonparabolic_subsystems, \
’non-parabolic subsystems\ n’);
for g to nops(nonparabolic_info) do
case := nonparabolic_info[g]:
corresp_parabolic := parabolic_subsystems|g]:
print("For S=’,case[1],’and simple system J=7,\
corresp_parabolic[2],’we have’);
if nops(case[2])=0 then



print(’no corresponding non-parabolic subsystems’);
else
for. t to nops(case[2]) do
Jdash := case[2][t][2] union
(convert(corresp_parabolic[2],set)):
print(’J’=",Jdash,’of type’,case[2][t][1]);
od;
fi;
od;
quit;

By using the above computer program, all the subsystems of a given real
crystallographic root system can be obtained. Since the outputs connected
with these are too long to be presented here, we only give all the non-
conjugate non-parabolic subsystems for the exceptional types. Comparing
these results with the work of Idowu and Morris [12], we have obtained
explicit simple systems as subsets of the positive roots of the root system
for more non-conjugate non-parabolic subsystems. (The simple roots are
as in Bourbaki [1].)

(1) Pype E, (n = 6,7,8). The roots are numbered 1,2,3,.... Let
V = R2 be the real vector space of dimension 8 with standard basis {e; (i =
1,...,8)}. We let the Dynkin diagram of type Eg be

1 3 4 5 6

O =
©)

with simple system given by mg, = {1,2,3,4,5,6,7, 8}, where
1
= '2'(61 —ey—e3—es—€5—€eg—er+eg),2=e;+e2,3=e€2—ey,

4=e3—-e35=e4—€3,6=€5—¢€4,7=¢€5—e58=er—es.

The corresponding postive system for type Fg is given by

ot +e; + ej; 1<i<j<8
Fe % (68 + ZZ:l(—l)"(i)Ci) ; Z;’___l v(i) is even
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The Dynkin diagram of type E7 is Eg\{8} with simple system ng, =

g \{8}. The corresponding positive system for type E7 is

Le; +ej; ' 1<i<j<6
&t =qes—ern, .
1 (eg —er+ Ef=1(—1)”(‘)e,-) . Y8 . v(i)is odd

The Dynkin diagram of type Eg is E;\{7} with simple system =g,
75, \{7}, and the corresponding positive system for type Eg is

ot — *e; + ej; 1<i<j<5
Bo ™ % (38 —er—¢eg+ Z?:l(-l)"(‘)ei) 3 Z?=1 v(t) is even ’

We now give the non-conjugate non-parabolic subsystems of E, (n
6,7,8), where

9 = 01122100, 10 = 11232100, 11 = 12232100,
12 = 01122210, 13 = 11233210, 14 = 12243210,
15 = 22343210, 16 = 11221000, 17 = 01121000,
18 = 23465432, 19 = 23465431, 20 = 23465421,
21 = 23465321, 22 = 23464321, 23 = 12343210,

24 = 23354321.
(a) Type Eg
Subsystem Simple system Subsystem Simple system
A1+ As {1,2,3,4,6,9} 34, {1,2,3,5,6,10}
2A; + A3 {1,3,4,6,11} 44, {1,4,6,11}
(b) Type E,

Subsystem . Simple system Subsystem  Simple system
A; + Dg {1,2,3,4,5,7,12} Ay + Aj {1,2,3,4,6,7,13}

Az {1,2,3,4,6,7,9) A1 +243 {1,2,3,5,6,7,14}
34, {1,2,3,5,6,10}  24;+D,  {2,3,4,5,7,15}
3A1+Dy  {2,3,4,5,7,12,15} 3A;+As  {1,2,4,5,7,16}
243 {2,3,4,6,7,9} A+ As {1,2,4,5,6,10}
As {4,5,6,7,11} 24; + As {1,2,4,5,16}
7A; (2,3,5,7,15,12,17} 64, {2,3,5,7,15,12}
54, {2,3,5,7,15} 44, {3,5,7,15}
3A;. {3,6,15}

266



(c) Type Eg

Subsystem Simple system Subsystem Simple system

Ay + B {1,2,3,4,5,6,7,18} A2+ Es {1,2,3,4,5,6,8,19}
Az + Dy {1,2,3,4,5,7,8,20} Ds {1,2,3,4,5,7,8,12}
2A4 {1,2,3,4,6,7,8,21} As {1,2,3,4,6,7,8,13}
Ay + Ay {1,2,3,5,6,7,8,14} A1+ A2+ As {1,2,3,5,6,7,8,22}
2A; + Dg {2,3,4,5,6,7,15,18} 84, {2,3,5,7,15,12,17,18}
2A; + 243 {1,2,3,5,6,7,18,14} 2D, {1,2,3,4,5,8,12,15}
4A2 {1,2,3,5,6,8,10,19} 44, + D, {2,3,4,5,7,18,15,12}
A1+ Dg {2,3,4,5,6,7,18} Az + As {1,2,4,5,6,7,23}
241 + As {1,2,4,5,6,7,18} A1 +2As {1,2,3,5,6,7,14}
2A1+ A2+ As {1,2,3,5,6,7,18} 2A:1 + Ds {1,2,3,4,5,7,18}
As + D4 {1,2,3,4,5,8,20} 44, + As {2,3,5,6,7,18,15}
3A; + Dy {2,3,4,5,7,15,12} 7A {2,3,5,7,15,12,17}
6A, {2,3,5,7,15,12} 5A; {2,3,5,7,12}

44 {7,12,15,18} 2A; + As {3,5,6,7,18}
24, {3,4,6,7,8,24} AL+ As {2,4,5,6,7,18}
A7 {3,4,5,6,7,8,15}  4A; + A; {2,3,5,6,15,18}
34,2 {1,3,5,6,8,19} 3A1+ As {2,3,5,6,7,18}
24, + D, {2,3,4,5,7,15} A; +3A2 {1,2,3,5,6,8,19}
342 {1,8,5,6,8,19}

(2) Type Fy. Let V = R*, with standard basis {e,e2,€s,€4}, be the
underlying vector space for W(F,). Let the Dynkin diagram of type F, be

O—C=—=0—>-20

(03] Q9 Qa3 Qg
with simple system and corresponding positive system given respectively
by
1
TR, ={01= 5(—61 —e2—eatey),ax=ej,a3=ex—e,0q4=€3—€3.
'( 1000, 0100, 0010, 0001, 1100, 0110, 0210, 6011,

i";‘ = ¢ 1110, 0111, 2210, 0211, 1210, 1111, 2211, 0221,
1211, 2221, 1221, 2421, 1321, 2431, 2321, 2432
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The non-conjugate non-parabolic subsystems of F; are

Subsystem Simple system Subsystem Simple system

Ca {1000, 0100, 0010,0111} B, {0100, 6010, 0001, 2210}
Cs+ A {1000, 0100, 0010,2432} B3 + A {0100, 0010, 0001,2321}
Dy {0010, 0001, 0210,2210} 2B: {0100, 0010,0111,2210}
B2 +2A,  {0100,0010,0111,2321} Bz + A, {0100, 0010,0111}
As+ A {1000, 0010, 0001,2421}  Aa {0010, 6601, 0210}
2A2 {1000,0100,0001,2431} 4A, {0100, 0001, 0221, 2321}
34, {0100, 0001, 0221} As {1000, 0100,0111}
As {c010, 0001, 1210} 34 {1000, 0010, 1210}
Az + Ay {1000,0100,0001,1221} D, {1000, 0100,0110,0111}
44, {1000,1210,1211,1221} 4A, {0010, 0210, 2210, 2432}

Bz +2A {1000, 0010, 0210, 2432}

(3) Type G;. Let V be the hyperplane in R® consisting of vectors whose
coordinates add up to 0. The Dynkin diagram of type G, is

O==0

(431 Qo

with simple system ng, = {1 = €, — eg,ap = —2e; + €3 + e3}. The
corresponding positive system for type Gs is <I>2',2 = {10, 01,11, 31,21, 32}.
The non-conjugate non-parabolic subsystems of G, are

Subsystem Simple system Subsystem Simple system

A {10,11} A, {01,31}
A1+ Ay {10,32}
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