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Abstract

In a finite projective plane, a k-arc K covers a line [, if every point on /o,
lies on a secant of K. Such k-arcs arise from determining sets of elements
for which no linear (n, g, t)-perfect hash families exists ([1]), as well as from
finding sets of points in AG(2, g) which determine all directions ([2]). This
paper provides a lower bound on k and establishes exactly when the lower
bound is attained. This paper also gives constructions of such k-arcs with
k close to the lower bound.

1 Introduction

The question of how large the smallest set of points in PG(2, ¢) must be to
cover a line disjoint from it arises from the problem of trying to ascertain
the size of the smallest set of elements for which no linear (n, g, t)-perfect
hash family exists. We give a brief description of perfect hash families taken
from [1].

Let V be a set of order n and let F be a set of order ¢. A set S of functions
from V to F is an (n, g,t)-perfect hash family if for any ¢-subset P of V,
there exists a function ¢ in S which is injective when restricted to P. An
(n, g, t)-perfect hash family is linear if F may be identified with the field of
order q, GF(q), and V a vector space over F, such that S becomes a set
of linear functionals. In this case, q is a prime power and n = ¢¢ for some
d>2.

Interpreted geometrically, the elements of V are the points of the affine
space AG(d, g), and for any linear functional ¢, the set of point v € V with
¢(v) = v, where v is an element of GF(q), forms a hyperplane of AG(d, q),
and ¢ corresponds to a parallel class of hyperplanes. Hence a set of parallel
classes determines a linear (g%, q,t)-perfect hash family if any ¢ points of
AG(d, q) belong to distinct hyperplanes of some parallel class in the set.
By embedding AG(d,q) in PG(d,q) such that AG(d,q) = PG(d,q) \Heo
for some hyperplane Ho, of PG(d,q), a parallel class of hyperplanes of
AG(d, q) corresponds to the hyperplanes of PG(d,q) containing a given
(d — 2)-dimensional subspace in Hoo- Then a set of parallel classes S is a
linear (g9, g, t)-perfect hash family if and only if for every set P of ¢ points,
there is a (d — 2)-dimensional subspace in H, corresponding to a parallel
class in S such that the secants of P miss it. In particular, in PG(2,q),
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no linear (g2, g, k)-perfect hash family exists if there is a k-arc K covering
a line I, that is, every point on !, lies on a secant of X. Blackburn and
Wild [1] then raises the question as to how large the smallest such arcs
must be.

The same question was asked by G. Ebert, mentioned in the paper by
Blokhuis, Wilbrink and Sali [2], in a different guise: How large must a set
of points in AG(2, q) be if it determines all directions? This is equivalent
to asking how large a set of points K in PG(2, ¢) must be if every point on
a line I, disjoint from K lies on a secant to K, that is, XC covers l.

In [7] Kovécs considers the question of how large a set of points must be to
cover every line of the plane. A set of k points with this property is called
a saturated k-set. Kovdcs gives an existence proof for a k-arc contained
in an oval in a plane of order g with k& < 6+/glogg which covers all points
not lying on the oval. So for all g it is possible to cover a line by a k-arc
with k£ < 64/glogg. Our methods are constructive and we show that there
exist k-arcs covering a line with k approximately 2,/g. The lower bound for
the size of a k-arc covering a line is k£ > (1 + /8g + 9)/2 and we establish
exactly when equality occurs. No saturated k-sets are known with k close
to this lower bound.

This paper is structured as follows: In Section 2, we determine a lower
bound on the size of a k-arc covering a line and consider the cases when
this bound is met. In Section 3, we present some examples of k-arcs cov-
ering a line which arise from known structures and in Section 4 we present
constructions of small k-arcs covering a line.

2 Arcs covering a line

Let I, be a projective plane of order q. Let X be a k-arc in I, and let I,
be a line disjoint from K.

Definition 2.1 We say that a pair of distinct points Q;, @2 covers a point
P if P lies on the line @, Q2. We say that X covers I, if every point on
Il lies on at least one secant of X, and we call K a k-cover for l.

We obtain the following lower bound on the size of a k-cover K using a
counting argument:

Theorem 2.2 If K is a k-cover for Iy, in II,, then

k> 1+v8¢+9 V2 8¢ +9 ,

with equality if and only if every point on I, lies on exactly one secant of
K.
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Proof: The number of distinct secants to K is k(k — 1)/2 and each secant
meets [, exactly once. Hence, if X covers lo then k(k —1)/2 > ¢+ 1.
Rearranging this we get the inequality. Every point on [y lies on exactly
one secant of K if and only if the number of secants of K is exactly ¢ + 1,
that is, k(k — 1)/2 = ¢ + 1, and the result follows. n]
This is no more than one less the lower bound k > (3 + /8¢ +1)/2 for
complete arcs (see [4]). However for complete arcs this lower bound seems
unsatisfactory, since the known families of complete k-arcs all have a num-
ber of points whose order of magnitude is too large compared to this lower
bound. In the case of k-arcs covering a line however, the bound is attained
in some cases. We determine these cases in the following.

If the bound (1 + /8q + 9)/2 is attained then 8¢ + 9 must be a square. We
determine when this happens if ¢ is a prime power.

Lemma 2.3 Let ¢ be a prime power, ¢ = p", where p a prime and & > 1.
If 8¢ + 9 is a square then g € {2,5,9,27}.
Proof: Suppose 8q + 9 = z? for some positive integer z. Since ¢ = ", we
have 8p" = z2 — 9, that is, 23p" = (z — 3)(z + 3). Hence we have

gz —3=2mph (1)

z + 3 =2"2ph (2)
with n; +na = 3, hy + ha = h, where n4, na, hy, ha are non-negative
integers. Subtracting equation (1) from equation (2) we have

gnaphs _gmipht = 2.3, 3)

The only possible values for (n1,n2) are {(0,3),(1,2),(2,1),(3,0)}. By
substituting each of these values for n; and n; in equation (3), we conclude
that 2, 5, 9 and 27 are the only possible values of g for which g is a prime
power and 8¢ + 9 is a square. m]

Corollary 2.4 Let K be a k-arc in a projective plane of prime power order
g covering a line disjoint from it. If k meets the lower bound of Theorem
2.2 then X must be one of the following:

(a) ¢ =2 and K is a 3-arc;
(b) ¢ =5 and K is a 4-arc;
(¢) ¢ =19 and K is a 5-arc;
(d) ¢ =27 and K is an 8-arc.
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In the rest of this section we discuss the existence of such k-arcs in each
of the four cases of Corollary 2.4. The definition and properties of sharply
focused sets which we use in some of the proofs can be found in [6] and we
include a summary at the beginning of Section 4. For the first two cases
we have the following result:

Theorem 2.5 There exists a 3-arc in PG(2,2) and a 4-arc in PG(2,5)
each covering a line disjoint from it.

Proof: Let l, be any line in PG(2,2). Then any triangle not on I is a
3-arc in PG(2,2) which covers l,. In PG(2,5), Theorem 4.5 in the Section
4 gives a 4-cover K for any line [, with s = 3. (]

Theorem 2.6 There is no 5-arc in PG(2,9) covering a line disjoint from
it.

Proof: Let I, be any line in PG(2,9). Suppose K is a 5-arc covering lo
in PG(2,9). Then K lies on a conic C disjoint from I, for every 5-arc lies
on a conic in PG(2, g), and if C is not disjoint from I, then the points of
loo N C will not be covered by any secants of C \ lo. Now, the ten points
on C can be partitioned into two sharply focused sets, both focusing on the
external points of ,, (Result 4.3). Hence the only possible distribution of
the points of X on C are

(1) K is one of the sharply focused sets;

(2) four points of X belong to one of the sharply focused set and one
belongs to the other;

(3) three points of K belong to one of the sharply focused set and two
belong to the other.

The first case cannot occur, since K would then cover only the five external
points of l. In the second case, there are six secants to the four points
of K in one sharply focused set, and these six secants meet , in only the
five external points. Hence at least one of the external points on loo lie
on more than one secant and so one of the internal points is not covered.
In the last case, let P;, P, P; denote the three points belonging to one
of the sharply focused set and Q;, Q2 denote the two points belonging to
the other. Then the secants P, P,, P\ P;, P,P; and Q;Q5 meet I, in the
external points. The remaining six secants are of the form P;Q; and they
meet [, in internal points (Result 4.4(b)), so at least one of the external
points on Iy is not covered by K. Hence if K is a 5-arc covering lo, then it
does not lie on a conic. This contradicts the fact that every 5-arc lies on a
conic. Hence we conclude that there is no 5-arc covering a line in PG(2,9).
a

There are four non-isomorphic projective planes of order 9: the Desar-
guesian plane PG(2,9), the Hall plane, its dual, and the Hughes plane.
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Even though there is no 5-arc in PG(2,9) covering a line by the above res-
ult, it is possible that such a 5-arc exists in one of the other planes. By a
computer search we found 5-covers in each of the non-Desarguesian planes of
order 9. For example, using the representation of the Hall plane of order 9 in
[5, Chapter X] and writing GF(9) = {0,a" |0<n <7, a’?—a—1=0}, the
5-arc {(0,0,1),(0,1,1), (-1, —a, 1), (-1, a,1),(a? &, 1)} covers the transla-
tion line. More details can be found in [8]. Thus we have

Theorem 2.7 Let Iy be a projective plane of order 9. Then there is a
5-arc covering a line if and only if Il is not Desarguesian.

For the last case of Corollary 2.4 we have

Theorem 2.8 There exists an 8-arc covering the line z = 0 in PG(2,27).

Proof: Let I, be the line z = 0 in PG(2,27). Let GF(27) be represented
by GF(27) = {0,1,0" |n=1,...,25, a® —a+ 1 = 0}. Then the 8-arc

K = {(O)Oa l), (1) 0, l)a (0’ 1, 1)) (a» «, l)’ (azyasa 1),
(03’ alﬁ, 1), (al4, a21, 1), (023"120, 1)}

found by computer search is an 8-arc covering loo. o
By Corollary 2.4 and Theorems 2.5, 2.7 and 2.8, we have

Theorem 2.9 Let g be a prime power. There is a projective plane of order
g that contains a k-arc covering a line with k meeting the lower bound of
Theorem 2.2 if and only if ¢ € {2,5,9, 27}.

In response to the questions raised in (1] and [2], however, we have the
following result:

Theorem 2.10 In PG(2,q), there is a k-arc covering a line with k£ =
(1 + v/8q +9)/2 if and only if g € {2,5,2T7}.

3 Examples
Before going on to our constructions we give some examples of k-arcs cov-
ering a line. ‘

Example 3.1 Let K be a complete arc in a projective plane of order g,
Il,. Since every point of I, lies on a secant of K, it follows that K covers
every line of I, disjoint from it. In Il,, a complete k-arc satisfies

3+\/§q+l<k< g+ 1 ifqisodd,
2 ="=1 ¢g+2 if giseven,
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so there is a k-cover with k in that range, though there are no known
families of complete arcs close to the lower bound. In PG(2,q), there is a
complete k-arc with k = (¢ +5)/2 if g= —1 mod 4, and k = (g + 4)/2 if ¢
is even. These examples can be found in [4]. Hence there is a k-cover with
k the order of a fraction of q. (]

Now, the k-covers which are also complete arcs have sizes the order of q/2,
which far exceeds the order of magnitude of the lower bound of Theorem
2.2, which is \/2q. In the next example we describe a family of k-covers
which are not complete arcs in general. This family of k-covers has k the
order of 4,/7.

Example 3.2 In (3], Giulietti constructed a family of 4(,/g — 1)-arcs K in
PG(2,q), where ¢ = p? and p is an odd prime power. He showed that this
construction yields many small complete arcs in PG(2,q) for ¢ < 1681 and
g = 2401. Giulietti’s construction X is as follows:

Let ¢ = p?, p an odd prime power. Let @ be a quadratic non-residue in
GF(p) and let i € GF(q), i = 6. Then K = K; UK, U K3 U K4, with

Ki={(e-£1)aecCFE’}, Ko={(8-%1)I8eGFp)},

Ks = {(i’y,—%, 1) lye€ GF(p)-}, Ko = {(i6,-%,1)| 6 € GF(p)"}.
By using a computer, Giulietti showed that, while X is complete in many
cases as mentioned above, for ¢ = 1681, 1849, 2209, and 2401 < q < 6241,
K is not complete for all valid values of #. Nevertheless, it was shown in
(8] that K covers the line z = 0 for all g. Essentially the proof consists of

partitioning the line z = 0 into several parts and showing that each part is
covered by a union of some of the K;’s. m]

In the next section we present three new families of k-arcs covering a line
constructed using sharply focused sets which give examples of k-covers
about half the size of the k-covers in Example 3.2.

4 Constructions

Firstly we give a brief description of sharply focused sets which will be used
in the constructions.

Let KC be a k-arc in a projective plane, k¥ > 2, and let { be a line external
to K. The intersection set or focus of K on [ is defined to be

Int(K,l) = {ABNl|A,Be K,A# B}.
By considering the secants through a fixed point on K, we see that

IInt(K,1)] > k- 1.
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If |Int(X,1)| = k then K is said to be sharply focused on l. For instance,
any 3-arc is sharply focused on any line missing it.

Wettl [9] showed that in PG(2,q), if K is sharply focused on I then K is
contained in a conic. Jackson [6] showed that given a conic C and a line [,
for any s|n, n = | C\l|, there is a partition of the conic C into sharply focused
sets of size s, and these are the only sharply focused sets in PG(2,q). We
summarise the results on sharply focused sets from [6, Chapter 5):

Let C be a conic in PG(2,q) and let I, be a line external or secant to C.
Let C' = C \ loo. Then the subgroup H of PGL(3,q) fixing both C and lo
is isomorphic to the dihedral group D2, where n = |C’|. We write

H={(a,v|a®*=9"=1, aya=7"1).

Result 4.1 For any s|n, s > 3, let K(s) = {K1,...,Ka} be the orbits of
N = (y*) on C', each of size s. Then K € K(s) is sharply focused on lc.

There is a similar result if I is a line tangent to C and ¢ is odd. In this case
the subgroup H fixing both C and I is an elementary abelian p-group.

Result 4.2 For any s|g, let N be a subgroup of H of with |[N| =s. Let
K(s) = {Ki,...,K3} be the orbits of N on C \ lw, each of size s. Then
K € K(s) is sharply focused on leo.

The next result describes the types of points on Int(X,ls) with respect to
C in PG(2,q), q odd, when [, is external or secant to C:

Result 4.3 Let K € K(s) and let h =n/s, s > 3. Let H = PGO(3,q)i,,-

(a) If s is odd or if both s and h are even, then Int(K, l,) contains only
external points.

(b) If s is even and h is odd, then half of the points in Int(X,lo) are
external points.
Now, let K;, K; € K(s) and let
Int(K;, K, loo) = {ABNlw | A € K;, B € K;}.
The following result is also proved in [6]:

Result 4.4 (a) If K;, K; are distinct sharply focused sets in K(s) then
[Int(K;, K;, lo)| = s.

(b) For K € K(s), Int(K,loo)NInt(K, K;,loo) = @ for all K; € K(s)\{K}-
(¢) If K, K;, K; are distinct sharply focused sets in K(s) then

Int(K, K, loo) NInt(K, K;,loo) = 0.
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(d) The set of distinct sets Int(K, ), Int(K, Ki,loo), K, K; € K(s),
partitions [, \ C.

Using the properties of sharply focused sets described in Result 4.4, we
prove the following theorems:

Theorem 4.5 In PG(2,q), there is a k-arc K covering any given line I
with k= s+ 4L — 1 for any s|lg+1, s > 3.

Proof: Let C be a conic disjoint from lo. Let () be the (unique) cyclic
group of order ¢+ 1 in PGO(3,q);,, fixing C and /. For any s dividing
g+ 1, the subgroup N = (y(4+1)/9) partitions the points of C into orbits of
size s, each of which is sharply focused on Iy, (Result 4.1). Let the orbits be
denoted K(s) = {K1,- -, Ky1}. Let K; be one of the sharply focused sets
in K(s) and let P(K;) bea s3;stem of distinct representatives of the sharply
focused sets in K(s) different from K;. Now, let K = {K;}U{P | P ¢
P(K;)}, that is, K consists of K; together with one point from each of the
other sharply focused set. Then K is a (s + (g + 1)/s — 1)-arc contained in
C. Now, for any K € K(s) and P€C, P ¢ K, let

Int(K, P,le) = {APNIls | A€ K}.
Then,

(a) The lines joining P to K meet Iy, in s points, that is, |[Int(K, P, )| =
s.

(b) If P € K' € K(s) \ {K}, then since Int(K, P,ls) is a subset of
Int(K, K, lo0), and Int(K, o) N Int(K, K’,loo) = @ by Result 4.4(b),
we have Int(K,lo) NInt(K, P, 1) = 0.

(c) Also, if P' and P" belong to distinct sharply focused sets K, K, in
K(s) different from K, then since Int(K, K’,loo)NInt(K, K", loo) = 0,
we must have Int(K(, P, ) NInt(K, P",l) = 0.

By (a), (b) and (c), the set K covers the disjoint sets Int(Kj,lo) and
Int(K;, P,le), P € P(K;), on ly, which together constitute the whole of
leo. Hence K is an (s + (g + 1)/s — 1)-arc covering loo. o
For this construction we have 2/g+1 -1 < k < ¢+ 1. In fact, this
construction gives smallest possible k-covers for some small ¢ and gives
examples close to the bound whenver g + 1 has a factor close to va. This
will certainly be the case when ¢ has many small factors. If q is odd, we
can always construct a k-cover with k = (g + 3)/2 by taking s = (g + 1)/2.
This gives a smaller k-cover than that given by a complete arc in Example
3.1
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The following constructions show that we can get within a factor v/2 of the
bound when ¢ is a square. This is twice as good as the construction in
Example 3.2 by Ughi and Giulietti.

Theorem 4.6 In PG(2,q), ¢ odd, there is a k-arc covering any given line

g P+l ifg=p"H A1,
2,9 if g is a square.

Proof: Let C be a conic tangent to lo and let I, NC = {Q}. Let

s={ Pt ifg=p" h21,
Vva if g is a square.

Then, by Result 4.2, there is a partition of the points of C \ I, into sharply
focused sets K(s) = {Kj,..., K1}, each of size s. Let K; € K(s) and let
P € K;. Let R be a point on the line PQ not lying on C. Then PR covers
Q. There are at most s — 1 secants to C through R which join a point of
K;\{P} to a point of C\ K;. Let these points on C\ K; be called bad points
and the remaining points on C\ K; good points. Since there are at most s—1
bad points and each sharply focused set in X(s) has s points, we can always
pick a good point in each sharply focused set as a representative. Using
the same notation as in the proof of Theorem 4.5, let P(X;) be a system of
distinct representative of the sharply focused sets in K(s) different from K;
consisting entirely of good points. Then K = {K;}U{P | P € P(K;)}U{R}
is an (s + g/s)-arc. By the same argument as in the proof of Theorem 4.5,
it can be shown that X covers lo. o

Now, a conic covers every line disjoint from it. Using sharply focused sets
again, we construct a family of k-covers in PG(2,q), ¢ a square, with k at
most 2,/g+ 1. We extend a conic contained in a Baer subplane to a k-cover
by adding points from sharply focused sets outside the Baer subplane.

Theorem 4.7 In PG(2,q), q a square, /g > 5, there is a k-arc covering
any given line [, with 2,/g—-1<k <2,/g+ 1.

Proof: Let I1, = PG(2, g), q a square, /g > 5, and let I, be a line of II,.
Let II, be a Baer subplane secant to . Let C, be a conic in II, disjoint
from I, N II, and C the conic containing C, in II,. Since lo, misses C,, it
must meet C in two distinct points. Let {P,,P2} = CNl.

The subgroup of PGO(3, ,/q) fixing both C, and Il N II, is isomorphic to
the dihedral group of order 2(,/g + 1). Let G be the cyclic subgroup of
order /g + 1 fixing both C, and l,. Then G acts regularly on the points of
C, and, as a subgroup of PGO(3,q):., acting on II,, partitions C \ { P, P2}
into /g — 1 orbits of \/g+ 1 points and fixes { P;, P,}. Each orbit is sharply
focused on o, and, by the same argument as in the proof of Theorem 4.5,
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the set of points consisting of an orbit together with one point from each
of the remaining orbits covers loo\ C = loo \ {P1, P2}. We show that it is
possible to choose at most one point from each of the ,/g — 2 orbits on
C\ {Py, P;} other than C, and a point off the conic so that, together with
C,, they form an arc which covers /.. Note that points from distinct orbits
cover disjoint parts of ! \ C when joined to the points of C,.

Let A; be any point on C\C,. Let [ be the line P, A;. At most \/g(,/g+1)/2
points of ! \{P;, A, } lie on a secant to C,, and one on the tangent to C at
P;. Let R be a point chosen from the remaining (¢—1) - (¢+./7)/2—1>0
points on ! \{P1, A1} not lying on a secant to C, or the tangent to P>. Let
A be the point CN RP,. Then P, is covered by RA; and P, is coverd by
RA.

There are at most /g+ 1 secants through R joining a point of C, and a point
of C\ C,. Let these points on C\ C, be called bad points and the remaining
points on C\ C, good points. So there are at most /g + 1 bad points. We
show that it is possible to choose only good points so that together with C,
and R, they form an arc covering l.

There are two possible distributions of bad points among the orbits: either
all the bad points lie in one single orbit, or they are distributed among n
orbits, 2 < n < /g — 2. We consider the two cases separately.

Suppose there are /g + 1 bad points all in one orbit w. Then 4, ¢ w,
A ¢ w, and every line joining R to a point of C, is a line joining a
point of w to a point of C,, so Int(C,, R,loo) C Int(C,,w,ls). However,
|Int(Co, w,l)] = /7 + 1 by Result 4.4(a), and since R does not lie on a
secant to C,, |Int(C,, R, ls)| = /7 + 1. So

Int(Co, w, loo) = Int(Co, R,l0o).

That is, the points on [, covered by the secants joining points of w to C,
are covered by the secants RP, P € C,. This means that we do not need
to choose a point of w to cover Int(C,,w,lx) On loo, since these points
are covered by the secants joining R to points of C,. We then choose
{A2,..., A g3} from the remaining orbits, which do not contain any bad
points, as follows:

If A and A; belong to the same orbit or A € C, then choose A;4q, b =
1,...,1/@ — 4, successively from each of the remaining /g — 4 orbits on
C\ C, which are not w and do not contain 4,, such that A, does not lie
on RA; for all ¢ < h. This is possible since the number of such lines is at
most /g — 4, and each such line contains at most one point of the (h+ 1)t
orbit. Let X =C,U{R, A, A1, A2,..., A _3}. Then

K| = (VI+1)+(/7-2)=2,4-1 ifAeC,,
(Va+1)+(/a-1) =27 if A, A; lie in the same orbit.
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If A and A; belong to different orbits and A ¢ C,, let A, = A and choose
{As,..., A f_3} as before. Then K = C, U {R, A1, 4s,...,A 4-3} and
IKl=(ag+1)+(/g-2)=2,/9-1.

If there are \/g + 1 bad points distributed among n orbits wy,...,wn, 2 <
n < /g — 2, then every one of w; has between 1 and /g + 2 —n bad points
( and hence between /g and n — 1 good points). Since they cannot all
have /g + 2 — n bad points, at least one orbit, say w, must have at most
v/ + 1 —n bad points and hence at least n good points, and w;,...,wn-1
each has at least n — 1 good points.

Now, if A and A, belong to the same orbit or A € C,, let A2 be any good
point from w;, then pick A;;; from the good points of w;, ¢ = 2,...,n,
such that A4 does not lie on RA; for all j = 2,...,h, 2 < h < n. This
is possible since wy,...,w,—1 have at least n — 1 good points and w, has
at least n good points. Choose {An+2,...,4 g—2} from the remaining
orbits such that A,;; does not lie on RAj forall j < h,n+1< h <
/@ — 3. This is possible since there are at most ,/g — 4 such lines. Let
K= coU{R,A,Al,Az,... ,A\/'_z} and

K ={ Vi+D+(/a-1=2/g ifAecC,
(Vi+1)+,q=2/3+1 if A, A liein the same orbit.

If A and A, belong to different orbits and A ¢ C,, let A2 = A and
choose {43, ..., Ant2} and {Ap4s,..., A 4-2} as before. Then K =C, U
{R,A1,42,...,A g2} and [K| = (g+ 1)+ (/7 - 1) =2,/3.

If there are strictly fewer than /g + 1 bad points distributed among n
orbits, 1 < n < /g — 2, then the above argument still works, giving

{ 249 if A, A; in the same orbit and A € C,,
K| =< 2,/g+1 if A, A; in the same orbit and A ¢ C,,

2\/q if A, A, in different orbits.

In all cases, the points of C, together with the A;’s cover I\ C and the
points {P;, P»} are covered by RA; and RA. Furthermore, the points R
and the A;’s have been chosen so that X is an arc. Hence K is a k-cover of
loo of order at most 2,/7 + 1. ]

We have shown that if X is a k-arc covering a line disjoint from it in a
projective plane of order g then k > (1 + /8¢ + 9)/2, and this bound is
sharp for ¢ = 2,5,9 and 27. We have also presented examples of small
k-covers. We see that for small g there are examples for which the lower
bound in Theorem 2.2 is best possible. For ¢ a square, Theorem 4.7 gives
k-covers of order 2,/7. For arbitrary ¢, the smallest examples we have are
the complete arcs, and those constructed in Theorem 4.5, of order a fraction
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of g. It will be of interest to construct a family of k-covers with smaller
order for arbitrary g.
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