On Quadrilaterals and Cycle Covers
in a Bipartite Graph

Hong Wang

Department of Mathematics
The University of Idaho
Moscow, ID 83844

ABSTRACT. In [13], we conjectured that if G = (V1,Va; E) is
a bipartite graph with |Vi| = |V2| = 2k and minimum degree
at least &k + 1, then G contains k vertex-disjoint quadrilaterals.
In this paper, we.propose a more general conjecture: If G =
(V1,Vo; E) is a bipartite graph such that |Vi| = [Va] = n >
2 and 6(G) > [n/2] + 1, then for any bipartite graph H =
(U, Uz; F) with [Uy] € n, U] £ n and A(H) < 2, G contains
a subgraph isomorphic to H. To support this conjecture, we
prove that if n = 2k 4t with k > 0 and ¢ > 3, then G contains
k + 1 vertex-disjoint cycles covering all the vertices of G such
that k of them are quadrilaterals.

1 Introduction

We consider finite simple graphs only. A set of graphs is said to be inde-
pendent if no two of them have a common vertex. Let G = (V;, V,; E) be a
bipartite graph with (V;, V,) as its bipartition and F as its edge set. A 2-
factor of G is a 2-regular spanning subgraph of G. Clearly, each component
of a 2-factor of G is a cycle. In [13], we conjectured that if |V;| = |Vo| = 2k
and §(G) > k+ 1, then G has a 2-factor with exactly k components, i.e.,
G contains k independent quadrilaterals. This conjecture is still open. We
propose the following more general conjecture:
Conjecture A [14] Let G = (V;, Vz; E) be a bipartite graph such that
Vil = |Va| = n > 2 and 6(G) > [n/2] + 1. Then for any bipartite graph
H = (Uy,Uy; F) with |Uy| < n, Uz} < n and A(H) < 2, G contains a
subgraph isomorphic to H.

The degree condition in the above conjecture is sharp in general. If n is
even, G might not be hamiltonian if we have §(G) = n/2. For instance,
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the union of two independent copies of Ky/2,n/2 is not hamiltonian. For
an odd n, let n = 2k + 1 with k even. Let G be a bipartite graph with a
bipartition (AU BU {u}, X UY U{v}) such that the two induced subgraphs
G[AU X] and G[B U Y] are isomorphic to Kik, N(u) = X U {v} and
N(v) = BU {u}. Moreover, the vertices of A are matched with vertices of
Y by k independent edges of G. Clearly, G is of order 2(2k 4 1) and has
minimum degree k+1 < k+2 = [(2k+1)/2] +1. If a cycle C of G contains
u, then either C has at least 8 vertices, or C contains uv and exactly two
vertices from each of AU X and BUY. As k —1 is odd, we then see that
if C is a cycle of G containing u, then G — V(C) does not have a 2-factor
with exactly £ — 1 components.

In [13], we proved the following

Theorem B. Let G = (V4, Vo; E) be a bipartite graph with |V3| = |V3| =
2k, where k is a positive integer. Suppose that the minimum degree of G is
at least k+1. Then G contains k—1 independent quadrilaterals and a path
of order 4 such that the path is independent of all the k — 1 quadrilaterals.

In [14], we proved the following:

Theorem C. Let G = (W1, Va; E) be a bipartite graph with [Vi| = |V;| =
n > 2k+1 where k is a positive integer. Suppose that the minimum degree
of G is at least [n/2] + 1. Then G contains a 2-factor with exactly k
components.

As for general graphs, El-Zahar [8] conjectured that if a graph G of order
n=mny + - +ng with n; > 3 (1 < ¢ < k) has minimum degree at least
[n1/2] + - + [nk/2], then G contains k independent cycles of lengths
ny,..., Nk, respectively. He proved it for k = 2. Corradi and Hajnal proved
the following:

Theorem D. [7] If a graph G of order n > 3k has minimum degree at least
2k, then G contains k independent cycles. In particular, when n = 3k, G
contains k independent triangles.

We proved the following:

Theorem E. (11] If a graph G of order n > 3(k + 1) has minimum degree
at least [(n + k)/2], then G contains k independent triangles and a cycle
of order n — 3k such that the cycle is independent of all the k triangles.

In this paper, we prove the following.
Theorem F. Let G = (V;,Vs; E) be a bipartite graph. Suppose that
Vil = |[Vo| =n > 2 and §(G) > [n/2] +1. If k 2 0 and ¢ > 3 are two
integers such that n = 2k+t, then G contains k independent quadrilaterals

and a cycle of order 2t such that the cycle is independent of all the k
quadrilaterals.
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Let G be a graph. Let u be a vertex of G and let H be either a subgraph
of G or a subset of V(G). We define N(u, H) to be the set of neighbors of
u contained in H and let e(u, H) = |N(u, H)|. Thus e(u, G)(= e(u, V(G)))
is the degree of u in G. If X is a subset of V(G), we define e(X,H) =
Yuex €(u, H). If X is a subgraph of G, we let e(X, H) = e(V(X), H).
Thus if X is a subset of V(G) or a subgraph of G and Y is a subset of
V(G) or a subgraph of G such that X and Y don’t have a common vertex,
then e(X,Y) is the number of edges of G between X and Y. For a subset
U of V(@G), G[U] denotes the subgraph of G induced by U. If G is a cycle
or a path, we use I(G) to denote the length of G. A quadrilateral is a cycle
of length 4.

2 Lemmas

In the following, G = (W4, V;; E) is a bipartite graph with V| = |V5| =
n>2.

Lemma 2.1. Let P = z123...%p be a path in G and let u and v be two
vertices in G —V (P) with u € V) and v € V. The following two statements
hold.

(a) If wv € E and e(uv, P) > p/2, then G[V(P) U {u,v}] has a hamilto-
nian path with z; as one of its two endvertices.

(b) If wv € E and e({u,v}, P) > p/2 + 1, then G[V(P) U {u,v}] has a
hamiltonian path with z, as one of its two endvertices.

Proof: Say {x;,u} C V;. Let us prove the statement (a) first. If p is even,
then the condition implies that e(uv, z;z:4,) = 2 for some i € {1,3,...,p—
1}. Thus z1z3. .. Z;vuTit1Zi+2 . . . TP iS a required path from z; to z,. If
p is odd, we may assume that z,v € E for otherwise we are done. Hence
e(uv, P — zp) > (p — 1)/2. Thus G[V(P — zp) U {u,v}] has a hamiltonian
path P’ from z; to z,—;1. Then P’ + zp_), satisfies the requirement.

Next, we prove the statement (b). If p is even or p is odd with zpv € E,
then the condition implies that e({u, v}, Tizi11) = 2 and e({u, v}, zjzj41) =
2 for some 4,5 € {1,3,...,p —r} with ¢ < j where »r = 1 when p is even
and otherwise r = 2. Thus

Z122... Z{VL;T5-1T5—-2 .« - Ti+1UTj 41T 542 .. . Tp

is a required path from z; to zp. If p is odd and z,v € E, then the
condition implies that e({u,v}, zizi4+1) = 2 for some i € {1,3,...,p — 2}.
Then z1z3...z;vZpT,_1 ... Zi11u satisfies the requirement. O

Lemma 2.2. Let P = z,z2...xz, be a path in G and let u be a vertex
in G — V(P) such that {u,z,} € V; for each i € {1,2}. If e({x,zp}, P) >
[p/2], then G[V(P) U {u}] has a path from z; to u.
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Proof: If p is even, the condition implies that e({u,zp}, Tizit1) = 2 for
some i € {1,3,...,p — 1}, Thus z)z5...2iZpTp_; ... Ti11u is a required
path from z; to u. If p is odd, then e({u,z,}, P — 1) > (p —1)/2, and so
G[V(P —zl)U{u}] has a hamiltonian path P’ from z3 to u. Then P'+z,z2
is a required path. O

Lemma 2.3. [13] Let C be a quadrilateral of G. Let x € Vy and y € V3
be two vertices not on C. Suppose e({x,y},C) > 3. Then there exists
z € V(C) such that either C — z + z is a quadrilateral and yz € E, or
C — z 4y is a quadrilateral and zz € E.

Lemma 2.4. [13] Let C be a quadrilateral of G. Let uv and zy be two
independent edges of G such that they are independent of C. Suppose
e({u,v,z,¥},C) = 5. Then G[V(C)U {u,v,x,y}] contains a quadrilateral
C’ and a path P’ of order 4 such that P’ is independent of C’.

Lemma 2.5. [13] Let P = z,z2z3 and Q = y1y2y3 be two independent
paths of G with z, € V} and y, € Va. Let C be a quadrilateral of G such
that C is independent of both P and Q. Suppose e({z1,z3,¥1,%3}, C) = 5.
Then G[V(C U P U Q)] contains a quadrilateral C’ and a path P’ of order
6 such that P’ is independent of C’.

Lemma 2.6. [13] Let C be a quadrilateral and P a path of order s > 6 in
G such that C is independent of P. If e(P,C) > s+ 1, then G[V(C U P)]
contains two independent cycles.

Lemma 2.7. [13] Let s and t be two integers such that t > s > 2 and
t > 3. Let C; and C3 be two independent cycles of G with orders 2s and 2t,
respectively. Suppose that e(C,C3) > 2t+1. Then G|V (C1UC3)] contains
two independent cycles C' and C" such that I(C') + I(C") < 2s + 2t.

Lemma 2.8. [4] If e({z,y},G) = n+ 2 for any two non-adjacent vertices
z and y with z € V, and y € V,, then G is hamiltonian connected.

Lemma 2.9. [12] Suppose that G has a hamiltonian path and for any two
endvertices u and v of a hamiltonian path of G, e({u,v},G) > k holds,
where k is an integer greater than n Then for every £ € Vi and every
yeVy, e({zly}’G) 2 k.

Lemma 2.10. Let P; = z1%2...%T24, P2 = y192y3ys and Q = ajaza3aqa;

be three independent subgraphs in G with ¢ > 2 and {z1,y1,.1} CV;. If
e({z1, 22, T2g-1%2q}, Q) + (P2, Q) > 9, then G[V(P; U P, U Q)] contains a
quadrilateral Q' and a path P’ such that I(P') > I(P,) +2 and V(P') N
V(@) =0.

Proof: On the contrary, suppose that G[V (P, U P, U Q)] does not contain
two required subgraphs under the given condition. Set A = {1, Z2, Z2q—1, %24}
We divide the proof into the following three cases.
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Case 1: N(y;, Q) N N(yi+2, Q) # 0 for some ¢ € {1,2}.

W.l.o.g., say {asy1,a4y3} C E. Then asy1y2tsay is a quadrilateral. By
our assumption on G[V (P, U P,UQ)], we must have that e({zs, 224}, Q) =
0 and a2 € E, and therefore e(A4,Q) < 3. Similarly, if N(y2, Q) N
N(y2,Q) # 0, then e({z1, 721}, Q) = 0, and consequently, e(P, Q) >
9, a contradiction. Hence N(y2,Q) N N(y4,Q) = 0. This implies that
e({y21 y‘l}v Q) <2 and so C(Pg, Q) < 6. Hence e(A! Q) = 3 and C(Pg, Q) =
6. It follows that e(z2—1,Q) = 2, z1a4 € E and e(y1,Q) = e(y3,Q) = 2.
Consequently, asy;yaysas and P 4+ zja4 4+ a4a3 satisfy the requirement, a
contradiction.

Case 2: e(y1,Q) =2 or e(y;,Q) = 2.

W.l.0.g., say e(y;, Q) = 2. By Case 1, e(y3, Q) = 0. Then e({a3, as}, {z1,
Tog—1,¥1,¥3}) < 6, and so e({a1, a3}, {T2, Z24, 2, 74}) > 3. W.lo.g, say
e(ay, {z2,T2¢,y2,74}) = 2. As both @ — a; +y; and Q — a3z + y; are
quadrilaterals, we must have, by our assumption on G[V (P, U P, U Q)],
that N(z:, Q) N N(y;,Q) = 0 for each i € {2,2¢} and j € {2,4}. Then
we have that {a,z2,a122,} C F since N(y2,Q) N N(y4,Q) = 0 by Case 1.
If z9,03 € E, then both Q — a + z24 and Q — a4 + x5, are quadrilater-
als, and so we must have that e({z1,Z2,-1},Q) = 0, and consequently,
e(A,Q) + e(P2,Q) £ 4+ 4 = 8, a contradiction. Therefore zz,a3 ¢
E. We conclude that e({ay,as}, {x2, T2q,%2,%4}) = 3. It follows that
e({a2, as}, {1, x24-1,1}) = 6. Thus z172a1a27 and x3z4 . . . T29—104Y1Y2Y3Y4
are two required subgraphs.

Case 3: e(y1,Q) =1 or e(ys,Q) = 1.

W.l.o.g., say e(y1,Q) = 1 and y1a4 € E. We divide this case into the
following two situations.
Case 3.1: e(y2,Q) > 0.

W.l.0.g., say yzas € E, and so y1y203a4¥: is a quadrilateral in G. Thus
e({z1,z2q}, @102) = 0 and so e(4, Q) < 6. Moreover, if e(ajaz, y3y4) > 0,
then e({z2,Z24-1}, a1a2) = 0. Hence if e(ajaz, y3y4) > 0, then e(A4,Q) < 4
and so e(P,,Q) > 5. Consequently, N(y;, Q) N N(yi+2,Q) # @ for some
i € {1,2}, a contradiction by Case 1. Therefore, we must have that
e(a1az,y3ys) = 0. By Case 1, we see that e(ysys, Q) =0. As e(4,Q) <6,
we have that e(y1y2,Q) = 3. Thus y2a; € E. Then y2a;1a2a3y2 and
a1y2y104a; are two quadrilaterals in G, and so z1a4 /[ E and o403 /E.
Consequently, e(A4,Q) < 4 and e(A,Q) +e(P2,Q) <4+ 3 =7, a contra-
diction.

Case 3.2: e(y2,Q) =0.

By Case 1, y3aq ¢ E and so e(y3, Q) < 1. By Case 2, e(ys,Q) <
1. By Case 3.1, we obtain that e(ysys,@) < 1. Therefore e¢(A,Q) >
7. If e(x24,Q) = 2, then zp4a102a3Z2, is a quadrilateral in G, and so
zi1a4 € E and z39_1a4 € E. Consequently, e(4,Q) < 6, a contradiction.
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Hence e(z24,Q) = 1 and e(z1,Q) = e(x2,Q) = e(z2-1,Q) = 2. Then
T1Z2a 0021 and Z3Zy...T24—1G4Y1%2Y3Y4 are two required subgraphs, a
contradiction. O

3 Proof of Theorem F

Let G = (V},Vs; E) be a bipartite graph with |V —1| = |[V3]| =n > 2
and §(G) > [n/2] + 1. Suppose, for a contradiction, that for some two
integers k > 0 and ¢ > 3 with n = 2k +¢, G does not contain k independent
quadrilaterals and a cycle of order 2¢ such that the cycle is independent of
all the k quadrilaterals. We shall prove the following two claims.

Claim 1. G contains [n/2] — 1 independent quadrilaterals.

Proof of Claim 1.: If »n is even, the claim is true by Theorem B. So we
assume that n is odd and the claim fails. Set n = 2k+1. Then §(G) > k+2.
Choose two vertices w; € Vi and we € V, such that wyws € E. Let
G' = G — w; — wy. Then 6(G') > k+ 1. By Theorem B, G’ contains
k — 1 independent quadrilaterals @;,...,Qk—; and a path P of order 4
such that V(P) N V(U5Z1Q;) = 0. Say P = z,z,73z4 with 21 € V;. Set
H=U*1{=1}Q; and D =G - V(H).

First, suppose that D has a path of order 6. Let L = y1y2y3ysysys be a
path of D such that if D has a cycle of order 6 then 3,y € E. As G does
not contain k independent quadrilaterals, we see that e(y;, D) < 2 for each
yi € V(D). Thus e(D, H) > 6{(k+2) —12 = 6(k —1) + 6. This implies that
there exists Q; in H, say Q; = Q1, such that e(D, @) > 7. By Lemma 2.6,
it follows that G[V(Q; U D)] contains two independent cycles of orders 4
and 6, respectively. So in the first place, we may assume y;ys € E. Then
by Lemma 2.7, G[V(Q; U D)] contains two independent quadrilaterals, a
contradiction.

From the above argument, we may assume that for any k—1 independent
quadrilaterals Q},...,Q%_, in G, G — V(UXZ! Q) does not contain a path
of order 6. Clearly, {z,24,z1w2,z4w1} N E = 0 and e(w wy, P) < 1.
Thus e({z;, w2}, D) < 3 and e({z4, w1}, D) < 3. Since e({z;, w2}, H) >
2(k + 2) — 3 = 2(k — 1) + 3, there exists Q; in H, say Q; = Q1, such
that e({z1,ws2},@Q1) > 3. By Lemma 2.3, G[V(Q1) U {z,, w2}] contains a
quadrilateral Q' and a path P’ of order 2 such that V(P) N V(Q’) = 0.
Moreover, exactly one of ; and ws is an endvertex of P’. First, assume
that wy is an endvertex of P’. Let 2 € V(Q,) be such that Q' = Q; —
20+ ) and zowy € E. Let D' = D —z; + 29 and W = {z2,z4,w1,20}.
Then z2z3z4 and wiwezg are two independent paths in D’. Furthermore,
e(W, D’) = 4 since D' does not contain a path of order 6. It follows that
e(W,(H-V(Q1))UQ') > 4(k+2) —4 =4(k —1) +8. Thus there exists a
quadrilateral Q' in (H-V(Q;))UQ’ such that e(W, Q') > 5. We then obtain
a contradiction by Lemma 2.5. Hence we must have that e(wq, @;) = 2
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and e(z1, Q1) = 1. Similarly, we must have that e({z4, w1}, @1) < 3. Thus
e({:c4,w1},D U Ql) < 3+3 = 6. Then we have that 6({w1,$4},H -
V(Q1)) = 2(k +2) — 6 = 2(k — 2) + 2. This implies that there exists Q;
in H — V(Q1), say Q:; = Qz, such that e({w;,z4},Q2) > 3. Again, we
must have that e(zs,Q2) = 1 and e(w;,Q2) = 2. Let z; € V(Q1) and
22 € V(Q2) be such that z1z; € E and z2z4 € E. Then 217172232422
is a path of order 6 in G that is independent of both Q; — z; + w; and
Q2 — z2 +w, a contradiction. So the claim holds. O

Claim 2. For any two integers k > 0 and t > 1 with n = 2k+t, G contains
k independent quadrilaterals and a path of order 2t such that the path is
independent of all the k quadrilaterals.

Proof of Claim 2: By Claim 1, we choose k independent quadrilaterals
Q1,. .., Qk such that

The length of a longest path of G — V(UX_,Q;) is maximum. (1)

Let P be a longest path of G — V(UE_,Q;). Subject to (1), we choose
Q1,...,Qx and P such that

The edge independence number of G — V(UL ,Q:) U V(P) is maximum.

)

Let H = U5 ,Q;, D =G-V(H) and P = z132...2,. Let M =
{#121,...,¥r2} be a maximum matching of D — V(P). W.l.o.g., say
{xl: Y1, -- :'yr} g Vl-

Clearly, r + [s/2] < t. We show that r + [s/2] = £. On the contrary,
suppose 7 < t — [s/2]. Let w; and wa be two vertices in D — V(P)U
{#i, zi|1 <1 <1} such that wy € V) and w € V2. Then e({wi, w2}, %iz) <
1 for all i € {1,...,7} by the maximality of M. By Lemma 2.1 (b), we
readily see that e({wy, w2}, P) < [(s +1)/2]. Thus e({w;, w2},D) <7+
[(s+1)/2] £ t. It follows that e({wy, wa}, H) = 2(k+[t/2]+1)—t = 2k+2.
This implies that there exists Q; in H such that e({wi,w2},Q:) = 3. By
Lemma 2.3, this is a contradiction with the maximality of M. This shows
that r + [s/2] = t.

We now divide the proof of Claim 2 into the following two cases: s is
even or odd.

Case 1: s =2q.

Let R = {z1,Z2¢,%1,21}. By Lemma 2.1, e({z1, 21}, P) < gand e({z2q, 11},
P) < q. Thus ¢(R,D) < 2t, and so e(R,H) > 4(k + [t/2] + 1) — 2t >
4k + 4. This implies that there exists @Q; in H such that e(R,Q;) > 5.
Say Q; = ujupugusu; with u; € V3. Clearly, e({z1,2:1},@;) = 3 or
e({z2g, 11}, @) = 3. W.log, say e({z1,21},@:) = 3. By Lemma 2.3
and the maximality of P, we see that e(z;,Q;) = 2 and e(z1,Q:) = 1 Say
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z1u; € E. If e(y1,Q;) > 0, say yiuz € E, then y;21ujugy; is a quadrilateral
in G and P + z,u4 is longer than P in G, contradicting the maximality of
P. Hence e(y1,Q;) = 0. Then we have that e(zaq, @;) = 2, and we readily
see a contradiction with the maximality of P.

Case 2: s =2q+1.

Let 29 be the only vertex of D which is neither on P nor covered by
M. Clearly, 20 € Vo. By (1) and Lemma 2.2, e({z0,Z2g+1},P) < ¢+ 1
and so e({z0, Z29+1}, D) < t. Then e({20, z2¢+1}, H) > 2(k + [t/2] + 1) -
t > 2k + 2. This implies that there exists Q; in H, say Q; = Q, such
that e({20, 24+1}, Q1) = 3. By (1) and Lemma 2.3, we must have that
e(T24+1, Q1) = 2 and e(29,Q1) = 1. Let Q; = yoazazasyo be such that
zoyo € E. Set P/ = P — 29441, Q' = Q1 — Yo + Z2¢41, D' = D = Z2441 + 30,
and F'= D—-V(P)+yo. Then M’ = {3z;|0 < i < r} is a perfect matching
of F.

First, let us assume that F has a path of order 4. We may assume
w.l.o.g. that zoy; € E. Let R = {z1, %2, T2g—1, Z2g, %0, ¥1, 20,21}. By (1)
and Lemma 2.2, we readily see

e({z1,20}, P') < g, and e({z1,20},y:2:) < 1 for each i € {0,1,...,7};
e({z2q,:}, P') < q, and e({z2q, 91}, %:%) < 1 for each i € {0, 1,...,7};
e({z2,y0}, P') < g, and e({z2,%0},%iz:) < 1 for each i € {0,1,...,7};
e({r2g-1,21}, P') < q, and e({xog—1, 21}, %i%) < 1 for each i € {0,1,...,7}.

These inequalities imply that e(R, D’) < 4t. Therefore e(R, (H —V(Q,))U
Q') > 8(k+ [t/2] +1) — 4t > 8k + 8. This implies that there exists a
quadrilateral Q in (H —V(Q1))UQ’ such that e(R, Q) > 9. By Lemma 2.10,
GV(P'UQ)U{yo, ¥1, 20, 21 }] contains a quadrilateral Q" and a path P” such
that V(Q")NV(P”) =0 and I(P") > I(P") +2. Clearly, {(P") > I(P)+1,
contradicting (1) again.

Next, we assume that F does not have a path of order 4. Then M’ has
all the edges of F. By (1) and Lemma 2.1 (a), e(y;2;, P') < g forall i €
{0,1,...,r}. We then see that e({yo,y1,20,21}, D’) < 2t. Consequently,
e({yo, y1, 20,21}, (H = V(Q1)) U Q') 2 4(k + [t/2] +1) — 2 > 4k + 4.
This implies that there exists a quadrilateral Q" in (H —V(Q,))U Q' such
that e({yol Y1, 20, zl}i Q”’) 2>5. By Lemma 2 41 G[V(Q",) U {yO) Y1, 20,21 }]
contains a quadrilateral Q(*) and a path P of order 4 such that V(Q®)n
V(P"™) =0. Then we replace Q" by Q™ and F by (F - {y0,%1, 20, 21}) U
P" and repeat the previous argument to obtain a contradiction with (1).
This proves Claim 2. O

We are now in the position to complete the proof of the theorem. Since
G is hamiltonian, the theorem is obviously true if k = 0. So we have k > 1.
By Claim 1 and Claim 2, we choose k + 1 quadrilaterals Qq, ..., thl and
a path P of order 2t — 4 to cover all the vertices of G. Set H = UFT1Q;,
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D = G[V(P)] and s = t — 2. Then |V(D)| = 2s. Let u and v be any two
endvertices of a hamiltonian path of D. If e(x,Q;) > 0 and e(v,Q;) > 0
for some i € {1,2,...,k + 1}, then G[V(Q; U P)] is hamiltonian and we
are done. Therefore we must have that either e(u,Q;) = 0 or e(v,Q;) =0
for all i € {1,2,...,k + 1}. Consequently, e({u,v}, H) < 2(k + 1) and
so e({u,v}, D) > 2(k + 2 + [s/2]) — 2(k + 1) > s+ 2. This implies that
s > 2. By Lemma 2.8 and Lemma 2.9, for any two vertices z and y of D
with z € V; and y € Vs, we have that e({z,y}, D) > s+ 2. In particular,
D is hamiltonian connected. Let C = z1T2...z2,x1 With z; € V} be a
hamiltonian cycle of D. We now divide the proof into the following two
cases: s> 3ors=2

Case 1: s> 3.

As G is connected, we may assume that e(zy, Q1) > 0. We show that D
contains a quadrilateral Qo such that D — V(Qo) has a hamiltonian path
with z; as one of its two endvertices. Set Zos11 = T1. As Y i, &(T25—4%25—3,
ToiT2is1) = 8 + 2, there exists i € {1,2,...,s} with ¢ # s — 2 such that
e(T2s—aT20-3, T2Tair1) = 2. If i # s, then zp, 4%2,322i%2i+1%25-4 I5 2
quadrilateral not containing z; in D. If i = s, then z2;_3%2s—225—1%2sT25-3
is a quadrilateral not containing z; in D. In either case, D still has an edge
incident with z; after removing the quadrilateral from D. We choose a
quadrilateral Qo from D such that D — V(Qo) contains a longest path
starting at z;. Let P = zjius...up be a longest path starting at z,
inD. If p < 2s—4, let wbe a vertex in D — V(P U Qo) such that
{w,up} € V; for each i € {1,2}. By Lemma 2.2, e({w,u,}, P1) < [p/2].
Therefore e({w, up}, D — V(Qo)) < s — 2. It follows that e({w, up}, Qo) =
s+2—(s—2) = 4. Let u,4y € V(Qo) be such that u, up € E. Then
Qo = Qo—up4+1+w is a quadrilateral in D but P;-+u,u,+1 is a path starting
at z; in D — V(Qo), 2 contradiction. So p = 25— 4. Say Q1 = a1a203a4a1
with z1as € E. As G[V(P, U Q)] has a hamiltonian path, we replace Qi
by Qo and D by G[V(P; U Q)] and repeat the argument in the paragraph
preceding Case 1. Then we see that G[V(P, U @;)] must be hamiltonian
connected. In particular, G[V(P; U Q;)] has a hamiltonian path from a,
to az. This implies that either e(a1, P1) > 0 or e(as,P1) > 0. As D is
hamiltonian connected, we see that G[V (DU @Q,)] is hamiltonian since we
have that e(az, D) > 0, a contradiction.

Case 2: s=2.

As in Case 1, let Q; = ajazazasa; with a; € V. For convenience, de-
note D by Qo. Then G[V(Q: U Qj;)} is not hamiltonian for all {i,5} C
{0,1,...,k 4+ 1} with i # j. In particular, since §(G) = k + 3, we see
that k+1 is even and there exist (k+1)/2 distinct quadrilaterals in H, say
Q1. - -, Qi+1)/2, Such that e(z1, Q;) = 2, e(z2, Q) = 0, e(z1, Que+1)/2+¢) =
0 and e(z2, Q(k+1)/2+i) = 2 for all i € {1,2,...,(k +1)/2}. Then we
readily see that e(zs, Q;) = 2, e(z4,Q:) = 0, e(z3, Qk+1)/2+:) = 0 and
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6(1’4,Q(k+1)/2+g) = 2 for all 1 € {1,2,...,(’6 + 1)/2}. As 5(6) > k+
3, e(a),Q:) > O for some i > (k + 1)/2. Say e(a1,Qk+1) > 0. Let
Qk+1 = bibabgbsdy with by € Vi. Then similarly, we must have that
e({al,ag},Qk“) = 4 and e({ag,a4},Qk+1) = 0. Then A4T1ToT304 and
z4a1a3a3bab1bab3zy are two independent cycles of orders 4 and 8, respec-
tively in G[V(QoU Q1 U Qk+1)], and so the theorem holds, a contradiction.
This completes the proof of the theorem.
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