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A Latin square is N; if it has no intercalates (Latin subsquares of
order 2). We correct results published in an earlier paper by McLeish,
dealing with a construction for N, Latin squares.

§1. Definitions

A Latin square is a matrix of order n in which each row and column is
a permutation of some (fixed) symbol set of size n. A subsquare of a Latin
square is a submatrix (not necessarily consisting of adjacent entries) which
is itself a Latin square. A subsquare of order 2 is an intercalate. A Latin
square without intercalates is said to be Nj.

We use the closed interval notation [a,b] in a slightly non-standard
way. Since all our variables will be integers we prefer to interpret this as a
discrete set. That is, [a,b] = {a,a +1,...,b—1,b}. If a Latin square uses
[1,n] as its symbol set then it naturally defines a binary operation ® on that
set in which a ® b is the entry in row a, column b. The resulting algebraic
structure is a quasigroup. Reversing the process, every quasigroup defines
a Latin square via its Cayley table. See [1] for details. We will not draw
any distinction between a quasigroup and its associated Latin square.

The purpose of this note is to correct errors published with regard to
the construction of N, squares in [3]. A study of when this construction
yields a square with a unique proper subsquare (of order > 5§) can be found
in [4].

§2. McLeish’s construction

In [3] McLeish gives a construction for a quasigroup M, , on the set
[1,n]. Her binary operation ® is defined in four “regions” A, B, C and D
as follows.

A: Fora€[n—s+1,n]and b € [1,n — 8] select a®b € [1,n — 5] satisfying

a®b=2b+a-2- 22 (mod n - s).

B: Fora€[l,n—s]and b € [n—s+1,n] select a®b € [1,n — 5] satisfying

a®b=2a+3b—4—3%52 (mod n - s).
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C: For a,b € [1,n — s] there are three cases
i) ifa=b+j (mod n—s)for j € [0,252) then a®b=n—s+2j+1,
ii) ifa=b+j (mod n—s) for j € [-252,—1] then a®b =n—s-2j,
iii) Otherwisea®b=3b—a—1(modn—s)anda®be€ [1,n - s}
D: For a,b € [n — s+ 1,n] select a® b € [n — s + 1,n] which satisfies
a®b=a+b—n—3 (mod s).

McLeish argues that M, , is a quasigroup whenever

n =0 (mod 2), (1)
n > 2s, (2)
s =1 (mod 2), (3)
n # s (mod 3). (4)

Her Theorem 5.1 then states that My , is N2 precisely when the following
additional conditions hold:

n # s (mod 5), (5)
3n— 3% 3 (mod 4) orn > 3s - 11, (6)
3n—s#1(mod4)orn>3s-5, (7
s # 3 (mod 4), (8)
s#1 (mod 4) or 2n > 5s — 5. (9)

We will show that two other conditions must be added to this list, namely

s>1and (10)
n # 2 (mod 4) or n > 4s — 6. (11)

The corrected theorem can then be stated as follows.

Theorem 1. M, , is N; if and only if

(a) either (i)n =0 (mod 4),n > 3s—11 and 2n > 5s— 5 or
(i) n =2 (mod 4) and n > 4s — 6,

(b) n — s is not divisible by 3 or 5,

(c) s=1(mod 4) and s > 1.

To see that conditions (1) to (11) are equivalent to parts (a) to (c) of
the theorem we make the following observations. Firstly, (4) and (5) are
obviously equivalent to (b). Secondly, (3) and (8) together are equivalent
to s = 1 (mod 4) so (9) simplifies to 2n > 55 — 5 which is now stronger
than (2), assuming (10). Also by (1) we see that 3n —s =n —1 (mod 4) so

314



that (6) and (7) become respectively n = 2 (mod 4) or n > 3s — 11, and,
n =0 (mod 4) or n > 3s — 5. In the case n = 2 (mod 4) the new condition
n > 4s — 6 from (11) is stronger than both n > 3s — 5 and 2n > 5s - 5, by
(c). Note however that we need to retain the condition 2n > 5s — 5 when
n = 0 (mod 4) to exclude the case n = 20, s = 9.

We now look at how conditions (10) and (11) arise, in turn.

§3.5>1

McLeish may have intended to omit s = 1 as a trivial case, but does
not do so explicitly. Although this case gives rise to no Ny squares the
subsquare structures it produces are not without interest. We first locate
the point in [3] at which s = 1 should have been excluded.

In Case 1 of the proof of Theorem 4.2, bounds are found for the variable
k. An inequality (implicitly) derived at this point is that (k—2)s < 1, from
which the conclusion is drawn that & < 2. However, when s = 1 there is
the additional possibility that & = 3. It is then a simple matter to verify
that the complete solution to equations (1) to (5) of [3] is j =0, k' = -2,
a1 = by = n, ag = by; where by € [1,n — 3] is arbitrary. Given that the
remainder of McLeish’s proof is valid and shows that there are no other
intercalates, it is then a short step to this result:

Lemma 1. Suppose n is a positive integer satisfying n = 0 (mod 2),
n # 1 (mod 3) and n £ 1 (mod 5). There are exactly n — 1 intercalates in
M,,1. For each i € [1,n — 1] there is an intercalate at the intersection of
rows i and n with columns ¢ and n.

Lemma 1 is interesting in that M, would be N;, but for a single
entry (the symbol n in row n, column n). This entry is involved in the
maximum possible number of intercalates, since it forms one with every
other copy of the symbol n. In some sense then, M, ; is the antithesis
of the homogeneous squares introduced in [2]. A square is defined to be
homogeneous if every entry is involved in the same number of intercalates.

§4. n#Z2 (mod 4) or n >4s—6

We turn to the more serious error in [3]. McLeish skips the details of
case 2 of her Theorem 4.2, with the claim that it works the same way as
case 1 (which is true) and gives rise to no further restrictions (this is false).
In order to demonstrate this we now work through case 2, in the manner
of case 1 in [3].

The aim is to find necessary and sufficient conditions on n and s under
which there is an intercalate with one entry in each of the regions A, B, C

315



and D. Hence we are looking for a1,b; € [n—s+1,n} and az,b2 € [1,n— 3]
such that a; ® b; = a2 ® by and a2 ® by = a1 @ by. In particular, case 2
applies when the entry in region C is determined by part (n) of the rules
for that region, so az = b2 + j (mod n — s) for some j € -5, -1]. From
the definition of ® we have

ap+bi—-n—-3+ks=n n—s—2j, (12)
(n_s)v (13)

2by + a; — —ST—z(b2+])+3b1

where k and k' are both integers. Simple algebra then gives

—3b =2j — 14 k'n— (k' +1)s, (14)
4a) = 45+ (6 +k')n+8— Bk + k' +4)s. (15)

Also ay,b; € [n—s+1,n)meansn—s+1-3n<a;—3b <n—-3(n—s+1)
which coupled with (14) yields,

Ks+2< (K +2)n+2j < (K +4)s —2. (16)

At this point we split into subcases based on the values of k and k'.
Note that 0 < k < 2 for the same reason as in [3] (but this requires
s> 1, refer §3). Also by considering equation (15) modulo 4 we know that
k' = k (mod 2). Indeed k' = k (mod 4) if &' = 2 (mod 4) or n = 0 (mod 4).
Hence it is sufficient to treat the subcases:

@)k >0

Since n > s and 2j > —s + 1 the right hand inequality in (16)

means 2n < 55 — 3. Since s = 1 (mod 4) and 2n = 0 (mod 4) this

is equivalent to 2n < 5s — 5, which is a case already excluded by

Theorem 1(a).

(b) ¥ =-1, k=1, n=2 (mod 4)

The right hand inequality in (16) gives n < 4s — 3, since 2j 2>

—s+ 1. Then since n = 2 (mod 4) we in fact have n < 4s—6 is

necessary for there to be intercalates. To show sufficiency, suppose

n = 4s — 6 — 4m for an integer m € [0,s — 2]. Then observe that

a=n- me [n-s+2,n],b=n—s+2+m¢€n-s5+2,n]

and j = — 251, is a valid solution of (12) and (13). Moreover a;

can always be chosen to satisfy a; = by + j (mod n — s) for given

bz € [1,n — s]. We conclude that M, s will contain at least n — s

intercalates.

()k'=-2,k=2
Here (15) implies a; < n+ 3 — 35 since —4j < 25 — 2. But now
a 2n—s+11mphess<1 See §3.
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A ==3 k=1
Similarly, (15) implies a; < 3n+3 —}s and hence n < 2s+2. This
is excluded by 2n > 5s — 5 except in one feasible case: n = 12,
s = 5. For that case note that (16) insists on n < 3s — 4.

(e) ¥ <-4
Since j < 0 the left hand inequality in (16) gives k's < (k' + 2)n,
which is impossible for n > 2s and k' < —4.

Taken together with [3], this completes the proof of Theorem 1.

§5. Spectrum of McLeish’s construction

McLeish was aiming for a direct N construction for as many orders
as possible with her method. She argued that for even n sufficiently large,
M,, , will be an N, square if s is chosen according to the rule:

s=5ifn#2 (mod 3) and n £ 0 (mod 5),
s=9if {n$0(mod3)andn50(mod5), or

n =2 (mod 3) and n = 1,2 or 3 (mod 5), 17
s=13if n =0 (mod 3) and n =0 (mod 5), or
- n =2 (mod 3) and n = 4 (mod 5).

This conclusion remains valid. All that has changed is the criteria for n
being sufficiently large. The new condition that n > 4s—6 for n = 2 (mod 4)
rules out only (n,s) = (22,9) and (n,s) = (26,9) of the pairs used in the
proof of Theorems 5.2 and 5.3 in [3]. (In fact the first of these pairs should
never have been listed since it breaches (7). It is not needed, as Mas 5 is
N;.) The updated result is this:

Theorem 2. If s is chosen according to (17) then M, , is Ny for all
n > 12 except n € {14,20,26,30}. The spectrum of constructions cannot
be increased by choosing other s.
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