Multipartite Ramsey Numbers

David Day

Department of Mathematics
Technikon Natal, Durban
South Africa

Wayne Goddard

School of Geological and Computer Sciences
University of Natal, Durban
South Africa

Michael A. Henning

School of Mathematics, Computer Science and Information Technology
University of Natal, Pietermaritzburg
South Africa

Henda C. Swart

School of Mathematics and Statistics
University of Natal, Durban
South Africa

ABsTRACT. For a graph G, a partiteness & > 2 and a number of
colours ¢, we define the multipartite Ramsey number rg(G) as the
minimum value m such that, given any colouring using ¢ colours of
the edges of the complete balanced k-partite graph with m vertices
in each partite set, there must exist a monochromatic copy of G. We
show that the question of the existence of r§(G) is tied up with what
monochromatic subgraphs are forced in a c-colouring of the complete
graph K. We then calculate the values for some small G including
r2(Cs) =3, r3(Cs) =2, r3(C4) = 7 and r3(Cs) = 3.

1 Introduction
For ordinary Ramsey numbers, one colours the edges of a complete graph

using two or more colours and asks about the monochromatic subgraphs
that are forced. There are many generalisations. Several authors have
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considered bipartite Ramsey numbers; see for example [1, 2, 6]. Here the
edges of a complete bipartite graph are coloured and one asks about the
monochromatic subgraphs that are forced.

In this paper we extend the concept of bipartite Ramsey numbers. We
consider the problem of colouring the edges of a complete k-partite graph
for general k. In particular, we fix the partiteness and look at how large the
complete (balanced) k-partite graph must be before a particular monochro-
matic subgraph is forced.

Let G = {G1,Ga2,...,G:} be a set of ¢ graphs. We define r(G) as the
minimum value m such that, given any colouring using ¢ colours of the
edges of the complete balanced k-partite graph with m vertices in each
partite set, there must exist an i such that there is a monochromatic copy
of G; in colour i. We will only investigate the case where all the graphs in
G are the same graph G. So we will write rx(G) for the case of two colours,
and r§(G) for the general case of ¢ colours.

All our graphs are simple and undirected without loops or multiple
edges. For a graph G the vertex set is denoted V(G) and the edge set
E(G). The complete graph on n vertices is denoted by K,, and the complete
k-partite graph with aj,as,...,ar vertices in the partite sets is denoted
K(ay,aq,...,ax).

2 Existence

A basic question is: For which graphs G does r(G) exist and, more gener-
ally, for which graphs does r§(G) exist.

Consider first the case k¥ = 3. An immediate observation is that any
subgraph of a complete 3-partite graph must be 3-colourable. But it is
immediate that one can avoid a triangle by colouring the edges incident
with one partite set one colour, and the remaining edges another colour.
In fact, such a colouring avoids any nonbipartite graph. So r3(G) can exist
only for bipartite G. But, by the work on bipartite Ramsey numbers, r3(G)
exists for all bipartite G (see [6]).

The answer as to when rf(G) exists is tied up with the question of
which graphs are forced in a c-colouring of K;. We say that a graph G
is homomorphic to H if there exists a mapping f from V(G) to V(H)
such that if uv € E(G) then f(u)f(v) € E(H). (For example, a graph is
k-(vertex-)colourable iff it is homomorphic to Kj.) We say that a colouring
of the edges of a complete k-partite graph is expansive if for every pair
of partite sets the edges between the two sets have the same colour. This
yields in a natural way a colouring of the edges of the complete graph Kj.
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Indeed, we say that an expansive colouring is induced by the corresponding
colouring of K.

Theorem 1 Let ¢ and k be given. Then for a graph G the following are
equivalent:

(1) a monochromatic copy of G is forced in a c-colouring of sufficiently
large balanced complete k-partite graph (that is, r(G) exists);

(2} in every c-colouring of the complete graph K. there exists a monochro-
matic subgraph H such that G is homomorphic to H.

Proof: Assume (1) and consider any colouring of K: we need to show
that it contains a monochromatic subgraph H to which G is homomorphic.
But simply consider the expansive colouring of the complete k-partite graph
induced by the given colouring of K. This contains a monochromatic copy
of G. By identifying vertices of G in the same partite set we obtain a
monochromatic subgraph of Ky to which G is homomorphic.

Now, assume (2) and let C denote the complete k-partite graph with M
vertices in each partite set where M is sufficiently large. Order the vertices
in each partite set with 1,..., M. That is, the vertices of C are labelled v}
for 1<I<kand1<i< M. Let layeri be theset {v}:1<I<k}.

Consider a colouring of the edges of C. For i < j let H;; be the subgraph
induced by the k(k — 1) edges between layer ¢ and layer j. Now, define an
auxiliary graph A whose vertex set is the integers from 1 up to M, and with
all possible edges. Then label each edge ij of A (1 < i< j < M) with a
k(k — 1)-tuple giving the colouring of the edges of H;;. This is a colouring
of the edges of A.

There are only finitely many possible colourings of the edges in Hj;.
Hence, by the original graph Ramsey theorem, A has a large monochromatic
clique. In particular, for any positive integer m, if M is sufficiently large
there exists a subset J of {1,2,..., M} of cardinality km such that for all
i < j € J the edges ij € E(A) have the same k(k — 1)-tuple. That is, the
graphs H;; are identically coloured with partite sets and layers preserved.
Without loss of generality J = {1,2,...,km}.

Now let D be the subgraph of C induced by the km vertices vi,_l)m +a
for 1 <l < kandl < a< m (the first m vertices from the first partite
set, the second m vertices from the second partite set, etc.). Then D is a
complete k-partite graph with m vertices in each partite set. Furthermore,
its edges have an expansive colouring: for any pair of partite sets all the
edges between them have the same colour.

Now, in the corresponding colouring of Kj there is by assumption a
monochromatic subgraph H to which G is homomorphic. If m is large
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enough (for example at least the order of G), then it follows that G is a
monochromatic subgraph of D and hence of C. O

For example, if £ = 4 then one cannot force a nonbipartite graph in a
colouring of K4. It follows that r4(G) exists if and only if G is bipartite.

If £ = 5 then in any 2-colouring of K5 there is a always a nonbipartite
subgraph. In particular either a monochromatic copy of K3 or Cs. Since
Cs is homomorphic to K3 (and homomorphism is transitive), it follows that
r5(G) exists if and only if G is homomorphic to the 5-cycle.

An analogous result holds for general G.

3 The 4-cycle

By Theorem 1 we know that in a colouring of a 3-partite complete graph
we can never force a non-bipartite graph, though all bipartite graphs are
eventually forced. So our investigation of exact results starts with simple
bipartite graphs.

We consider the 4-cycle. The following counting argument will prove
useful. The idea is a simple extension of ideas used before (see for example
[6]) to exclude the 4-cycle.

Theorem 2 Suppose there is a c-colouring of the complete k-partite graph
each of size m without a monochromatic 4-cycle. Let ¢ = (';)m"’, e=[q/c],
d=k(k—1)m, a=|2¢/d]| and b = 2¢ — ad. Then

o (5) 2ot i)

In particular, if m is a multiple of ¢, then a = m/c and b = 0 so that the
above inequality simplifies to:

k x (';) > km(k — 1)("‘2/").

Proof: Consider the colour with the maximum occurrence, call it red. It
has at least e edges. Count the number @ of red P3’s with endpoints in the
same partite set.

By the lack of red 4-cycles, a red P; is uniquely determined by its
endpoints. These are determined by choosing the partite set and then the
two endpoints. Therefore

m
<kx .
oskx(3)
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On the other hand, we can bound @ from below by counting each red P;
by its centre. Let A,, A, ..., Ax denote the partite sets and let v;, denote
the rth vertex in A;. Let a;;; denote the number of red edges joining v;,
to Aj. Then v;, is the centre of ZJ- (“‘;") red Ps’s with endpoints in the
same partite set. That is,

axy (%)

i,4,r

By the first theorem of graph theory, Zi,j,, airj > 2e. Also, there are
d = k(k — 1)m values of a;-; which can be nonzero. It follows by calculus
that the minimum value of ), . (*;”) is obtained when all the values a;r;
are as equal as possible. If aff the a;rj are equal, then they equal 2e/d.
Otherwise, d — b of them have value a = |2e/d| and b of them have value
a + 1, where b is such that (d — b)a + b(a + 1) = 2e. Hence we are done.
o

It is known that ro(Cy) = 5 (see [1]).
Theorem 3 r3(C4) = 3.

Proof: K(2,2,2) is isomorphic to K¢ minus a perfect matching, and can
be 2-coloured such that one colour is a 6-cycle and the other is 2K3. Hence
1‘3(04) Z 3.

By the above theorem, any 2-colouring of K(3,3,3) has a monochro-
matic C4. (Note k=3, m=3,¢=2,¢=27,e=14,d=18,a = 1,
b=10,LHS =9, RHS =10.) Hence r3(C4) <3. O

Theorem 4 r4(C4) = 2.

Proof: It is easy to colour K4 with two colours without a monochromatic
Cy. Hence r4(C4) > 2.

K(2,2,2,2) has 8 vertices and 24 edges. A graph with 8 vertices and
12 edges is guaranteed to have a 4-cycle. (See [4].) Thus r4(Cs) < 2. O

Since the ordinary Ramsey number of Cy is 6 (see [3]), it follows from
the above theorem that 75(C4q) =2 and 1 =74(C4) = r7(C4) = .. ..

We now turn our attention to three or more colours. It is shown in [5]
that r3(Cs) = 11. We consider r3(Cy) for k > 3.
Theorem 5 r3(C4) = 7.

Proof: We first show that r3(C4) > 7.

27



Consider the complete bipartite graph K(6,6). This has a natural de-
composition into three 12-cyles defined as follows. Let the partite sets be
U and V, and let the vertices in U be u; (0 < i < 5 and all arithmetic
modulo 6) and in V be v;. Colour 1: u; to v; and v;4;. Colour 2: u; to
vi42 and vi33. Colour 3: u; to viy4 and viys.

Which vertices in U have common neighbours joined by edges of the
same colour? Only u; and u;4;. This is true for all three colours. Similarly
the pairs of vertices in V with common neighbours are {v;, vi+1}.

Now we will consider the edges of K(6, 6, 6) as composed of three X (6, 6).
We will give each K(6,6) the above colouring. Suppose the partite set are
A, B and C with vertices a;, b; and ¢;. Consider [A, B]. Map U to A and
V to B any way.

Consider [B,C]. Map U to B and V to C such that pairs in B with
common neighbours do not again get common neighbours. In particular, if
the first mapping was v; to b;, then the second is ug to bg, uz to by, us to
b, uz to bz, u; to bs, ug to bs.

Similarly, consider [C,A]. Map U to C and V to A such that pairs

of vertices with common neighbours do not again get common neighbours.
Thus r3(C4) > 7.

Theorem 2 shows that a 3-colouring of K (7,7, 7) guarantees a monochro-
matic 4-cycle. (Note k=3, m=7,c=3,9=147,e=49,d=42,a =2,
b=14, LHS =63, RHS =170.) Thus r3(C4) <7. D

For 3-coloring in 4-partite graphs we will need the following result from
[6]. Let graph Goo be constructed as follows. Take the cartesian product
K4 x Ko and in each copy of K4 subdivide each edge with a new vertex.
Finally, join each new vertex in the first copy of K4 to the new vertex in the
second copy which is at distance 5 from it. The graph Ga¢ has 20 vertices
and 34 edges.

Theorem 6 [5] The mazimum number of edges in a Cy-free bipartite graph
on 20 vertices is 34. Furthermore, Gop is the unique such graph of size 34.

Theorem 7 r3(C4) < 5.

Proof: Consider K(5,5,5,5) with partite sets A, B,C, D. Suppose there
is a 3-colouring of it without a 4-cycle.

This is not precluded by Theorem 2, but there is equality in the bound.
(Note k =4, m=5,¢c=3,¢g=150,e =50, d =60,a =1, b =40,
LHS = RHS = 40.) This means that the lower bound is reached. In
particular, in the proof of Theorem 2 it holds that a;r; is 1 or 2 for all 7,7, j
and all colours. That is, given any vertex, any other partite set and any
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colour, the vertex has either one or two edges of that colour to that partite
set.

Now, consider the subgraph K (10, 10) induced by [AU B, C U D]. Con-
sider a 3-colouring of the edges of this subgraph. At least one colour, say
red, must colour at least 34 edges. Let Ggr be the subgraph induced by
the red edges. Since G g has no monochromatic 4-cycle, Theorem 6 implies
that Gr = Gao.

Say the partite sets of Gop are M and N. We next try to split M into A
and B and N into C and D knowing that each vertex of M has at most two
red neighbours in C and at most two red neighbours in D, and similarly
with vertices of N. But a straight-forward calculation which we omit shows
that this splitting is impossible. O

We believe that 73(C4) = 5.

4 Other Small Values

In this section we consider other small multipartite Ramsey numbers. The
first theorem considers two vertex-disjoint copies of Cy. In [7] it was shown
that 1’2(204) =T.

Theorem 8 4 < r3(2C,) < 6.

Proof: Colour K(3,3,3) so that the edges between two partite sets receive
one colour and the remaining edges the other colour. This does not have
two disjoint copies of C4 with the same colour. Thus r3(2C4) > 4.

Consider a (red,blue)-colouring of K(6,6,6) with partite sets A, B,C.
We show first that there is monochromatic C4 that has vertices from all
three partite sets.

Suppose otherwise. For a vertex v, colour D and partite set X, let
dp(v,X) be the number of edges of colour D from v to X. Let A be
the maximum of dp(v, X) over all colours, all vertices and all partite sets.
Suppose the maximum is achieved by vertex a € A for colour blue and to
partite set B. Let B’ denote a’s blue neighbours in B; |B'| = A.

By our supposition, two vertices in B’ cannot have a common blue
neighbour in C. So there are at most 6 blue edges from B’ to C and
therefore at least 6(A — 1) red edges from C to B’. Hence there is a vertex
of B’ with at least 6(A — 1)/A edges to C. Thus

6(A-1)

A> ==
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it follows that A > 5. Also, there is a vertex b of B with dreq(b,C) > 5,
and the majority of edges between B and C are red.

By the same argument (using b, C and red rather than a, B and blue),
there is a vertex ¢ of C with dpiue(c, A) > 5 and the majority of edges
between C and A are blue. Then by the same argument the majority of
edges between A and B are red; then the majority of edges between B and
C are blue. This yields a contradiction.

Hence there exists a monochromatic 4-cycle, call it F, that has vertices
from all three sets. Say F) has two vertices from A, one from B and one
from C. Since a 2-colouring of K (5, 5) guarantees a monochromatic Cy (see
[6]), there is a monochromatic 4-cycle F> with two vertices from B and two
from C that is disjoint from F;. Now, if we ignore the vertices of F; and
F, then we still have K (4,3,3). By Theorem 3 this has a monochromatic
C, as well. Since we have three disjoint monochromatic 4-cycles, two must
have the same colour and thus r3(2C4) < 6. O

The value for the 6-cycle is determined next:
Theorem 9 r3(Cs) = 3.

Proof: Clearly K(2,2,2) can be 2-coloured without a monochromatic Cg
(e.g., the normal Ramsey number of Cj is 8).

The proof that any 2-colouring of K (3,3, 3) has a monochromatic Cj is
by exhaustive computer search. We omit the details.

(To make the search feasible we do the following: There are nine edges
between every pair of partite sets. There is one colour, say red, that is in the
majority at least twice. So we have at least 10 red edges incident with some
partite set. Consider all 2-colourings of K (3, 6) without monochromatic 6-
cycle and with at least 10 red edges. Then for each such colouring, split the
6 vertices every possible way and colour the edges between them in every
possible way.) O

Ramsey numbers of stars are really only about maximum degrees and
the following result is typical.

Theorem 10 For a star K(1,a) with a edges, r3(K(1,a)) = a if a is odd
and a — 1 if a is even.

Proof: Suppose a is odd. Note first that one can 2-colour K(2,2,2) such
that every vertex has degree 2 in each colour. (One colour is a Cs, the
other 2K3.) Since a — 1 is even, this can be expanded to a colouring
of K(a —1,a — 1,a — 1) such that every vertex has degree a — 1 in each
colour. Obviously in K (a, a, a) each vertex is the centre of a monochromatic
K(1,aq).

30



This leaves the question of K(a — 1,a — 1,a — 1) when a is even. But
at least one monochromatic subgraph has average degree at least a — 1:
however, 3(a — 1) and a — 1 are odd so a suitable regular graph does not
exist. O
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