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ABSTRACT

Let k and d be integers with d > k > 4, let G be a k-connected graph
with |V(G)] > 2d — 1, and let z and z be distinct vertices of G. We show
that if for any nonadjacent distinct vertices u and v in V(G) — {z, 2}, at
least one of u and v has degree greater than or equal to d in G, then for
any subset Y of V(G) — {z, z} having cardinality at most £ — 1, G contains
a path which has z and z as its endvertices, passes through all vertices in
Y, and has length at least 2d — 2.

We also show a similar result for cycles.

1. INTRODUCTION

All graphs considered in this paper are finite simple undirected graphs
with no loops and no multiple edges. For a graph G, we let V(G) and E(G)
denote the set of vertices and edges of G, respectively. For a vertex v of G,
we let dg(v) denote the degree of v in G. For a path P = uot) «« + Um, o
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is called the initial vertex of P, and wu,, is called the terminal vertex of P.
For two vertices x and z, a path having z as its initial vertex and z as its
terminal vertex is called an (z, z)-path, and an (z, 2)-path of length at least
m is referred to as an (z, z; m)-path. Furthermore, for a vertex set Y (we
allow the possibility that Y N {z, z} # ¢), an (z, z)-path passing through
all vertices in Y is referred to as an (z,Y, z)-path, and an (z, Y, z)-path of
length at least m is referred to as an (z,Y, z;m)-path. If Y consists of a
single vertex, say y, then an (z,Y, z)-path and an (z,Y, z; m)-path are also
referred to as an (2, y, z)-path and an (z,y, 2; m)-path, respectively.
The following theorems appear in [1]:

Theorem A. Let k and d be integers with d > k > 3, and let G be a k-
connected graph with |V (G)| > 2d—1. Let z and z be distinct vertices of G,
and let Y be a subset of V(G) — {z, z} with cardinality £ — 1. Suppose that
the minimum degree of G is at least d. Then G contains an (z,Y, z; 2d - 2)-
path.

Theorem B. Let k and d be integers with d > k& > 2. Let G be a k-
connected graph with |V(G)| > 2d, and let Y be a subset of V(G) with
cardinality k. Suppose that the minimum degree of G is at least d. Then
G contains a cycle which passes through all vertices in Y and has length at
least 2d.

In this paper, we give the following theorems.

Theorem 1. Let k£ and d be integers with d > k& > 4, and let G be a
k-connected graph with |[V(G)| > 2d — 1. Let z and z be distinct vertices
of G, and let Y be a subset of V(G) — {z, z} with cardinality at most &k — 1.

Suppose that
max {dg(u),dg(v)} > d for any nonadjacent (L1)
1.1

distinct vertices  and v in V(G) — {z, z}.

Then G contains an (2,7, z; 2d — 2)-path.
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Theorem 2. Let k and d be integers with d > & > 3. Let G be a &
connected graph with |V (G)| > 2d, and let Y be a subset of V(G) with
cardinality at most k. Suppose that

max {dg(u),dg(v)} > d for any nonadjacent
distinct vertices u and v of G.

Then G contains a cycle which passes through all vertices in Y and has
length at least 2d.

Remark. Theorem 1 does not hold for £ = 3. To see this, let d, ! be
integers with d > 4 and | > 2, and define a graph G of order I(d —- 2) +4 by

VG) = {ani|1<h<l,1<i<d-2}u{z;|1<7<3}U{y},
E(G) {ahiah,-|1§hsl,1$i<j$d—-2}
U{ziz; | 1<i<j<3}
U{aniz;j |1<h<],15i<d-2,1<5j<3}
U{yz; |1<j<3}

(then G = (IK4_2 U K;) + K3). Then G is 3-connected and satisfies (1.1)
with z; = z and 72 = 2z, but the maximum length of an (z1,y,z2)-path is
d + 1. We similarly see that Theorem 2 does not hold for k¥ = 2.

Since the proofs of Theorems 1 and 2 follow essentially the same line of
argument, we prove only Theorem 1 in this paper.

Our notation is standard with the possible exception of the following:
Let G be a graph. For a subset U of V(G), we let (U) denote the subgraph
of G induced by U. For a vertex v of G, we denote by Ng(v) the set of
neighbours of v. Thus dg(v) = |[Ng(v)|. Let A be a subset of V(G). For a
subset U of V(G), we let

Nu(4) = |J Wel)nU),

vEA
ny(A) = |Nu(A)l.

For a subgraph H of G, we write Ny(A) and ny (A) for Ny(g)(A) and
‘nV(H) (A), respectively.
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For two subsets A and B of V(G), a path is called an (A, B)-path if
its initial vertex and terminal vertex belong to A and B, respectively, and
no other vertex on it belongs to either A or B (if A consists of a single
vertex, say a, and a € B, then the path a of length 0 is the only (A, B)-
path). A vertex a is often identified with the set {a}. For example, we
write Ny(a) and ny (a) for Ny({a}) and ny ({a}), respectively, and an
({a}, B)-path is called an (a,B)-path. Let P = ugu;---um, be a path.
We denote the length m of P by [(P). For two vertices u;,u; on P with
i < j, we let Plus,u;], Plui,u;), P(ui,u;], and P(u;,u;) denote the “sub-
paths” UiUip1 U2 o U1 Uy, Uil Uiq2 o0 Uy, Us1Uiq2 * 0 U1 Uy, and
Uip1Uit2 - - uj—1 of P, respectively (if j = ¢+ 1, P(u;,u;) denotes an empty
path; if j =4, Plu;,u;) and P(u;,u;] as well as P(u;,u;) denote an empty
path). The path obtained by “tracing P backward” is denoted by P~!;
that is to say, P! = u,,, - - - uq 0.

We conclude this section with propositions which we need in our proof
of Theorem 1. Proposition C appears in [2] as Lemma 2.1; Proposition D
appears in [4] as Corollary; and Proposition E appears in [3] as Theorem 1.

Proposition C. Let d > 1 be an integer, let G be a nonseparable graph,
and let z,y, z and w be vertices of G with x # z. Suppose that

da(u) > d for all vertices u in V(G) — {z, z,w}
and, in the case where y € {z, z, w}, suppose further that
dg(y) > min{d, 3}.

Then G contains an (z,y, z; d)-path.

Proposition D. Let d > 1 be an integer, let G be a nonseparable graph,
and let z,z and y be vertices of G with x # 2. Suppose that

max {dg(u),dg(v)} > d for any nonadjacent
distinct vertices u and v in V(G) - {x, z},

and

dg(y) > d.

36



Then G contains an (z,y, z; d)-path.

Proposition E. Let d > 4 be an integer, and let G be a 4-connected graph
with |V(G)| > 2d — 1. Let 7 and z be distinct vertices of G, and suppose

that
max {dg(u),dg(v)} > d for any nonadjacent

distinct vertices u and v in V(G) — {z, z}.
Then G contains an (z, z;2d — 2)-path which passes through all vertices
whose degree in G is strictly less than d.

2. PROOF OF THEOREM 1.

Throughout this section, let k,d,G,z,z,Y be as in Theorem 1. We
proceed by induction on |Y|. Let S denote the set of vertices in V(G) —
{z,z} whose degree in G is strictly less than d. By (1.1),

any two distinct vertices in S are adjacent to each other. (2.1)

IfY C S, then the result follows from Proposition E. Thus we may assume
that Y € S (so Y # ¢). By the induction hypothesis, G contains an
(z,Y’, z; 2d — 2)-path for any proper subset Y’ of Y. Let P be a longest
(z, z)-path which passes through at least |Y'| — 1 vertices in Yand passes
through all vertices in Y N'S. Then

P is an (z, z; 2d — 2)-path. (2.2)

Hence if Y C V(P), then there is nothing to be proved. Thus we may
assume Y ¢ V(P). By our choice of P, Y — V(P) consists of a single vertex
whose degree is greater than or equal to d. WriteY —V(P) = {y}. If d = &,
the k-connectedness of G implies that S = ¢, and hence the result follows
from Theorem A. Thus we may assume d > k + 1. Then 2d — 2 > k, and

hence
V(P)| >k (2.3)
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by (2.2). Label the vertices in (Y — {y}) U{z, z} along P as yo, 41, -, yv)

with £ = o and z = y;y|. Let I; = Ply;, yi41] for each i with 0 < i < |Y|-1,

and let )
I={L|0<i<|Y|-1}.

Let H be the connected component of G — V(P) which contains y. If o
and S are vertices in Np(V(H)) such that

o occurs before S on P, {e,f} C V(I;) for some I; € T,
and such that
there exists an (o, y, 5)-path Q whose inner vertices are in V(H),

then the path
P' = Plz,a|QP|B, 7]

is an (z,Y,z)-path. In what follows, we show that I(P') > 2d — 2 for
some choice of &, § and Q. For this purpose, we divide the proof into
several cases. We here summarize the nested structure of the cases for the
convenience of the reader.

Case 1. H is separable (Lemmas 2.1 through 2.23).
Case 1.1. np(Z}) > k (Lemmas 2.8 through 2.21).
Case 1.1.1. y € V(B), or y = ¢ and dp(y) < 2 (Lemmas 2.9
through 2.20).
Subcase 1. wp + wi > 2.
Subcase 2. wg + w} < 1 (Lemmas 2.16 through 2.20).
Subcase 2.1 wo + w} > 2.
Subcase 2.2. wo + w{ < 1 (Lemmas 2.17 through 2.20).
Subcase 2.2.1. w > k — 1 (Lemma 2.17).
Subcase 2.2.2. w < k — 2 (Lemmas 2.18 through 2.20).
Case 1.1.2. y € A, or y = c and dp(y) > 3 (Lemma 2.21).
Case 1.2. np(Z}) < k — 1 (Lemmas 2.22 and 2.23).
Case 2. H is nonseparable.
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Case 1. H is separable :
Let C be the set of cutvertices of H, let £ be the set of endblocks of H,
and set
Er={Be&|(V(B)-C)NS = ¢}.

In view of (2.1), we have £* # ¢. Let B € £. Let ¢ = ¢p denote the unique
vertex in V(B)NC, and set A = Ap = V(B) — {c}. Define ¢ = ¢}y as
follows: if y & V(B), then let ¢/ be the (unique) vertex in C with ¢ # y
such that ¢/ and y are in the same block of H and such that every (c,y)-
path passes through ¢/; if y € V(B), then let ¢ = ¢. Define K = Kp as
follows: if y ¢ V(B), then let K be the connected component of H — ¢/
which contains y; if y € V(B), then let K = H — A. Set Z = Zp = V(K),
and Z* =Zp = AUZ.
Since G is k-connected, it follows from (2.3) that

np(Z}) > np(Ag) >k — 1 for every B€ €. (2.4)

Define
E*={Be &t |np(Z3) > k}.

We henceforth fix B € £ (recall that £7 # ¢). In the case where £* # ¢,
we choose B so that B € £*. Let ¢,A,d, K,Z,Z* be as in the preceding
paragraph. Let 2’ denote the last vertex in Np(Z*) on P, and for a vertex
u € Np(Z*)—{z'}, let ut denote the vertex in V(P(u, z])NNp(Z*) closest
to v on P. First we give a lemma concerning vertices a and b in Z* such
that

a#band {a,b} NA#¢. (2.5)

Lemma 2.1. Let a and b be vertices in Z* which satisfy (2.5). Then there
exists an (a,b;d — np(Z*))-path in H. Furthermore, the following hold.
(I) If {a,b} C V(B), then in B, there exists an (a,b;d — np(Z*))-path.
(II) If one of the following conditions (i), (ii) or (iii) holds, then there exists
an (a,y,b;d — np(Z*))-path in H:

(i) ve 4

(i) y=cand dp(y) > 3;

(iii) {a,b} NZ # ¢.
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Proof. We may assume a € A. Define b’ as follows: if b € V(B), then
let ¥’ = b; otherwise, let b’ = ¢. Further, define 3’ as follows: if (II)(i) or
(ii) holds, let 3’ = y; otherwise, let 3’ = a. Applying Proposition C to
B, we see that there exists an (a,y’,b’;d — np(Z*))-path R in B. Then in
the case where (II)(i) or (ii) holds, and in the case where y = ¢ =¥, R is
an (a,y,b';d — np(Z*))-path. This completes the proof for the case where
b € V(B). Thus assume that b ¢ V(B) (so ' = ¢). Let Q be a (c, b)-path
in H. In the case where y & V(B), we may assume that ) passes through
y by the definition of K. Then RQ is an (a,y,b;d — np(Z*))-path in H. O

Let W denote the set of those pairs (u,v) of vertices in Np(Z*) such
that u occurs before v on P and such that there exist a € Nz-(u) and
b € Nz-(v) which satisfy (2.5). Further define W* as follows: if y & V(B),
or if y = cand dg(y) < 2, then let W* denote the set of those pairs (u,v) in
W such that there exist @ € Nz-(u) and b € Nz-(v) such that they satisfy
(2.5) and

{a,b}NZ # ¢; (2.6)

otherwise, i.e, if y € A, or if y = ¢ and dp(y) > 3, then let W* = W. The
following two lemmas follow immediately from the definition of W and W*
and from Lemma 2.1.

Lemma 2.2. Let (u,v) € W. Then there exists a (u, v; d—np(Z*)+2)-path
Q whose inner vertices liein V(H). Further, if u € Np(a) and v € Np(b) for
some a and b in A with a # b, then there exists a (u,v;d—np(Z*)+2)-path
Q whose inner vertices lie in V(B). O

Lemma 2.3. For every (u,v) € W*, there exists a (u,y,v; d—np(Z*) +2)-
path whose inner vertices lie in V(H). O
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Let

W = {u€eNp(Z*)-{2} | (w,ut)eW},

W* = {ueW | (u,ut)ew*},

Wo = {ueW | |V(P(w,u*))NY|=0},

Wi = Wonwr,

Wi = {ueW | |V(Pu,ut))NY|=1},

W = {uweW:| V(P(u,u"))NY CS},

Wi = Wi-Wy,

wr = Wiawe,

wi = Wi -wy,

We = W-—(WoUWy).
Let w = |W|, wo = |[Wol|, w1 = |Wh|, we = |We|, w* = |W*|, w§ = |W§|,
wy = Wy |, wf = W, wf = |W{|, wi = |W]]. The following lemma

follows immediately from the definition of w;,w] and ws:
Lemma 2.4. wi +wj +2w: < |V(P)NY|<k-2.0

Lemma 2.5. For every (ug,v0) € W, V(Pluo,v0)) "W # ¢.

Proof. Choose (u,,v;) € W with u1,v1 € V(P[uo,vo]) so that Plu, v
is minimal. We show that u; € W. For this purpose, it suffices to show
that v; = uf. By way of contradiction, suppose that there exists u €
V(P(uy,v1)) N Np(Z*). Take a € Nz-(u1) and b € Nz-(v,) so that (a,b)
satisfies (2.5). Assume first that Na(u) # ¢, and take o’ € Na(u). Then
since a # b, (a,a’) or (a’,b) satisfies (2.5), and hence we have (u;,u) € W
or (u,v;1) € W, which contradicts the minimality of Plui,v:]. Assume now
that Na(u) = ¢. Then since u € Np(Z*), Nz(u) # ¢, and hence we can
take a’ € Nz(u). But then since {a,b} N A # ¢, (a,a’) or (d’,b) satisfies
(2.5), which again contradicts the minimality of Plu,,v,]. O

Lemma 2.6. For every (uo,vo) € W*, V(Plug,v0)) N W* # ¢.

Proof. In the case where W* = W, the result is immediate from Lemma
2.5. Thus assume that W*CW (so y & V(B), or y = ¢ and dp(y) < 2).
Let (ug,v0) € W*. Choose (u;,v;) € W* with uy,v; € V(P[ug,vo]) so that
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Pluq, 4] is minimal. It suffices to show that v; = uf. By the definition of
wH,

(i) Na(uo) # ¢ and Nz(vo) # ¢ ; or

(ii) Nz(uo) # ¢ and Na(vo) # ¢.

Suppose that there exists u € V(P(uo,v0)) N Np(Z*). If u € Np(A), then
we have (u,vp) € W* or (up,u) € W* according to whether (i) or (ii)
holds. Similarly if u € Np(Z), then we have (up,u) € W* or (u,v) €
W* according to whether (i) or (ii) holds. Thus in any case, at least one
of (uo,u) or (u,v0) belongs to W*, which contradicts the minimality of
Pluq,v1). O

Lemma 2.7.

(i) 1(Plu,ut])>2 for all u€ Np(Z*) — {Z'}.

(il) I(Plu,ut]) > d—np(Z*)+ 2 for all u € Wy UW}.

Proof. If u € W}, let Q be a longest (u,y,u")-path whose inner vertices
lie in V(H); otherwise, let Q be a longest (u,u*)-path whose inner vertices
lie in V(H). We have [(Q) > 2 and, in the case where u € Wo U W}, we
have I(Q) > d — np(Z*) + 2 by Lemmas 2.2 and 2.3. Consider the path

R = Plz,u|QPut, 7].

We first prove (i). If V(P(u,ut))NY # ¢, then V(P(u,ut)) # ¢, and hence
we clearly have [(P[u,u*]) > 2. Thus we may assume V(P(u,ut))NY = ¢.
Then since R passes through all vertices in V(P)NY, the maximality of
[(P) implies I(P) > I(R), and hence {(Pu,u™*]) > I(Q) > 2, as desired.
Thus (i) is proved. To prove (ii), assume that u € Wp UW}. Then by the
definition of W, and W and by the choice of @), R passes through at least
|Y| — 1 vertices in Y, and passes through all vertices in Y N S. Hence the
maximality of [(P) implies

U(Plu,ut]) > 1(Q) >d—np(Z*) +2,

as desired. O
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Case 1.1. np(Z}) 2 k:

In addition to W and W*, we define another set I of pairs of vertices
in Np(Z*) and, in addition to W, Wp, etc., we define three other subsets
U, Up, U of Np(Z*). Recall that K = (Z). We consider the following
condition for vertices a,b in Z:

K contains an (a, y,b)-path (2.7)

(we allow the possibility that a = y = b). Define U as follows: if y ¢ A,
then let U denote the set of those pairs (u,v) of vertices in Np(Z) such
that % occurs before v on P and such that there exist vertices o € Nz(u)
and b € Nz(v) which satisfy (2.7); if y € A, then let U denote the set of
those pairs (u,v) of vertices in Np(y) such that u occurs before v on P.
Then by the definition of W, W* and U,

wnucw. 2.8)
Let
U = {ueNp(2*)-{Z} | (u,u*) €U},
U = {ueU | |V(P(u,u*))NY|=0},

. U1 = U- Uo.
Then by (2.8),
Wo N UO c W(;' (29)

Lemma 2.8. For every (uo,v0) € U, V(Pluo,v0)) N (W* UU) # ¢.

Proof. If there exist uf, v} € V(P[uo,vo]) such that (u),v)) € W*, the
desired conclusion follows from Lemma 2.6. Thus we may assume that no
two vertices up, vy € V (P[uo,vo)) satisfy (up,vh) € W*. Choose (uq,v1) €
U with uy, v € V(P[uo,v0]) so that Plu;,v;] is minimal. It suffices to
show that v, = u}. By way of contradiction, suppose that there exists
u € V(P(u1,m)) N Np(Z*). Take o’ € Nz.(u). Assume first that y ¢ A.
By the definition of U, there exist @ € Nz(u;) and b € Nz(v1) such that
they satisfy (2.7), and hence @’ € Z by the assumption that no two vertices
ug, v € V(Plug,vo)) satisfy (uf,vp) € W*. Let R be an (a,y,b)-path in K,
let Q be an (a’, V(R))-path in K, and let ¢ be the terminal vertex of Q. If
t € V(R|a,y]), then the path QR|[t,b] is an (a’,y,b)-path in K, and hence
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(u,v1) € U, which contradicts the minimality of Pluy,v:). Similarly, if ¢ €
V(Rly, b)), then considering the path Rla,#)Q~!, we get (u1,u) € U, which
again contradicts the minimality of Pfu;,v;]. Assume now that y € A. In
this case, {u1,v1} € Np(y) by the definition of U, and hence o’ = y by the
assumption that no two vertices uj, vy € V(P uo,vo]) satisfy (uf, vp) € W*.
But then (u1,u) € U, which again contradicts the minimality of Plu,,v1]. O

Case 1.1.1. y ¢ V(B),ory=cand dp(y) < 2:

Lemma 2.9. There exist (y,V(P))-paths R;,1 <4 < k, which satisfy the
following conditions.

(i) For any ¢,j with i # j, V(R:)NV(R;) = {y}.

(ii) For each i, let t; denote the terminal vertex of R;, and let b; denote the
vertex which occurs immediately before t; on R;. Then {b,,---,bx} C Z*,
[{i | b; € Z}| > k— 1, and V(Rily,bs]) € Z for each i with b; € Z.

Proof. First we consider the case where y # ¢ (so y # /). By Menger’s
Theorem and (2.3), we can find (y, V(P))-paths @;,1 < ¢ < k, pairwise
disjoint except at y. For each 1 <7 <k, let 7; be the terminal vertex of Q;,
and let a; be the vertex which occurs immediately before 7; on Q;. Let X =
{r: |1 <i<k}. fV(Qily,a:]) C Z for all 7, then we obtain paths with
the desired properties by simply letting R; = Q; (so t; = 7; and b; = q;)
for each 4. Thus assume that V{(Q;[y,a:}) € Z for some i. We may assume
V(Qily,a1]) € Z. Then Q, passes through ¢, and hence V(Qily,a:]) € Z
for all 2 < i < k. Assume for the moment that there exists T € Np(A) —
(X — {n1}). Take a € N4(7) and let Q be a (¢, a)-path in H. Now if we
let Ry = Q1[y,]Qat and R; = Q; for 2 < ¢ < k, then all requirements
are satisfied. Thus we may assume that Np(A) - (X — {11}) = ¢. Since
np(A) > k — 1 by (2.4), and since |X — {11}| = k — 1, we have Np(A) =
X —{n1} and np(A) = k- 1. Since np(Z*) > k by the assumption of Case
1.1, this implies that there exists 7 € Np(Z)— (X — {71}). Take a € Nz(7),

k
let Q be an ( a, V(Ql[y,c’))U(U V(Q;ly, ai])) )-path in K, and let o
=2



k
be the terminal vertex of Q ( thus if a € V(Ql(y,c’))U(U V(Qi[y,ai])),

i=2
k

then Q =aand o’ =a ). Ifd ¢ U V(Q:(y,a;)), then o’ € V(Q1ly,c)),
and hence we obtain paths with t:ﬁ: desired properties by letting Ry =
Qily,@)Q 'ar and R; = @; for 2 < i < k. Thus assume that o’ €
V(Q:(y,a;]) for some i, 2 < i < k. We may assume that o’ € V(Q2(y, az)).
Take b € Na(72), and let Q' be a (¢/,b)-path in H. Now if we let R, =
Q1ly,¢)Q'b12, Ry = Q2[y,a’|Q tar and R; = Q; for 3 < i < k, then all
requirements are satisfied.

We now consider the case where y = ¢ and dp(y) < 2. Take two new
vertices uo, o with up # vo and uo,vo € V(G), and define a graph Go by

V(Go) = V(G)U {uo,v0},
E(Go) = E(G)U{wu|u€ Nzyvp)(¥) U {y}} U {vou|u € V(P)}.

Then dg,(uo) = dg(y) —dp(y) +1 > d—1 > k and dg,(v0) > k. Con-
sequently, Gp is k-connected, and hence there exist k pairwise internally
disjoint (ug,vo)-paths @;, 1 < i < k. Let t; be the vertex which occurs
immediately before 1o on Q;. Since Ng,(vo) = V(P), we may assume that

VIP)NV(Q;)={t:} forall 1<i < k. (2.10)

We may also assume that for each 1 < i < k-1, y € V(Q;). Then by
(2.10), V(Q:)NA=¢ forall 1 <i<k—1 Nowfor 1 <i<k, let a; be
the vertex which occurs immediately after up on Q);, and let
R; = ya;Qila: ti] for1<i<k-1,
R yarQklow, t] (ify & V(Qx) )
k= .
Qrly, t] (ify € V(Qk) )

Then all requirements are satisfied. O
Lemma 2.10. WS U Up # ¢.

Proof. Let ty,---, 1 be as in (ii) of Lemma 2.9. Since |Z] = Y| <k — 1,
there exists I; € Z such that |{¢1, -t} N V(L) > 2. At the cost of
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relabeling, we may assume t;,t2 € V(I;), and t; occurs before t; on P.
Then since (t;,t2) € W* UU by Lemma 2.9,
¢ # V(P[t,,t))n(W*UU) (by Lemmas 2.6 and 2.8)
= V(Plt,t2))N(WgUUs)  (by the definition of W and Up),

as desired. O

We choose o € Wi U Up as follows. First assume that W§ # ¢. In
this case, we let & € W (any element of W§ will do). Next assume that
W¢ = ¢. Then Uy # ¢ by Lemma 2.10. In this case, we let a € Up (any
element of Uy will do). Let Py be a longest (c,y,at)-path whose inner
vertices lie in V(H), and let

P’ = Plz,0|PoPla™, 2].

Then P’ is an (z,Y, z)-path passing through all vertices in Np(Z*). We
show that I(P’) > 2d — 2. For this purpose, we give estimates of the length
of subpaths of P’ (Lemmas 2.11 through 2.15).

Lemma 2.11.

(i) UP’'[u,u*]) >2 forall ue Np(Z*) — {2}.

(i) UP'[u,ut]) >d—np(Z*)+2 for all u € WoU W{.
Proof. If u # ¢, then P'[u,u*] = Plu,u?], and hence the results follow
from Lemma 2.7. Thus we may assume « = a. Since P'|a,at] = P, we
immediately see that I(P'[a, at]) > 2. Now asssume that a € Wp U W}.
Then a € Wo N (WS UUp) C W by the choice of a and (2.9). Hence by
Lemma 2.3, the maximality of I(P,) implies that

{P'la,at]) =U(Po) 2d—np(Z*)+2. O

In Lemmas 2.12 through 2.14, we are mainly concerned with [(P’[u, ut])
for u e Wy — Wi (= W{UW/). Let
w’ Uo - (Wou {a}) (S Np(Z*)-(WuU{z'})),
w = |W
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Lemma 2.12. For any u; € W{ and for any u; € W/,
WP [ur,uf]) + U(P'[uz, ud]) > d — np(Z*) + 4.
Proof. Since u; # « for i = 1,2, we have
P'lus,uf] = Plui,ui] fori=1,2.
Thus it suffices to show that
UPlu1, uf)) + U(Pluz,u3]) 2 d — np(Z*) + 4.

By the definition of W] and by Lemma 2.2, we can find a (u;,u};d -
np(Z*)+2)-path Q; whose inner vertices lie in V(B), and by the definition
of W/, we can find a (uz,y,ug;2)-path Q, whose inner vertices lie in Z.
For these paths @; and @2, we have V(Q,) N V(Q2) C {y} (the case
where V(Q1) NV (Q2) = {y} is possible when y = ¢). First assume that
V(1) NV(Q2) = ¢. We may assume that u; occurs before uz on P.
Consider the path

R = Plz,m]Q1 Pluf , u2] Q2 Plu, 2].
Then the maximality of /(P) implies that [(P) > I(R), and hence

U +1(Q2)

U(Pluy,uf]) + I(Pluz,uf]) >
> d—np(Z*)+4,

as desired. Next assume that V(Q,) N V(Q2) = {y}. Then the maximality
of [(P) implies

(Plur,uf]) > 1(Q1) > d—np(Z*) + 2,
and hence

I(Pluy,ut]) + UP[uz,uf]) (d=np(Z*)+2)+2

d—np(Z*)+4

v

by Lemma 2.7.(i). O

Lemma 2.13. Let u; and ug be distinct vertices in W~. Then
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WP [, uf]) + U(P'[uz, ug]) > 6.
Suppose further that {(u1,u2), (uf,uf)} NW # ¢. Then
UP'[uy,uf]) + U(P'[uz, uf]) > d — np(Z*) +6.

Proof. We may assume u; occurs before up on P. Write V(P(u;,u})) N
Y = {s;} for each i = 1,2. Then s;,5; € S by the definition of W, and
hence s1s2 € E(G) by (2.1). Let Q be a longest (u;,uz)-path whose inner
vertices are in V(H), and let @’ be a longest (uf,u])-path whose inner
vertices are in V(H). Consider the path

R = Plz,u1]QP ™ [uz, 51)5152 Pls2, 2].

Then R is an (z, z)-path passing through all vertices in V(P)NY. Conse-
quently, the maximality of I(P) implies that

I(Plur, uf)) (Rlu1,ud))
Q) + U(Pls1,uz]) + I(R[s1, 52]) + I(P]s2,uF]),

v

and hence
I(Plur, 51)) +U(Pluz, s2]) > UQ) + U(Rs1, 52]). (2.11)
Similarly, considering the path
R' = Plz,s1]s152 P~ s2,uf|Q Plug, 2],

we get

I(Pls1,ut)) + U(P[s2,uf]) > UQ') + I(R'[s1, 52]). (2.12)
By adding (2.11) and (2.12), we obtain

U(Plur,uf]) + U(Pluz, uf]) > UQ) + UQ') + U(R[s1, 52)) + I(R![51,52])
= Q)+ Q) +2 (2.13)

On the other hand, for each i = 1,2, u; # « by the choice of o, and hence
Plui,u}) = P'lui,uf). Hence L(P'[uy, ut]) +I(Pfug, uf]) > 1(Q)+U(Q')+2
by (2.13). Since I(Q) > 2 and I(Q’) > 2, this implies that

I(P'lur,uf]) + 1P [uz,uf]) > 6.
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Moreover, in the case where (u1,u2) € W or (uf,u]) € W, we have
Q) 2d-np(Z*)+2 or UQ)2d-—np(Z")+2,
respectively, and hence we obtain

I(P'fur,uf]) + U(P'[uz,uf]) > d—np(Z2*) +6. O

Lemma 2.14. Let X be a subset of W;~. Then
> WP ut]) 2 31X] - ex,
ueX

where

1 Gif|X|=1)
Ex =
0 (otherwise).

Proof. In the case where |X| = 0, there is nothing to be proved and in
the case where |X| = 1, the result is immediate from Lemma 2.11. Thus
we may assume | X| > 2. Write

X ={uy, ,n}, where m=|X|.
Then by Lemma 2.13, we obtain
D P s, 1)+ UP s, )}

1<i<m—1
+{U(P' [um, u}]) + U(P[u1,uf])} > 6m,

ie, 2Y U(P'[u,ut]) >6/X|,
ucX

as desired. O

By letting X = W in Lemma 2.14, we get

Y P, ut]) > 3wy e,
ueW ~

1 (if w7 =1)
where ¢=
0 (otherwise).

(2.14)
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For u € W, we have P'[u,u*| = P[u,u"]. Hence by the definition of
W, we get:

Lemma 2.15. [(P'[u,u*]) >3 for allu € W,. O

Using the lemmas above, we now proceed to show I(P')

> 2d - 2.
By Lemma 2.11.(i), {(P’) > 2(np(Z*) — 1). Hence if np(Z*) > d, then
I(P") > 2d — 2, as desired. Thus we may assume
np(Z*) <d-1. (2.15)
Subcase 1. wp +w} > 2:
By Lemma 2.11, we obtain
I(P)Y>2(d—np(Z*)+2) + (np(Z*)-3)-2=2d - 2,
as desired.
Subcase 2. wp +w] <1:
Recall that
W' = Us—(WoU{a}) (S Np(Z*)- (Wu{'})),
v o= W
Lemma 2.16. w' > w].
Proof. Since w§ <1, W§ C {a} by the choice of @, and hence
W3 u{a}| = 1. (2.16)

Let #;,--,tk; b1, ,bx be as in (ii) of Lemma 2.9. We may assume

by, - ,bx—y € Z. Set T = {tl,“'ytlc—l}- Since bj € Nz(tj) for each
1< 7 <k -1, we clearly have

Nz(t) # ¢ foreacht € T. (2.17)
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We may assume that ¢;,- -+ ,x—1 occur on P in this order. Set

TO = {tJ l 1SjSk—2, IV(P(tJth-l'l))nYl:O}a
T T -To,
J = {LeI | VUIINT#s).

Then |T}| < | 7|, and hence |Tp| > k—1—|J}. Since (t;,t;41) € Uforall 1 £
j < k-2, it follows from Lemma 2.8 that V(P[t;,;41))N(WgUlp) # ¢ for
each j with t; € To. With this in mind, take u; € V(P[t;,t;41))N(WgUlo)
for each j with t; € To, and set U§ = {u; | t; € To}. Then

Uy S W5 UUo (2.18)
and
[Ugl = Tol 2k~ 1-17]. (2.19)
Set
i = Wiu{ut|ueW]},
J = {LeI |V{I)nVi#£¢}.
By the definition of W{,
Na(u) # ¢ and Nz(u) = ¢ for each u € V), (2.20)
and hence
TNV, =¢ (2.21)

by (2.17). Now if w} = 0, then there is nothing to be proved. Thus we may
assume wj > 0. Then

[T > wy + 1. (2.22)
In what follows, we separate some points of the proof of Lemma 2.16, and

present them as claims.

Claim 1. Let 0 <7 < |Y| - 1, and suppose that I; € JNJ’. Take t €
V(I;)NT and u € V(I;)NV,. Then t # u, and we have V(P[u,t))NW§ # ¢
or V(Plt,u)) NWg # ¢, according to whether u occurs before ¢ or t occurs
before u.
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Proof. We clearly have ¢t # u by (2.21). Now if u occurs before ¢t on P,
then (u,t) € W* by (2.17) and (2.20), and hence V(P[u,t)) N W} # ¢
by Lemma 2.6; similarly, if ¢ occurs before u, then (t,u) € W* and hence
V(P[t,u))NW§ # ¢. O

Claim 2. Let t; € To. Then V(P[tj,tj.HI) nv; = ¢.
Proof. Suppose that there exists u € V(P[t;,t;41]) N V4. Then by Claim
1, w§ 2> |V(P[t;,u)) NWE| + |[V(Plu, t;41)) NWg| > 2, a contradiction. O

Claim 3. |JNJ'| <w§ < 1.
Proof. By Claim 1, we have V(Plyi,y:i41)) N Wg # ¢ for each 7 with
L e JNnJ'. Hence |TNJ'| <w§ <1, as desired. O

Claim 4. |JNJ'|+|(Wgu{a})NUj| < 1.
Proof. Suppose that |7 NJ’| + |(W§ U {a}) NU}| = 2. Then by Claim 3
and (2.16),

TNJ'|=ws=1 (2.23)

and
|[(Wg U {a})nUj| = 1. (2.24)

Since W¢ # ¢ by (2.23), W5 = {«} by the choice of a.. Consequently,
W NnUgl =1 (2.25)

by (2.24). Write 7N J’ = {I;}, and take u € V(I;)) N V;. If V(Ply;,u)) N
T # ¢, let v; be the vertex in V(P[y;,u)) N T closest to  on P, and let
v = u; if V(P(u,yi1]) NT # ¢, let v; = u, and let v, be the vertex in
V(P(u,yi+1]) N T closest to u on P. Then

V(P(v1,v2))NT = ¢, (2.26)

and we get

V(Ploy,v2)) " W5 # ¢ (2.27)

by Claim 1. Since it follows from Claim 2 and (2.26) that V(P[v1,v2))
NV(P[t;,t;41)) = ¢ for each t; € Tp, we get V(Plvy,v2)) NU§ = ¢ by
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the definition of Uj. Consequently, it follows from (2.25) and (2.27) that
wh > (Wg NUY| + [V (Plvr,v2)) NWg| > 2, a contradiction. O

Returning to the proof of the lemma, we now obtain

w = |Uo— (WoU{a})
= |Uo — (W5 U {a})| (by (2.9))
> U — (W5 u{a})l (by (2.18))
= |Ugl — (W5 U {a}) Ny
> k-1-|J| - (Wgu{eh) Ny (by (2.19))
> k-1-(k=-1-|T'+|TNT") - (W5 U{a}) N Uyl

(since |[JUJ'| <|ZI=|Y]|<k-1)
|7 -1 (by Claim 4)
w) (by (2.22)).

v v

This completes the proof of Lemma 2.16. O

Subcase 2.1. wo +wy >2:
First assume wp + w§ = 1. Then w} > 1, and hence v’ > w} > 1 by

Lemma 2.16. Let
{u} = Wo U WY,

v €eW], vpeWw’.
Then by Lemmas 2.11 and 2.12,

(P > U(P'[u,u?])+ (P v1,v]]) + (P vz, vF]) + (np(Z*) — 4) - 2
> (d—=np(Z*)+2)+(d—np(Z*)+4) +2np(Z*) -8

2d - 2,

as desired. Next assume that wp + wf = 0. Then w’ > w} > 2. Hence we

can find u;,uz,v1, v2 such that

{ul,u2}gW{a 'U-]#'U.z,
{vi, v2} SW', v # 2.

Consequently, we obtain
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(P

v

1P [wr, uf]) + U(P"[os, vf])

+(P'[uz, uF)) + U(P'[ve, v]]) + (np(Z2*) —5)- 2

> 2(d—np(Z*)+4)+2np(Z*)-10
= 2d-2.

Subcase 2.2. wo +wf < 1:

Subcase 2.2.1. w>k—-1:
By the assumption of this case,

wo+wi +wi +we > k-1

Combining Lemma 2.4 and (2.28), we get
we Swp — 1.

Consequently,
wo=1 w=0, wf=0,

and hence again by Lemma 2.4 and (2.28),
wy =k-2, [Y|=k-1,

which implies that

V(IL)NW #£¢ forevery 0<i<[Y|-2=k-3.

(2.28)

Lemma 2.17. There exist up € W; and u; € W[ such that ug occurs

before u; on P and such that {(uo,u1), (ud,uf)} NW # ¢.

Proof. Write Wy = {vo}, and let vg € V(P[ym, Um+1)). We first consider
the case where £ > 5 or m # 1. In this case, there exists l € {i e N|1 <
i <k —3} — {m}. For thisl and for j = 0,1, let V(I;_14;) "W = {u;}.
Suppose that (ug,u1) € W. Then Na(uo) = Na(u1) and na(uo) < 1 and,
in the case where na(uo) = 1, we have Nz(uo) = Nz(u1) = ¢. Since
(1o, ut) € W, this implies that ud # u; and (ud,u1) € W, and hence by
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Lemma 2.5, there exists u € V(Plud,u1)) N Wo C V(P[y1,3141)), which
contradicts the fact that wo = 1. Thus (uo,u1) € W.

We now consider the case where k = 4 and m = 1. For j = 0,1, let
V({I;) N W = {u;}. Since vo € V(Ply1,42)) N Wo, V(L) N Np(Z*)| > 2
by the definition of Wy, and hence

ud # uy. (2.29)
Since wo = 1, we also get
V(Plyo,11)) N Wo = V(Ply2, 1)) N Wo = ¢. (2.30)
First assume |A| > 3. Then since G — ¢ is 3-connected,
na(V(P)) > 3. (2.31)
By Lemma 2.5, (2.29) and the assumption that wo = 1,
NA(V(I)) = Nal{ug,u1}).
By Lemma 2.5 and (2.30),
Na(V(lo)) = Na(uo), Na(V(l2)) = Na(u?).
Consequently,
Na(V(P)) = Na({uo.u1}) U Na({ug  ui }),

and hence by (2.31), na({ug,u1}) =2 or na({ug,ut}) > 2, which implies
that (uo,u1) € Wor (ut,uf) € W, respectively. Next assume |A| < 2, and
take @ € A. Then

np(a) = dg(a) —dp(a) 2d—2>np(Z*) -1

by (2.15), and hence a € Na(uo) N Na(ud) or a € Na(uy) N Na(uf) by
(2.29). Now if @ € N4(uo)NNa(ug), then since we have Nz-(u;)—{a} # ¢,
or Nz-(uf) — {a} # ¢ by the fact that (u1,u}) € W, we get (up,u1) € W
or (uf,ut) € W similarly, if a € Na(u1) NNa(ut), the desired conclusion
follows from the fact that (up,ud) € W. O
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By the fact that wo = 1 and by Lemmas 2.17, 2.11 and 2.13,
I(PY>(d-np(Z*)+2)+(d—np(Z*)+6) + (np(Z*) —4)-2=2d,

as desired.

Subcase 2.2.2. w<k-—-2:

Lemma 2.18. |V(B)| > d—np(Z*)+3.
Proof. Take a € A. We first show that

np(a) <np(Z*) - 2. (2.32)

By way of contradiction, suppose that np(a) > np(Z*) — 1. Then u €
WU {z'} for every u € Np(Z* — {a}). Consequently,

Np(Z* - {a}) SWU{}, (2.33)

and hence
np(Z*—{a}) Sw+1<k-1 (2.34)

by the assumption of Subcase 2.2.2. On the other hand, since G — ¢’ is
(k — 1)-connected, np(Z) > k — 1, and hence

np(Z* —{a}) > k-1 (2.35)
By (2.33), (2.34) and (2.35),
Np(Z* — {a}) = WU {Z'}. (2.36)
Since np(Z*) > k by the assumption of Case 1.1, (2.34) implies that
Np(a) — Np(Z* —{a}) # ¢.

By (2.36), 2/ € Np(a) — Np(Z* — {a}). Hence there exists u € Np(a) —
Np(Z* — {a}) such that u* € Np(Z* — {a}). Then u € W, which contra-
dicts (2.36). Thus (2.32) is proved. We now obtain

np(Z*) — 2 2 np(a) = dg(a) — dp(a) 2 d— (IV(B)| - 1),
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and hence
|V(B)| > d—-np(Z*) +3,

as desired. O

Lemma 2.19. 4 < |V(B)| <w+ 1.

Proof. The first inequality follows immediately from Lemma 2.18 and
(2.15). To prove the second inequality, we let m = min{ |V(B)|, k£ }(= 4),
and show that m < w4+ 1 and m = |V(B)]. We first prove the following
claim.

Claim. There exist m independent edges e; = a;u; (1 < ¢ < m) with
a; € Z* and u; € V(P) such that |[AN{ay, - ,am}| >m — 1.

Proof. Since G — ¢ is (k — 1)-connected and since |V(P)| >k—-1>m -1,
there exist m — 1 independent edges f; = ¢;v; (1 < ¢ < m — 1) with
¢ € Aand v; € V(P). If Np(Z* — {c1, - yem—1}) — {01, -, Um-1} # ¢,
then by letting e,, be an edge joining Z* — {¢1,**+,¢m-1} and V(P) —
{v1,"**,Um-1}, and letting e; = f; for each 1 < i < m—1, we get edges with
the desired properties. Thus we may assume Np(Z* - {c1,"**,€m_1}) C
{v1,"+*,Um—1}. Since we get np(Z) > k — 1 from the fact that G — ¢’ is
(k — 1)-connected, this implies that (m = k and)

NP(Z*_{cla"'ycm—l}):{vl,"'avm—l}- (237)

Since np(Z*) > k by the assumption of Case 1.1, we also see that one of the
¢i, say c1, is adjacent to a vertex u in V(P) —{v1,- -+, vm-1}. By (2.37), v
is adjacent to a vertex a in Z* — {¢1,- - ,¢m—1}. Now if we let e; = ¢;u and
€n = avy, and let ¢; = f; foreach 2 <i<m—1, thenthee; (1<i<m)
satisfy the desired properties. O

Returning to the proof of the lemma, let u; (1 <47 < m) be as in the
claim. We may assume that u; occurs before u; on P if i < j. Then
(ui,uiy1) € W for each 1 <i < m — 1. Consequently,

w>m—1 (2.38)
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by Lemma 2.5, and hence m < k—1 by the assumption of Subcase 2.2.2. By
the definition of m, this implies that m = |V(B)|, and hence |V(B)| < w+1
by (2.38). This completes the proof of Lemma 2.19. O

By the assumption of Subcase 2.2 and by Lemmas 2.18 and 2.19,
wi +we >w—-12|V(B)|-2>d-np(Z*)+ 1. (2.39)
Now assume for the moment that wo + w} = 1. Then
w—(w] +wp) =1 (2.40)
We show that
(P >d+np(Z*)+ (wy +wz) — 2{w— (wy +w)} — 1. (241)
If wo + w} = 1, then by Lemmas 2.11, 2.15 and (2.14),
I(P) > (d—np(Z*) +2) + Buwy — 1) + 3wz + 2(np(Z*) —w — 1),

and hence (2.41) holds. Thus we may assume wo + w; = 0. Then w} = 1.
Consequently, by Lemmas 2.11, 2.16, 2.12, 2.15 and (2.14),

I(P) > (d—np(Z*) +4) + Bwy — 1) + 3wz + 2(np(Z*) —w - 2),

and hence (2.41) again holds. Thus (2.41) is proved. Combining (2.41),
(2.39) and (2.40), we obtain

l(P’) > d+nP(Z*)+(d_nP(Z*)—I—l)—2.1_1
— 2d-2,

as desired.
Thus we may assume wo + wy = 0. Then

wy + w2 = w. (2.42)

We first consider the case where there exist u € Wy and v € W{ such
that (u,v) € W. Write W = {u1,--+,u.}, where n = wy. At the
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cost of relabeling, we may assume (u1,u2) € W. Then by letting X =
Wi — {u1,42} in Lemma 2.14, we see that

> WP ut])) 2 3wr-2)-1
veW —{u1,ua}
= 3wy —-T. (2.43)
On the other hand,
(P [ur,uf]) + U(P'[uz,uf]) > d —np(Z*) +6 (2.44)
by Lemma 2.13. Adding (2.43) and (2.44), we obtain

Z U{P'[u,u™]) >d—np(Z*) + 3wy -1,

!LGWI-
and hence
I(P) > (d=np(Z*)+ 3wl — 1)+ 3up + 2(np(Z*) —w - 1)
= d-np(Z*) + (wy +we) + 2(w] +we +np(Z2*) —w) -3
> d-np(Z*)+(d-np(Z*)+ 1)+ 2np(Z*) -3
(by (2.39) and (2.42))
= 2d-2,
as desired.

Finally, we consider the case where no two vertices u and v in W
satisfy (u,v) € W. Since wo + w] = 0, we see that for every a € A,

w, (@) +ny,pzey - w (@) da(a) — dp(a) ~ nw, (a)

2 dgle) - (IV(B)| - 1) —we
= dg(a) - (IV(B)| + w2) + 1, (2.45)
and hence
Ny=(a) + iy zey —w (@) 2 d = (IV(B)| +ws) + 1. (2.46)

Since wo + wi = 0, it follows from Lemmas 2.19 and 2.4 that

k41— (V(B)| +ws) E+1—(w+14ws)
k—(wl'+2w2)
k—(k-2)

2. (2.47)

v v
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Since d > k + 1, this implies

d—(IV(B)l + wz) 2 2. (2.48)

Lemma 2.20. np(Z*) —w > d — we — 1 — £, where

{1 (ifwy =1)
£ =

0 (otherwise),

as in (2.14).
Proof. Set X = Np(Z*)-W. Since |{a € A|u € Np(a) }| < 1 for every
ue X —{},

IX = {z}2=Y nyx @2 (nx(a) - 1),

aCA a€A

and hence
np(Z*) -w=1X]2) (nx(@-D+1 (2.49)
aCA

If wy = 1, then by (2.46) and (2.48),
ny (@) >d— (|V(B)|+w;) >2 foreacha€ A,
and hence by (2.49), we obtain

np(Z*)-w 2= (V(B)| - D{d-(IV(B)l +wz) - 1} +1
> (IV(B)-2) 1+ {d = (V(B)| +wz) - 1} +1
= d—'IU2—2.

Thus we may assume w; # 1. In this case, by the assumption that no two
vertices u, v in W, satisfy (u,v) € W, we have

|{a€ A|Ny-(a)# ¢} <1

Hence by (2.46),

at least |A| — 1 vertices a in A satisfy

(2.50)
ny (@) >d - (|V(B)| +wz) + L.



Since [V(B)| > 4 by Lemma 2.19, we now obtain

np(Z*)~w > (V(B)|-2{d—([V(B)| +w2)} +1
(by (2.49) and (2.50))
> (IV(B)I =3)-2+{d~ (IV(B)| + w2)} + 1
(by (2.48))
(IV(B)] = 3) + 14+ {d - ([V(B)| + w2)} + 1

I iv

d—ws—1. 0O

Now since w > 3 by Lemma 2.19, we see that

(P (Bw] —¢&) + 3wz + 2(np(Z*) —w — 1)
3wl +3we +2(d—we —2—¢)—¢
(2d—2)+ (w—3) + (2w; +1-3¢)

2d - 2,

vV Il v v

as desired. This completes the proof for Case 1.1.1.

Case 1.1.2. y€ A, ory =cand dg(y) > 3 :

Lemma 2.21. W U Uy # ¢.

Proof. Since G is k-connected, there are & (y, V(P))-paths pairwise disjoint
except at y. Let ¢y, - -+, tx be the endvertices of these paths. Then for any
1,J with ¢ # 7 such that ¢; occurs before t; on P, (i;,t;) € W* UY. Thus,
arguing exactly as in the proof of Lemma 2.10, we get W UUp # ¢. O

Take o € W§ U Up, and let Py be a longest (c,y, ot)-path whose inner
vertices lie in V(H). Then the path P’ = Plz,a)PoPlat, 2] is an (2,7, 2)-
path passing through all vertices in Np(Z*). We can now argue as in
Case 1.1.1 to obtain I(P’) > 2d — 2 (note that W* = W, W} = W
and W} = W; in this case, and thus Subcase 2.1 and the case where
1=wo+ wf > wp + w} = 0 in Subcase 2.2.2 do not occur and we do not
need Lemmas 2.12 and 2.16). This is the end of Case 1.1.2, and concludes
the discussion for Case 1.1.
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Case 1.2. np(Z3) <k-1:

By the choice of B, the assumption of this case implies that £* = ¢ (see
the paragraph preceding Lemma 2.1). By (2.4), the assumption of this case
also implies that

np(Z*) =np(A) =k -1, (2.51)
where Z* = Z} and A = Ap as in Case 1.1. Since np(V(H)) 2 k by the
k-connectedness of G, we see from (2.51) that there exist uo and ao such
that

uo € V(P) — Np(Z*), ap € V(H) — Z*, and aouo € E(G).  (2.52)

This in particular implies that V(H) # Z*, and hence y ¢ V(B). Let
H' ={Zu{c}), where Z = Zp and ¢ = 5. We define &' as follows: if
H' is nonseparable, then let £ = {H'}; if H’ is separable, then let £ be
the set of endblocks of H'. We have ENE’ # ¢. Take B’ € £NE’. Then
Zp 2 V(H) — Z, and hence

ao € Zpr. (253)

For simplicity, set A’ = Ap: = V(B')—C. Since A’ C Z and since np(A’) >
k — 1, it follows from (2.51) that

Np(Z*) = Np(A) = Np(A") = Np(2). (2.54)

By (2.54), (2.53), (2.52) and (2.51), np(Z}) > INp(Z*)U{uo}| = k. Since
&* = ¢, this implies that
A0S %6, (2.55)

By (2.55), (2.1) and (2.54), V(P)NY NS C Np(A’) = Np(Z*), and hence
Wr = (2.56)

by the definition of W . Since B’ € £ N &’ was arbitrary, (2.55) together
with (2.1) also implies that

Eng| =1 (2.57)

Since (2.54) implies Np(Z*) = WU{z’'} and W = W*, we get the following
lemma by (2.56):
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Lemma 2.22. Np(Z*) =WguWFuW,u{z'}. O

Lemma 2.23. For every a € A and for every o’ € A’, there exists an
(a,y,0";2(d — k + 1))-path in H.

Proof. By Lemma 2.1 and (2.51), B contains an (a,c, d— (k—1))-path. By
extending this path, we obtain an (a,c’; d—k+ 1)-path P, in H (recall that
¢=cp and ¢ = ¢3). Denote by B; the block which contains ¢’ and y. We
first consider the case where By = B’ (so B; = H'). In this case, applying
Proposition D to B, we see that there exists a (¢/,y,a’; d—k+1)-path P, in
B'. Then Py P; is an (a,y,a’;2(d — k + 1))-path in H. We now consider the
case where By # B’. By (2.57), [V(B1)NC| = 2. Write (V(B1)NC)—{c'} =
{e1} (it is possible that ¢; = y). Note that (V(B;) — {¢,c1}) NS = ¢ by
(2.55) and (2.1). Assume for the moment that |[V(B;)| > 3. Ify = ¢4, let '
be a vertexin V(B;)—{c,c1}; ify # c1, lety = y. Thendp, (¥') > d—k+1.
Now applying Proposition C to By, we can find a (¢/,y’, ¢1; d — k + 1)-path
Pz in B;. Then P, is a (¢, y,c1;d — k + 1)-path. Extending the path P, P,
we obtain an (a,y,a’;2(d — k + 1))-path in H. Thus we may assume that
|V(B1)| =2 (soy = ¢; and V(B,) = {¢,¥})- By (2.57), there exists exactly
one block B, of H such that B; contains y and B, # B;. We have

dp,(y) =dg(y) —{(k—1)+1} >d—k.

First assume B, = B’. Then we can apply Proposition D to B, to obtain a
(y,a’;d—k)-path in Bz, and hence a (¢, y,a’;d—k+1)-path P, in H. Thus
P\ P, is an (a,y,a’; 2(d — k + 1))-path in H. Next assume B; # B'. Then
again by (2.57), we can write V(B2) N C = {y,c2}. Applying Proposition
C to B;, we obtain a (y, ¢p;d — k)-path in B;, which we can extend to a
(¢,y,a’;d—k+2)-path P; in H. Then P\ P, is an (a,y,a’;2(d—k+ 1) +1)-
pathin . O

We first consider the case where w§ > 1. Take o € WJ. Let P, be a
longest (o, y, at)-path whose inner vertices lie in V(H), and define a path
P’ by P' = Plz,a)PyPla*,z]. By (2.54), we can find a € A and o’ € A’
such that o € Np(a) and o’ € Np(a’), and hence I(Py) > 2(d —k+ 1) + 2

63



by Lemma 2.23. Hence
(PY>2d—k+1)+2+2(k—-3)=2d-2,

as desired. We now consider the case where w§ = 0. Then by (2.51) and
Lemma 2.22,
wi +we+1=k—-1 (2.58)

On the other hand,
wi +2w, < |V(P)NY|<k-2 (2.59)

by the definition of W; and W,. By (2.58) and (2.59), w} =k -2, wp =0
and |V(P)NY| = k—2. Hence |Z| = k-1, and |V(L;)NNp(Z*)| = 1 for each
I; € I. Let uo and ag be as in (2.52). Choose I;, € T so that ug € V(I;;),
and write V(I;,) NNp(Z*) = {u}. Write {uo,u} = {e, 8} so that & occurs
before B on P. Take o’ € Na:(u). By (2.53), there is an (ao,y, a’)-path
in H, and hence there is an («,y, 5)-path Py whose inner vertices are in
V(H). Consider the path P’ = Pfz,a|PoP[B, 2]. Since w} = k-2 > 2,
there exists v € W} such that up ¢ V(Plv,v*]). Since Na(v) # ¢ and
Na(vt) # ¢, [(Plv,v*]) = 2(d — k + 1) + 2 by Lemma 2.23 and by the
maximality of (P). Since P|v,v*} = P'[v,v*] by the choice of v, we obtain

IP)>2d—k+1)+2+2k-3)=2d-2,

as desired. This completes the proof for Case 1.2, and this is the end of
Case 1.

Case 2. H is nonseparable :
In this case, we argue as in Case 1.1.2 (hence as in Case 1.1.1 as well)
with some alterations:
Let
B=H, A=Z*=V(H).

We get np(V(H)) > k by the assumption that G is k-connected. De-
fine P’ as in Case 1.1.2. If np(V(H)) > d, then we clearly have I(P") >
2(np(V(H))—1) > 2(d - 1). Thus we may assume np(V(H)) < d-1, and



hence |V(H)| > 2. Applying Proposition D to H, we see that Lemma 2.1
holds. Consequently, if wo + w{ > 2, then we can argue as in Case 1.1.2.
Thus we may assume wo + wy < 1. Only the proofs of Lemmas 2.18 and
2.20 need modification. The proof of Lemma 2.18 works if we let a = y.
Thus consider Lemma 2.20. We see that (2.47) and (2.48) hold in this case
as well. Further, (2.45) holds for every a € V(H), and (2.46) holds for
every a € V(H) — S. Consequently, if V(H)NS = ¢, then we can argue as
in the proof in Case 1.1.1. Thus we may assume V(H) N S # ¢. Then by
(2.1) and the definition of W;", wy = 0, and hence it follows from (2.45)
that

Mnpzy -w (@) 2 k= ([V(H)|+w2)+1 forallaeV(H) (2.60)

and
npzey - w (¥) = d— (IV(H)|[+wg) + 1. (2.61)
Now we can argue as in Case 1.1.1, using (2.60) and (2.61) in place of (2.50),
and (2.47) in place of (2.48), to get
np(Z*)—w 2 (V(H)]-1D-1+{d- (V(H)| +w2)} +1

= d—-'ll)z.

This completes the proof of Theorem 1.
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