Long Paths and Cycles Through Specified Vertices in k-Connected Graphs

Toshinori SAKAI

Research Institute of Mathematics Education,
Tokai University
2-28-4 Tomigaya, Shibuya, Tokyo
151-0063, JAPAN

ABSTRACT

Let k and d be integers with $d \ge k \ge 4$, let G be a k-connected graph with $|V(G)| \ge 2d-1$, and let x and z be distinct vertices of G. We show that if for any nonadjacent distinct vertices u and v in $V(G) - \{x, z\}$, at least one of u and v has degree greater than or equal to d in G, then for any subset Y of $V(G) - \{x, z\}$ having cardinality at most k-1, G contains a path which has x and z as its endvertices, passes through all vertices in Y, and has length at least 2d-2.

We also show a similar result for cycles.

1. INTRODUCTION

All graphs considered in this paper are finite simple undirected graphs with no loops and no multiple edges. For a graph G, we let V(G) and E(G) denote the set of vertices and edges of G, respectively. For a vertex v of G, we let $d_G(v)$ denote the degree of v in G. For a path $P = u_0u_1 \cdots u_m$, u_0

is called the initial vertex of P, and u_m is called the terminal vertex of P. For two vertices x and z, a path having x as its initial vertex and z as its terminal vertex is called an (x,z)-path, and an (x,z)-path of length at least m is referred to as an (x,z;m)-path. Furthermore, for a vertex set Y (we allow the possibility that $Y \cap \{x,z\} \neq \phi$), an (x,z)-path passing through all vertices in Y is referred to as an (x,Y,z)-path, and an (x,Y,z)-path of length at least m is referred to as an (x,Y,z;m)-path. If Y consists of a single vertex, say y, then an (x,Y,z)-path and an (x,Y,z;m)-path are also referred to as an (x,y,z)-path and an (x,y,z;m)-path, respectively.

The following theorems appear in [1]:

Theorem A. Let k and d be integers with $d \ge k \ge 3$, and let G be a k-connected graph with $|V(G)| \ge 2d-1$. Let x and z be distinct vertices of G, and let Y be a subset of $V(G) - \{x, z\}$ with cardinality k-1. Suppose that the minimum degree of G is at least d. Then G contains an (x, Y, z; 2d-2)-path.

Theorem B. Let k and d be integers with $d \ge k \ge 2$. Let G be a k-connected graph with $|V(G)| \ge 2d$, and let Y be a subset of V(G) with cardinality k. Suppose that the minimum degree of G is at least d. Then G contains a cycle which passes through all vertices in Y and has length at least 2d.

In this paper, we give the following theorems.

Theorem 1. Let k and d be integers with $d \ge k \ge 4$, and let G be a k-connected graph with $|V(G)| \ge 2d - 1$. Let x and z be distinct vertices of G, and let Y be a subset of $V(G) - \{x, z\}$ with cardinality at most k - 1. Suppose that

$$\max \{d_G(u), d_G(v)\} \ge d$$
 for any nonadjacent distinct vertices u and v in $V(G) - \{x, z\}$. (1.1)

Then G contains an (x, Y, z; 2d - 2)-path.

Theorem 2. Let k and d be integers with $d \ge k \ge 3$. Let G be a k-connected graph with $|V(G)| \ge 2d$, and let Y be a subset of V(G) with cardinality at most k. Suppose that

 $\max \{d_G(u), d_G(v)\} \ge d$ for any nonadjacent distinct vertices u and v of G.

Then G contains a cycle which passes through all vertices in Y and has length at least 2d.

Remark. Theorem 1 does not hold for k = 3. To see this, let d, l be integers with $d \ge 4$ and $l \ge 2$, and define a graph G of order l(d-2)+4 by

$$V(G) = \{ a_{hi} \mid 1 \le h \le l, \ 1 \le i \le d - 2 \} \cup \{ x_j \mid 1 \le j \le 3 \} \cup \{ y \},$$

$$E(G) = \{ a_{hi}a_{hj} \mid 1 \le h \le l, \ 1 \le i < j \le d - 2 \}$$

$$\cup \{ x_ix_j \mid 1 \le i < j \le 3 \}$$

$$\cup \{ a_{hi}x_j \mid 1 \le h \le l, \ 1 \le i \le d - 2, \ 1 \le j \le 3 \}$$

$$\cup \{ yx_j \mid 1 \le j \le 3 \}$$

(then $G = (lK_{d-2} \cup K_1) + K_3$). Then G is 3-connected and satisfies (1.1) with $x_1 = x$ and $x_2 = z$, but the maximum length of an (x_1, y, x_2) -path is d+1. We similarly see that Theorem 2 does not hold for k=2.

Since the proofs of Theorems 1 and 2 follow essentially the same line of argument, we prove only Theorem 1 in this paper.

Our notation is standard with the possible exception of the following: Let G be a graph. For a subset U of V(G), we let $\langle U \rangle$ denote the subgraph of G induced by U. For a vertex v of G, we denote by $N_G(v)$ the set of neighbours of v. Thus $d_G(v) = |N_G(v)|$. Let A be a subset of V(G). For a subset U of V(G), we let

$$N_U(A) = \bigcup_{v \in A} (N_G(v) \cap U),$$

 $n_U(A) = |N_U(A)|.$

For a subgraph H of G, we write $N_H(A)$ and $n_H(A)$ for $N_{V(H)}(A)$ and $n_{V(H)}(A)$, respectively.

For two subsets A and B of V(G), a path is called an (A, B)-path if its initial vertex and terminal vertex belong to A and B, respectively, and no other vertex on it belongs to either A or B (if A consists of a single vertex, say a, and $a \in B$, then the path a of length 0 is the only (A, B)-path). A vertex a is often identified with the set $\{a\}$. For example, we write $N_U(a)$ and $n_U(a)$ for $N_U(\{a\})$ and $n_U(\{a\})$, respectively, and an $(\{a\}, B)$ -path is called an (a, B)-path. Let $P = u_0u_1 \cdots u_m$ be a path. We denote the length m of P by l(P). For two vertices u_i, u_j on P with $i \leq j$, we let $P[u_i, u_j]$, $P[u_i, u_j)$, $P(u_i, u_j]$, and $P(u_i, u_j)$ denote the "subpaths" $u_iu_{i+1}u_{i+2}\cdots u_{j-1}u_j$, $u_iu_{i+1}u_{i+2}\cdots u_{j-1}u_j$, $u_iu_{i+1}u_{i+2}\cdots u_{j-1}u_j$, and $u_{i+1}u_{i+2}\cdots u_{j-1}$ of P, respectively (if j = i+1, $P(u_i, u_j)$ denotes an empty path; if j = i, $P[u_i, u_j)$ and $P(u_i, u_j)$ as well as $P(u_i, u_j)$ denote an empty path). The path obtained by "tracing P backward" is denoted by P^{-1} ; that is to say, $P^{-1} = u_m \cdots u_1 u_0$.

We conclude this section with propositions which we need in our proof of Theorem 1. Proposition C appears in [2] as Lemma 2.1; Proposition D appears in [4] as Corollary; and Proposition E appears in [3] as Theorem 1.

Proposition C. Let $d \ge 1$ be an integer, let G be a nonseparable graph, and let x, y, z and w be vertices of G with $x \ne z$. Suppose that

$$d_G(u) \ge d$$
 for all vertices u in $V(G) - \{x, z, w\}$

and, in the case where $y \in \{x, z, w\}$, suppose further that

$$d_G(y) \ge \min\{d, 3\}.$$

Then G contains an (x, y, z; d)-path.

Proposition D. Let $d \ge 1$ be an integer, let G be a nonseparable graph, and let x, z and y be vertices of G with $x \ne z$. Suppose that

$$\max \{d_G(u), d_G(v)\} \ge d$$
 for any nonadjacent distinct vertices u and v in $V(G) - \{x, z\}$,

and

$$d_G(y) \geq d$$
.

Then G contains an (x, y, z; d)-path.

Proposition E. Let $d \ge 4$ be an integer, and let G be a 4-connected graph with $|V(G)| \ge 2d-1$. Let x and z be distinct vertices of G, and suppose that

 $\max \{d_G(u), d_G(v)\} \ge d$ for any nonadjacent distinct vertices u and v in $V(G) - \{x, z\}$.

Then G contains an (x, z; 2d - 2)-path which passes through all vertices whose degree in G is strictly less than d.

2. PROOF OF THEOREM 1.

Throughout this section, let k, d, G, x, z, Y be as in Theorem 1. We proceed by induction on |Y|. Let S denote the set of vertices in $V(G) - \{x, z\}$ whose degree in G is strictly less than d. By (1.1),

any two distinct vertices in
$$S$$
 are adjacent to each other. (2.1)

If $Y\subseteq S$, then the result follows from Proposition E. Thus we may assume that $Y\not\subseteq S$ (so $Y\neq \phi$). By the induction hypothesis, G contains an (x,Y',z;2d-2)-path for any proper subset Y' of Y. Let P be a longest (x,z)-path which passes through at least |Y|-1 vertices in Y and passes through all vertices in $Y\cap S$. Then

$$P \text{ is an } (x, z; 2d - 2)\text{-path.}$$
 (2.2)

Hence if $Y \subseteq V(P)$, then there is nothing to be proved. Thus we may assume $Y \not\subseteq V(P)$. By our choice of P, Y - V(P) consists of a single vertex whose degree is greater than or equal to d. Write $Y - V(P) = \{y\}$. If d = k, the k-connectedness of G implies that $S = \phi$, and hence the result follows from Theorem A. Thus we may assume $d \ge k + 1$. Then $2d - 2 \ge k$, and hence

$$|V(P)| > k \tag{2.3}$$

by (2.2). Label the vertices in $(Y - \{y\}) \cup \{x, z\}$ along P as $y_0, y_1, \dots, y_{|Y|}$ with $x = y_0$ and $z = y_{|Y|}$. Let $I_i = P[y_i, y_{i+1}]$ for each i with $0 \le i \le |Y| - 1$, and let

$$\mathcal{I} = \{ I_i \mid 0 \le i \le |Y| - 1 \}.$$

Let H be the connected component of G - V(P) which contains y. If α and β are vertices in $N_P(V(H))$ such that

 α occurs before β on P, $\{\alpha, \beta\} \subseteq V(I_i)$ for some $I_i \in \mathcal{I}$,

and such that

there exists an (α, y, β) -path Q whose inner vertices are in V(H),

then the path

$$P' = P[x, \alpha]QP[\beta, z]$$

is an (x, Y, z)-path. In what follows, we show that $l(P') \ge 2d - 2$ for some choice of α , β and Q. For this purpose, we divide the proof into several cases. We here summarize the nested structure of the cases for the convenience of the reader.

Case 1. H is separable (Lemmas 2.1 through 2.23).

Case 1.1. $n_P(Z_B^*) \ge k$ (Lemmas 2.8 through 2.21).

Case 1.1.1. $y \notin V(B)$, or y = c and $d_B(y) \le 2$ (Lemmas 2.9 through 2.20).

Subcase 1. $w_0 + w_1^* \ge 2$.

Subcase 2. $w_0 + w_1^* \le 1$ (Lemmas 2.16 through 2.20).

Subcase 2.1 $w_0 + w_1^+ \ge 2$.

Subcase 2.2. $w_0 + w_1^+ \le 1$ (Lemmas 2.17 through 2.20).

Subcase 2.2.1. $w \ge k - 1$ (Lemma 2.17).

Subcase 2.2.2. $w \le k - 2$ (Lemmas 2.18 through 2.20).

Case 1.1.2. $y \in A$, or y = c and $d_B(y) \ge 3$ (Lemma 2.21).

Case 1.2. $n_P(Z_B^*) \le k - 1$ (Lemmas 2.22 and 2.23).

Case 2. H is nonseparable.

Case 1. H is separable:

Let C be the set of cutvertices of H, let \mathcal{E} be the set of endblocks of H, and set

$$\mathcal{E}^+ = \{ B \in \mathcal{E} \mid (V(B) - C) \cap S = \phi \}.$$

In view of (2.1), we have $\mathcal{E}^+ \neq \phi$. Let $B \in \mathcal{E}$. Let $c = c_B$ denote the unique vertex in $V(B) \cap C$, and set $A = A_B = V(B) - \{c\}$. Define $c' = c'_B$ as follows: if $y \notin V(B)$, then let c' be the (unique) vertex in C with $c' \neq y$ such that c' and y are in the same block of H and such that every (c, y)-path passes through c'; if $y \in V(B)$, then let c' = c. Define C = C as follows: if C = C be the connected component of C = C which contains C = C be the connected component of C = C which contains C = C be the connected component of C = C and C = C be the contains C = C be the connected component of C = C which contains C = C be the connected component of C = C which contains C = C be the connected component of C = C and C = C be the connected component of C = C be the contains C = C be the connected component of C = C be the connected component of C = C be the contains C = C be the connected component of C = C be the connected component of C = C be the connected component of C = C be the contains C = C be the connected component of C = C be

Since G is k-connected, it follows from (2.3) that

$$n_P(Z_B^*) \ge n_P(A_B) \ge k - 1 \text{ for every } B \in \mathcal{E}.$$
 (2.4)

Define

$$\mathcal{E}^* = \{ B \in \mathcal{E}^+ \mid n_P(Z_B^*) \ge k \}.$$

We henceforth fix $B \in \mathcal{E}^+$ (recall that $\mathcal{E}^+ \neq \phi$). In the case where $\mathcal{E}^* \neq \phi$, we choose B so that $B \in \mathcal{E}^*$. Let c, A, c', K, Z, Z^* be as in the preceding paragraph. Let z' denote the last vertex in $N_P(Z^*)$ on P, and for a vertex $u \in N_P(Z^*) - \{z'\}$, let u^+ denote the vertex in $V(P(u, z]) \cap N_P(Z^*)$ closest to u on P. First we give a lemma concerning vertices a and b in Z^* such that

$$a \neq b$$
 and $\{a, b\} \cap A \neq \phi$. (2.5)

Lemma 2.1. Let a and b be vertices in Z^* which satisfy (2.5). Then there exists an $(a,b;d-n_P(Z^*))$ -path in H. Furthermore, the following hold.

- (I) If $\{a,b\} \subseteq V(B)$, then in B, there exists an $(a,b;d-n_P(Z^*))$ -path.
- (II) If one of the following conditions (i), (ii) or (iii) holds, then there exists an $(a, y, b; d n_P(Z^*))$ -path in H:
- (i) $y \in A$;
- (ii) y = c and $d_B(y) \ge 3$;
- (iii) $\{a,b\} \cap Z \neq \phi$.

Let \mathcal{W} denote the set of those pairs (u,v) of vertices in $N_P(Z^*)$ such that u occurs before v on P and such that there exist $a \in N_{Z^*}(u)$ and $b \in N_{Z^*}(v)$ which satisfy (2.5). Further define \mathcal{W}^* as follows: if $y \notin V(B)$, or if y = c and $d_B(y) \leq 2$, then let \mathcal{W}^* denote the set of those pairs (u,v) in \mathcal{W} such that there exist $a \in N_{Z^*}(u)$ and $b \in N_{Z^*}(v)$ such that they satisfy (2.5) and

$$\{a,b\} \cap Z \neq \phi; \tag{2.6}$$

otherwise, i.e., if $y \in A$, or if y = c and $d_B(y) \ge 3$, then let $\mathcal{W}^* = \mathcal{W}$. The following two lemmas follow immediately from the definition of \mathcal{W} and \mathcal{W}^* and from Lemma 2.1.

Lemma 2.2. Let $(u, v) \in \mathcal{W}$. Then there exists a $(u, v; d-n_P(Z^*)+2)$ -path Q whose inner vertices lie in V(H). Further, if $u \in N_P(a)$ and $v \in N_P(b)$ for some a and b in A with $a \neq b$, then there exists a $(u, v; d-n_P(Z^*)+2)$ -path Q whose inner vertices lie in V(B). \square

Lemma 2.3. For every $(u,v) \in \mathcal{W}^*$, there exists a $(u,y,v;d-n_P(Z^*)+2)$ -path whose inner vertices lie in V(H). \square

Let $W = \{ u \in N_P(Z^*) - \{z'\} \mid (u, u^+) \in W \},$ $W^* = \{ u \in W \mid (u, u^+) \in W^* \},$ $W_0 = \{ u \in W \mid |V(P(u, u^+)) \cap Y| = 0 \},$ $W_0^* = W_0 \cap W^*,$ $W_1 = \{ u \in W \mid |V(P(u, u^+)) \cap Y| = 1 \},$ $W_1^- = \{ u \in W_1 \mid V(P(u, u^+)) \cap Y \subseteq S \},$ $W_1^+ = W_1 - W_1^-,$ $W_1^* = W_1^+ \cap W^*,$ $W_1^* = W_1^+ - W_1^*,$ $W_2 = W - (W_0 \cup W_1).$

Let w=|W|, $w_0=|W_0|$, $w_1=|W_1|$, $w_2=|W_2|$, $w^*=|W^*|$, $w_0^*=|W_0^*|$, $w_1^-=|W_1^-|$, $w_1^+=|W_1^+|$, $w_1^*=|W_1^*|$, $w_1'=|W_1'|$. The following lemma follows immediately from the definition of w_1^+, w_1^- and w_2 :

Lemma 2.4.
$$w_1^+ + w_1^- + 2w_2 \le |V(P) \cap Y| \le k - 2$$
. \square

Lemma 2.5. For every $(u_0, v_0) \in \mathcal{W}$, $V(P[u_0, v_0)) \cap W \neq \phi$.

Proof. Choose $(u_1,v_1) \in \mathcal{W}$ with $u_1,v_1 \in V(P[u_0,v_0])$ so that $P[u_1,v_1]$ is minimal. We show that $u_1 \in \mathcal{W}$. For this purpose, it suffices to show that $v_1 = u_1^+$. By way of contradiction, suppose that there exists $u \in V(P(u_1,v_1)) \cap N_P(Z^*)$. Take $a \in N_{Z^*}(u_1)$ and $b \in N_{Z^*}(v_1)$ so that (a,b) satisfies (2.5). Assume first that $N_A(u) \neq \phi$, and take $a' \in N_A(u)$. Then since $a \neq b$, (a,a') or (a',b) satisfies (2.5), and hence we have $(u_1,u) \in \mathcal{W}$ or $(u,v_1) \in \mathcal{W}$, which contradicts the minimality of $P[u_1,v_1]$. Assume now that $N_A(u) = \phi$. Then since $u \in N_P(Z^*), N_Z(u) \neq \phi$, and hence we can take $a' \in N_Z(u)$. But then since $\{a,b\} \cap A \neq \phi$, (a,a') or (a',b) satisfies (2.5), which again contradicts the minimality of $P[u_1,v_1]$. \square

Lemma 2.6. For every $(u_0, v_0) \in \mathcal{W}^*$, $V(P[u_0, v_0)) \cap W^* \neq \phi$.

Proof. In the case where $W^* = W$, the result is immediate from Lemma 2.5. Thus assume that $W^* \subseteq W$ (so $y \notin V(B)$, or y = c and $d_B(y) \leq 2$). Let $(u_0, v_0) \in W^*$. Choose $(u_1, v_1) \in W^*$ with $u_1, v_1 \in V(P[u_0, v_0])$ so that

 $P[u_1, v_1]$ is minimal. It suffices to show that $v_1 = u_1^+$. By the definition of \mathcal{W}^* ,

- (i) $N_A(u_0) \neq \phi$ and $N_Z(v_0) \neq \phi$; or
- (ii) $N_Z(u_0) \neq \phi$ and $N_A(v_0) \neq \phi$.

Suppose that there exists $u \in V(P(u_0, v_0)) \cap N_P(Z^*)$. If $u \in N_P(A)$, then we have $(u, v_0) \in \mathcal{W}^*$ or $(u_0, u) \in \mathcal{W}^*$ according to whether (i) or (ii) holds. Similarly if $u \in N_P(Z)$, then we have $(u_0, u) \in \mathcal{W}^*$ or $(u, v_0) \in \mathcal{W}^*$ according to whether (i) or (ii) holds. Thus in any case, at least one of (u_0, u) or (u, v_0) belongs to \mathcal{W}^* , which contradicts the minimality of $P[u_1, v_1]$. \square

Lemma 2.7.

- (i) $l(P[u, u^+]) \ge 2$ for all $u \in N_P(Z^*) \{z'\}$.
- (ii) $l(P[u, u^+]) \ge d n_P(Z^*) + 2$ for all $u \in W_0 \cup W_1^*$.

Proof. If $u \in W_1^*$, let Q be a longest (u, y, u^+) -path whose inner vertices lie in V(H); otherwise, let Q be a longest (u, u^+) -path whose inner vertices lie in V(H). We have $l(Q) \geq 2$ and, in the case where $u \in W_0 \cup W_1^*$, we have $l(Q) \geq d - n_P(Z^*) + 2$ by Lemmas 2.2 and 2.3. Consider the path

$$R = P[x, u]QP[u^+, z].$$

We first prove (i). If $V(P(u,u^+))\cap Y\neq \phi$, then $V(P(u,u^+))\neq \phi$, and hence we clearly have $l(P[u,u^+])\geq 2$. Thus we may assume $V(P(u,u^+))\cap Y=\phi$. Then since R passes through all vertices in $V(P)\cap Y$, the maximality of l(P) implies $l(P)\geq l(R)$, and hence $l(P[u,u^+])\geq l(Q)\geq 2$, as desired. Thus (i) is proved. To prove (ii), assume that $u\in W_0\cup W_1^*$. Then by the definition of W_0 and W_1^* and by the choice of Q, R passes through at least |Y|-1 vertices in Y, and passes through all vertices in $Y\cap S$. Hence the maximality of l(P) implies

$$l(P[u, u^+]) \ge l(Q) \ge d - n_P(Z^*) + 2,$$

as desired.

Case 1.1. $n_P(Z_B^*) \ge k$:

In addition to W and W^* , we define another set \mathcal{U} of pairs of vertices in $N_P(Z^*)$ and, in addition to W, W_0 , etc., we define three other subsets U, U_0 , U_1 of $N_P(Z^*)$. Recall that $K = \langle Z \rangle$. We consider the following condition for vertices a, b in Z:

$$K$$
 contains an (a, y, b) -path (2.7)

(we allow the possibility that a = y = b). Define \mathcal{U} as follows: if $y \notin A$, then let \mathcal{U} denote the set of those pairs (u,v) of vertices in $N_P(Z)$ such that u occurs before v on P and such that there exist vertices $a \in N_Z(u)$ and $b \in N_Z(v)$ which satisfy (2.7); if $y \in A$, then let \mathcal{U} denote the set of those pairs (u,v) of vertices in $N_P(y)$ such that u occurs before v on P. Then by the definition of \mathcal{W} , \mathcal{W}^* and \mathcal{U} ,

$$\mathcal{W} \cap \mathcal{U} \subseteq \mathcal{W}^*. \tag{2.8}$$

Let

$$\begin{array}{lcl} U & = & \{u \in N_P(Z^*) - \{z'\} \mid (u, u^+) \in \mathcal{U}\}, \\ U_0 & = & \{u \in U \mid |V(P(u, u^+)) \cap Y| = 0\}, \\ U_1 & = & U - U_0. \end{array}$$

Then by (2.8),

$$W_0 \cap U_0 \subseteq W_0^*. \tag{2.9}$$

Lemma 2.8. For every $(u_0, v_0) \in \mathcal{U}$, $V(P[u_0, v_0)) \cap (W^* \cup U) \neq \phi$.

Proof. If there exist $u'_0, v'_0 \in V(P[u_0, v_0])$ such that $(u'_0, v'_0) \in \mathcal{W}^*$, the desired conclusion follows from Lemma 2.6. Thus we may assume that no two vertices $u'_0, v'_0 \in V(P[u_0, v_0])$ satisfy $(u'_0, v'_0) \in \mathcal{W}^*$. Choose $(u_1, v_1) \in \mathcal{U}$ with $u_1, v_1 \in V(P[u_0, v_0])$ so that $P[u_1, v_1]$ is minimal. It suffices to show that $v_1 = u_1^+$. By way of contradiction, suppose that there exists $u \in V(P(u_1, v_1)) \cap N_P(Z^*)$. Take $a' \in N_Z \cdot (u)$. Assume first that $y \notin A$. By the definition of \mathcal{U} , there exist $a \in N_Z(u_1)$ and $b \in N_Z(v_1)$ such that they satisfy (2.7), and hence $a' \in Z$ by the assumption that no two vertices $u'_0, v'_0 \in V(P[u_0, v_0])$ satisfy $(u'_0, v'_0) \in \mathcal{W}^*$. Let R be an (a, y, b)-path in K, let Q be an (a', V(R))-path in K, and let U be the terminal vertex of U. If U is an U in U is an U in U is an U in U is an U is an U in U is an U in U is an U in U is an U is an U is an U in U in U in U in U is an U in U in

 $(u, v_1) \in \mathcal{U}$, which contradicts the minimality of $P[u_1, v_1]$. Similarly, if $t \in V(R[y, b])$, then considering the path $R[a, t]Q^{-1}$, we get $(u_1, u) \in \mathcal{U}$, which again contradicts the minimality of $P[u_1, v_1]$. Assume now that $y \in A$. In this case, $\{u_1, v_1\} \subseteq N_P(y)$ by the definition of \mathcal{U} , and hence a' = y by the assumption that no two vertices $u'_0, v'_0 \in V(P[u_0, v_0])$ satisfy $(u'_0, v'_0) \in \mathcal{W}^*$. But then $(u_1, u) \in \mathcal{U}$, which again contradicts the minimality of $P[u_1, v_1]$. \square

Case 1.1.1. $y \notin V(B)$, or y = c and $d_B(y) \leq 2$:

Lemma 2.9. There exist (y, V(P))-paths $R_i, 1 \le i \le k$, which satisfy the following conditions.

- (i) For any i, j with $i \neq j$, $V(R_i) \cap V(R_j) = \{y\}$.
- (ii) For each i, let t_i denote the terminal vertex of R_i , and let b_i denote the vertex which occurs immediately before t_i on R_i . Then $\{b_1, \dots, b_k\} \subseteq Z^*$, $|\{i \mid b_i \in Z\}| \geq k-1$, and $V(R_i[y,b_i]) \subseteq Z$ for each i with $b_i \in Z$.

Proof. First we consider the case where $y \neq c$ (so $y \neq c'$). By Menger's Theorem and (2.3), we can find (y, V(P))-paths $Q_i, 1 \leq i \leq k$, pairwise disjoint except at y. For each $1 \le i \le k$, let τ_i be the terminal vertex of Q_i , and let a_i be the vertex which occurs immediately before τ_i on Q_i . Let X = $\{\tau_i \mid 1 \leq i \leq k\}$. If $V(Q_i[y,a_i]) \subseteq Z$ for all i, then we obtain paths with the desired properties by simply letting $R_i = Q_i$ (so $t_i = \tau_i$ and $b_i = a_i$) for each i. Thus assume that $V(Q_i[y,a_i]) \not\subseteq Z$ for some i. We may assume $V(Q_1[y,a_1]) \not\subseteq Z$. Then Q_1 passes through c', and hence $V(Q_i[y,a_i]) \subseteq Z$ for all $2 \le i \le k$. Assume for the moment that there exists $\tau \in N_P(A)$ – $(X - \{\tau_1\})$. Take $a \in N_A(\tau)$ and let Q be a (c', a)-path in H. Now if we let $R_1 = Q_1[y,c']Qa\tau$ and $R_i = Q_i$ for $2 \le i \le k$, then all requirements are satisfied. Thus we may assume that $N_P(A) - (X - \{\tau_1\}) = \phi$. Since $n_P(A) \ge k-1$ by (2.4), and since $|X-\{\tau_1\}| = k-1$, we have $N_P(A) =$ $X - \{\tau_1\}$ and $n_P(A) = k - 1$. Since $n_P(Z^*) \ge k$ by the assumption of Case 1.1, this implies that there exists $\tau \in N_P(Z) - (X - \{\tau_1\})$. Take $a \in N_Z(\tau)$, let Q be an $\Big(a,\ V(Q_1[y,c'))\bigcup\Big(\bigcup_{i=a}^kV(Q_i[y,a_i])\Big)$ -path in K, and let a' be the terminal vertex of Q (thus if $a\in V(Q_1[y,c'))\bigcup\Bigl(\bigcup_{i=2}^k V(Q_i[y,a_i])\Bigr),$

then Q=a and a'=a). If $a' \notin \bigcup_{i=2}^k V(Q_i(y,a_i])$, then $a' \in V(Q_1[y,c'))$, and hence we obtain paths with the desired properties by letting $R_1=Q_1[y,a']Q^{-1}a\tau$ and $R_i=Q_i$ for $2 \le i \le k$. Thus assume that $a' \in V(Q_i(y,a_i])$ for some $i,2 \le i \le k$. We may assume that $a' \in V(Q_2(y,a_2])$. Take $b \in N_A(\tau_2)$, and let Q' be a (c',b)-path in H. Now if we let $R_1=Q_1[y,c']Q'b\tau_2$, $R_2=Q_2[y,a']Q^{-1}a\tau$ and $R_i=Q_i$ for $3 \le i \le k$, then all requirements are satisfied.

We now consider the case where y = c and $d_B(y) \le 2$. Take two new vertices u_0, v_0 with $u_0 \ne v_0$ and $u_0, v_0 \notin V(G)$, and define a graph G_0 by

$$V(G_0) = V(G) \cup \{u_0, v_0\},$$

$$E(G_0) = E(G) \cup \{u_0u \mid u \in N_{Z \cup V(P)}(y) \cup \{y\}\} \cup \{v_0u \mid u \in V(P)\}.$$

Then $d_{G_0}(u_0) = d_G(y) - d_B(y) + 1 \ge d - 1 \ge k$ and $d_{G_0}(v_0) > k$. Consequently, G_0 is k-connected, and hence there exist k pairwise internally disjoint (u_0, v_0) -paths Q_i , $1 \le i \le k$. Let t_i be the vertex which occurs immediately before v_0 on Q_i . Since $N_{G_0}(v_0) = V(P)$, we may assume that

$$V(P) \cap V(Q_i) = \{t_i\} \text{ for all } 1 \le i \le k.$$
 (2.10)

We may also assume that for each $1 \le i \le k-1$, $y \notin V(Q_i)$. Then by (2.10), $V(Q_i) \cap A = \phi$ for all $1 \le i \le k-1$. Now for $1 \le i \le k$, let a_i be the vertex which occurs immediately after u_0 on Q_i , and let

$$R_i = ya_iQ_i[a_i, t_i] \quad \text{for } 1 \le i \le k - 1,$$

$$R_k = \begin{cases} ya_kQ_k[a_k, t_k] & (\text{ if } y \notin V(Q_k)) \\ Q_k[y, t_k] & (\text{ if } y \in V(Q_k)). \end{cases}$$

Then all requirements are satisfied.

Lemma 2.10. $W_0^* \cup U_0 \neq \phi$.

Proof. Let t_1, \dots, t_k be as in (ii) of Lemma 2.9. Since $|\mathcal{I}| = |Y| \le k - 1$, there exists $I_i \in \mathcal{I}$ such that $|\{t_1, \dots, t_k\} \cap V(I_i)| \ge 2$. At the cost of

relabeling, we may assume $t_1, t_2 \in V(I_i)$, and t_1 occurs before t_2 on P. Then since $(t_1, t_2) \in \mathcal{W}^* \cup \mathcal{U}$ by Lemma 2.9,

$$\phi \neq V(P[t_1, t_2)) \cap (W^* \cup U)$$
 (by Lemmas 2.6 and 2.8)
= $V(P[t_1, t_2)) \cap (W_0^* \cup U_0)$ (by the definition of W_0^* and U_0), as desired. \square

We choose $\alpha \in W_0^* \cup U_0$ as follows. First assume that $W_0^* \neq \phi$. In this case, we let $\alpha \in W_0^*$ (any element of W_0^* will do). Next assume that $W_0^* = \phi$. Then $U_0 \neq \phi$ by Lemma 2.10. In this case, we let $\alpha \in U_0$ (any element of U_0 will do). Let P_0 be a longest (α, y, α^+) -path whose inner vertices lie in V(H), and let

$$P' = P[x, \alpha | P_0 P[\alpha^+, z].$$

Then P' is an (x, Y, z)-path passing through all vertices in $N_P(Z^*)$. We show that $l(P') \ge 2d - 2$. For this purpose, we give estimates of the length of subpaths of P' (Lemmas 2.11 through 2.15).

Lemma 2.11.

- (i) $l(P'[u, u^+]) \ge 2$ for all $u \in N_P(Z^*) \{z'\}$.
- (ii) $l(P'[u, u^+]) \ge d n_P(Z^*) + 2$ for all $u \in W_0 \cup W_1^*$.

Proof. If $u \neq \alpha$, then $P'[u, u^+] = P[u, u^+]$, and hence the results follow from Lemma 2.7. Thus we may assume $u = \alpha$. Since $P'[\alpha, \alpha^+] = P_0$, we immediately see that $l(P'[\alpha, \alpha^+]) \geq 2$. Now assume that $\alpha \in W_0 \cup W_1^*$. Then $\alpha \in W_0 \cap (W_0^* \cup U_0) \subseteq W_0^*$ by the choice of α and (2.9). Hence by Lemma 2.3, the maximality of $l(P_0)$ implies that

$$l(P'[\alpha, \alpha^+]) = l(P_0) \ge d - n_P(Z^*) + 2.$$

In Lemmas 2.12 through 2.14, we are mainly concerned with $l(P'[u, u^+])$ for $u \in W_1 - W_1^* (= W_1' \cup W_1^-)$. Let

$$W' = U_0 - (W_0 \cup \{\alpha\}) \ (\subseteq N_P(Z^*) - (W \cup \{z'\})),$$

 $w' = |W'|.$

Lemma 2.12. For any $u_1 \in W'_1$ and for any $u_2 \in W'$,

$$l(P'[u_1, u_1^+]) + l(P'[u_2, u_2^+]) \ge d - n_P(Z^*) + 4.$$

Proof. Since $u_i \neq \alpha$ for i = 1, 2, we have

$$P'[u_i, u_i^+] = P[u_i, u_i^+]$$
 for $i = 1, 2$.

Thus it suffices to show that

$$l(P[u_1, u_1^+]) + l(P[u_2, u_2^+]) \ge d - n_P(Z^*) + 4.$$

By the definition of W_1' and by Lemma 2.2, we can find a $(u_1, u_1^+; d - n_P(Z^*) + 2)$ -path Q_1 whose inner vertices lie in V(B), and by the definition of W', we can find a $(u_2, y, u_2^+; 2)$ -path Q_2 whose inner vertices lie in Z. For these paths Q_1 and Q_2 , we have $V(Q_1) \cap V(Q_2) \subseteq \{y\}$ (the case where $V(Q_1) \cap V(Q_2) = \{y\}$ is possible when y = c). First assume that $V(Q_1) \cap V(Q_2) = \phi$. We may assume that u_1 occurs before u_2 on P. Consider the path

$$R = P[x, u_1]Q_1P[u_1^+, u_2]Q_2P[u_2^+, z].$$

Then the maximality of l(P) implies that $l(P) \ge l(R)$, and hence

$$l(P[u_1, u_1^+]) + l(P[u_2, u_2^+]) \ge l(Q_1) + l(Q_2)$$

 $\ge d - n_P(Z^*) + 4,$

as desired. Next assume that $V(Q_1) \cap V(Q_2) = \{y\}$. Then the maximality of l(P) implies

$$l(P[u_1, u_1^+]) > l(Q_1) \ge d - n_P(Z^*) + 2,$$

and hence

$$l(P[u_1, u_1^+]) + l(P[u_2, u_2^+]) \ge (d - n_P(Z^*) + 2) + 2$$

= $d - n_P(Z^*) + 4$

by Lemma 2.7.(i). □

Lemma 2.13. Let u_1 and u_2 be distinct vertices in W_1^- . Then

$$l(P'[u_1, u_1^+]) + l(P'[u_2, u_2^+]) \ge 6.$$

Suppose further that $\{(u_1, u_2), (u_1^+, u_2^+)\} \cap \mathcal{W} \neq \phi$. Then

$$l(P'[u_1, u_1^+]) + l(P'[u_2, u_2^+]) \ge d - n_P(Z^*) + 6.$$

Proof. We may assume u_1 occurs before u_2 on P. Write $V(P(u_i, u_i^+)) \cap Y = \{s_i\}$ for each i = 1, 2. Then $s_1, s_2 \in S$ by the definition of W_1^- , and hence $s_1s_2 \in E(G)$ by (2.1). Let Q be a longest (u_1, u_2) -path whose inner vertices are in V(H), and let Q' be a longest (u_1^+, u_2^+) -path whose inner vertices are in V(H). Consider the path

$$R = P[x, u_1]QP^{-1}[u_2, s_1]s_1s_2P[s_2, z].$$

Then R is an (x, z)-path passing through all vertices in $V(P) \cap Y$. Consequently, the maximality of l(P) implies that

$$l(P[u_1, u_2^+]) \geq l(R[u_1, u_2^+])$$

$$= l(Q) + l(P[s_1, u_2]) + l(R[s_1, s_2]) + l(P[s_2, u_2^+]),$$

and hence

$$l(P[u_1, s_1]) + l(P[u_2, s_2]) \ge l(Q) + l(R[s_1, s_2]). \tag{2.11}$$

Similarly, considering the path

$$R' = P[x, s_1]s_1s_2P^{-1}[s_2, u_1^+]Q'P[u_2^+, z],$$

we get

$$l(P[s_1, u_1^+]) + l(P[s_2, u_2^+]) \ge l(Q') + l(R'[s_1, s_2]). \tag{2.12}$$

By adding (2.11) and (2.12), we obtain

$$l(P[u_1, u_1^+]) + l(P[u_2, u_2^+]) \ge l(Q) + l(Q') + l(R[s_1, s_2]) + l(R'[s_1, s_2])$$

$$= l(Q) + l(Q') + 2$$
(2.13)

On the other hand, for each $i=1,2, u_i \neq \alpha$ by the choice of α , and hence $P[u_i,u_i^+]=P'[u_i,u_i^+]$. Hence $l(P'[u_1,u_1^+])+l(P'[u_2,u_2^+])\geq l(Q)+l(Q')+2$ by (2.13). Since $l(Q)\geq 2$ and $l(Q')\geq 2$, this implies that

$$l(P'[u_1, u_1^+]) + l(P'[u_2, u_2^+]) \ge 6.$$

Moreover, in the case where $(u_1, u_2) \in \mathcal{W}$ or $(u_1^+, u_2^+) \in \mathcal{W}$, we have

$$l(Q) \ge d - n_P(Z^*) + 2$$
 or $l(Q') \ge d - n_P(Z^*) + 2$,

respectively, and hence we obtain

$$l(P'[u_1, u_1^+]) + l(P'[u_2, u_2^+]) \ge d - n_P(Z^*) + 6.$$

Lemma 2.14. Let X be a subset of W_1^- . Then

$$\sum_{u \in X} l(P'[u, u^+]) \ge 3|X| - \varepsilon_X,$$

where

$$\varepsilon_{\pmb{X}} = \left\{ egin{array}{ll} 1 & & (\mbox{if } |X|=1) \\ 0 & & (\mbox{otherwise}). \end{array} \right.$$

Proof. In the case where |X| = 0, there is nothing to be proved and in the case where |X| = 1, the result is immediate from Lemma 2.11. Thus we may assume $|X| \ge 2$. Write

$$X = \{u_1, \dots, u_m\}, \text{ where } m = |X|.$$

Then by Lemma 2.13, we obtain

$$\begin{split} \sum_{1 \leq i \leq m-1} \{ l(P'[u_i, u_i^+]) + l(P'[u_{i+1}, u_{i+1}^+]) \} \\ + \{ l(P'[u_m, u_m^+]) + l(P'[u_1, u_1^+]) \} \geq 6m, \\ \text{i.e.,} \qquad 2 \sum_{u \in X} l(P'[u, u^+]) \geq 6|X|, \end{split}$$

as desired.

By letting $X = W_1^-$ in Lemma 2.14, we get

$$\sum_{u \in W_1^-} l(P'[u, u^+]) \ge 3w_1^- - \varepsilon,$$
where $\varepsilon = \begin{cases} 1 & \text{(if } w_1^- = 1) \\ 0 & \text{(otherwise).} \end{cases}$

$$(2.14)$$

For $u \in W_2$, we have $P'[u, u^+] = P[u, u^+]$. Hence by the definition of W_2 , we get:

Lemma 2.15. $l(P'[u, u^+]) \ge 3$ for all $u \in W_2$. \square

Using the lemmas above, we now proceed to show $l(P') \geq 2d-2$. By Lemma 2.11.(i), $l(P') \geq 2(n_P(Z^*)-1)$. Hence if $n_P(Z^*) \geq d$, then $l(P') \geq 2d-2$, as desired. Thus we may assume

$$n_P(Z^*) \le d - 1.$$
 (2.15)

Subcase 1. $w_0 + w_1^* \ge 2$:

By Lemma 2.11, we obtain

$$l(P') \ge 2(d - n_P(Z^*) + 2) + (n_P(Z^*) - 3) \cdot 2 = 2d - 2,$$

as desired.

Subcase 2. $w_0 + w_1^* \le 1$:

Recall that

$$W' = U_0 - (W_0 \cup \{\alpha\}) \ (\subseteq N_P(Z^*) - (W \cup \{z'\})),$$

 $w' = |W'|.$

Lemma 2.16. $w' \ge w'_1$.

Proof. Since $w_0^* \leq 1$, $W_0^* \subseteq \{\alpha\}$ by the choice of α , and hence

$$|W_0^* \cup \{\alpha\}| = 1. \tag{2.16}$$

Let t_1, \dots, t_k ; b_1, \dots, b_k be as in (ii) of Lemma 2.9. We may assume $b_1, \dots, b_{k-1} \in \mathbb{Z}$. Set $T = \{t_1, \dots, t_{k-1}\}$. Since $b_j \in N_{\mathbb{Z}}(t_j)$ for each $1 \leq j \leq k-1$, we clearly have

$$N_Z(t) \neq \phi$$
 for each $t \in T$. (2.17)

We may assume that t_1, \dots, t_{k-1} occur on P in this order. Set

$$T_{0} = \{ t_{j} \mid 1 \leq j \leq k-2, |V(P(t_{j}, t_{j+1})) \cap Y| = 0 \},$$

$$T_{1} = T - T_{0},$$

$$\mathcal{J} = \{ I_{i} \in \mathcal{I} \mid V(I_{i}) \cap T \neq \emptyset \}.$$

Then $|T_1| \leq |\mathcal{J}|$, and hence $|T_0| \geq k-1-|\mathcal{J}|$. Since $(t_j, t_{j+1}) \in \mathcal{U}$ for all $1 \leq j \leq k-2$, it follows from Lemma 2.8 that $V(P[t_j, t_{j+1})) \cap (W_0^* \cup U_0) \neq \phi$ for each j with $t_j \in T_0$. With this in mind, take $u_j \in V(P[t_j, t_{j+1})) \cap (W_0^* \cup U_0)$ for each j with $t_j \in T_0$, and set $U_0' = \{u_j \mid t_j \in T_0\}$. Then

$$U_0' \subseteq W_0^* \cup U_0 \tag{2.18}$$

and

$$|U_0'| = |T_0| \ge k - 1 - |\mathcal{J}|. \tag{2.19}$$

Set

$$V_1 = W'_1 \cup \{ u^+ \mid u \in W'_1 \}, \mathcal{J}' = \{ I_i \in \mathcal{I} \mid V(I_i) \cap V_1 \neq \phi \}.$$

By the definition of W'_1 ,

$$N_A(u) \neq \phi$$
 and $N_Z(u) = \phi$ for each $u \in V_1$, (2.20)

and hence

$$T \cap V_1 = \phi \tag{2.21}$$

by (2.17). Now if $w_1' = 0$, then there is nothing to be proved. Thus we may assume $w_1' > 0$. Then

$$|\mathcal{J}'| \ge w_1' + 1. \tag{2.22}$$

In what follows, we separate some points of the proof of Lemma 2.16, and present them as claims.

Claim 1. Let $0 \le i \le |Y| - 1$, and suppose that $I_i \in \mathcal{J} \cap \mathcal{J}'$. Take $t \in V(I_i) \cap T$ and $u \in V(I_i) \cap V_1$. Then $t \ne u$, and we have $V(P[u,t)) \cap W_0^* \ne \phi$ or $V(P[t,u)) \cap W_0^* \ne \phi$, according to whether u occurs before t or t occurs before t.

Proof. We clearly have $t \neq u$ by (2.21). Now if u occurs before t on P, then $(u,t) \in \mathcal{W}^*$ by (2.17) and (2.20), and hence $V(P[u,t)) \cap W_0^* \neq \phi$ by Lemma 2.6; similarly, if t occurs before u, then $(t,u) \in \mathcal{W}^*$ and hence $V(P[t,u)) \cap W_0^* \neq \phi$. \square

Claim 2. Let $t_i \in T_0$. Then $V(P[t_i, t_{i+1}]) \cap V_1 = \phi$.

Proof. Suppose that there exists $u \in V(P[t_j, t_{j+1}]) \cap V_1$. Then by Claim 1, $w_0^* \ge |V(P[t_j, u)) \cap W_0^*| + |V(P[u, t_{j+1})) \cap W_0^*| \ge 2$, a contradiction. \square

Claim 3. $|\mathcal{J} \cap \mathcal{J}'| \leq w_0^* \leq 1$.

Proof. By Claim 1, we have $V(P[y_i, y_{i+1})) \cap W_0^* \neq \phi$ for each i with $I_i \in \mathcal{J} \cap \mathcal{J}'$. Hence $|\mathcal{J} \cap \mathcal{J}'| \leq w_0^* \leq 1$, as desired. \square

Claim 4. $|\mathcal{J} \cap \mathcal{J}'| + |(W_0^* \cup \{\alpha\}) \cap U_0'| \le 1$.

Proof. Suppose that $|\mathcal{J} \cap \mathcal{J}'| + |(W_0^* \cup \{\alpha\}) \cap U_0'| \ge 2$. Then by Claim 3 and (2.16),

$$|\mathcal{J} \cap \mathcal{J}'| = w_0^* = 1 \tag{2.23}$$

and

$$|(W_0^* \cup \{\alpha\}) \cap U_0'| = 1. \tag{2.24}$$

Since $W_0^* \neq \phi$ by (2.23), $W_0^* = \{\alpha\}$ by the choice of α . Consequently,

$$|W_0^* \cap U_0'| = 1 \tag{2.25}$$

by (2.24). Write $\mathcal{J} \cap \mathcal{J}' = \{I_i\}$, and take $u \in V(I_i) \cap V_1$. If $V(P[y_i, u)) \cap T \neq \phi$, let v_1 be the vertex in $V(P[y_i, u)) \cap T$ closest to u on P, and let $v_2 = u$; if $V(P(u, y_{i+1}]) \cap T \neq \phi$, let $v_1 = u$, and let v_2 be the vertex in $V(P(u, y_{i+1}]) \cap T$ closest to u on P. Then

$$V(P(v_1, v_2)) \cap T = \phi,$$
 (2.26)

and we get

$$V(P[v_1, v_2)) \cap W_0^* \neq \phi \tag{2.27}$$

by Claim 1. Since it follows from Claim 2 and (2.26) that $V(P[v_1, v_2))$ $\cap V(P[t_j, t_{j+1})) = \phi$ for each $t_j \in T_0$, we get $V(P[v_1, v_2)) \cap U'_0 = \phi$ by

the definition of U_0' . Consequently, it follows from (2.25) and (2.27) that $w_0^* \ge |W_0^* \cap U_0'| + |V(P[v_1, v_2)) \cap W_0^*| \ge 2$, a contradiction. \square

Returning to the proof of the lemma, we now obtain

$$w' = |U_0 - (W_0 \cup \{\alpha\})|$$

$$= |U_0 - (W_0^* \cup \{\alpha\})| \quad \text{(by (2.9))}$$

$$\geq |U_0' - (W_0^* \cup \{\alpha\})| \quad \text{(by (2.18))}$$

$$= |U_0'| - |(W_0^* \cup \{\alpha\}) \cap U_0'|$$

$$\geq k - 1 - |\mathcal{J}| - |(W_0^* \cup \{\alpha\}) \cap U_0'| \quad \text{(by (2.19))}$$

$$\geq k - 1 - (k - 1 - |\mathcal{J}'| + |\mathcal{J} \cap \mathcal{J}'|) - |(W_0^* \cup \{\alpha\}) \cap U_0'|$$

$$\text{(since } |\mathcal{J} \cup \mathcal{J}'| \leq |\mathcal{I}| = |Y| \leq k - 1)$$

$$\geq |\mathcal{J}'| - 1 \quad \text{(by Claim 4)}$$

$$\geq w_1' \quad \text{(by (2.22))}.$$

This completes the proof of Lemma 2.16. □

Subcase 2.1. $w_0 + w_1^+ \ge 2$:

First assume $w_0 + w_1^* = 1$. Then $w_1' \ge 1$, and hence $w' \ge w_1' \ge 1$ by Lemma 2.16. Let

$$\{u\} = W_0 \cup W_1^*,$$

$$v_1 \in W_1', \ v_2 \in W'.$$

Then by Lemmas 2.11 and 2.12,

$$l(P') \geq l(P'[u,u^{+}]) + l(P'[v_{1},v_{1}^{+}]) + l(P'[v_{2},v_{2}^{+}]) + (n_{P}(Z^{*}) - 4) \cdot 2$$

$$\geq (d - n_{P}(Z^{*}) + 2) + (d - n_{P}(Z^{*}) + 4) + 2n_{P}(Z^{*}) - 8$$

$$= 2d - 2.$$

as desired. Next assume that $w_0 + w_1^* = 0$. Then $w' \ge w_1' \ge 2$. Hence we can find u_1, u_2, v_1, v_2 such that

$$\{u_1, u_2\} \subseteq W'_1, \quad u_1 \neq u_2,$$

 $\{v_1, v_2\} \subseteq W', \quad v_1 \neq v_2.$

Consequently, we obtain

$$l(P') \geq l(P'[u_1, u_1^+]) + l(P'[v_1, v_1^+]) + l(P'[u_2, u_2^+]) + l(P'[v_2, v_2^+]) + (n_P(Z^*) - 5) \cdot 2$$

$$\geq 2(d - n_P(Z^*) + 4) + 2n_P(Z^*) - 10$$

$$= 2d - 2.$$

Subcase 2.2. $w_0 + w_1^+ \le 1$:

Subcase 2.2.1. $w \ge k - 1$:

By the assumption of this case,

$$w_0 + w_1^+ + w_1^- + w_2 \ge k - 1. (2.28)$$

Combining Lemma 2.4 and (2.28), we get

$$w_2 \leq w_0 - 1$$
.

Consequently,

$$w_0 = 1, \quad w_2 = 0, \quad w_1^+ = 0,$$

and hence again by Lemma 2.4 and (2.28),

$$w_1^- = k - 2, \quad |Y| = k - 1,$$

which implies that

$$V(I_i) \cap W_1^- \neq \phi$$
 for every $0 \le i \le |Y| - 2 = k - 3$.

Lemma 2.17. There exist $u_0 \in W_1^-$ and $u_1 \in W_1^-$ such that u_0 occurs before u_1 on P and such that $\{(u_0, u_1), (u_0^+, u_1^+)\} \cap \mathcal{W} \neq \emptyset$.

Proof. Write $W_0 = \{v_0\}$, and let $v_0 \in V(P[y_m, y_{m+1}))$. We first consider the case where $k \geq 5$ or $m \neq 1$. In this case, there exists $l \in \{i \in \mathbb{N} \mid 1 \leq i \leq k-3\} - \{m\}$. For this l and for j = 0, 1, let $V(I_{l-1+j}) \cap W_1^- = \{u_j\}$. Suppose that $(u_0, u_1) \notin \mathcal{W}$. Then $N_A(u_0) = N_A(u_1)$ and $n_A(u_0) \leq 1$ and, in the case where $n_A(u_0) = 1$, we have $N_Z(u_0) = N_Z(u_1) = \phi$. Since $(u_0, u_0^+) \in \mathcal{W}$, this implies that $u_0^+ \neq u_1$ and $(u_0^+, u_1) \in \mathcal{W}$, and hence by

Lemma 2.5, there exists $u \in V(P[u_0^+, u_1)) \cap W_0 \subseteq V(P[y_l, y_{l+1}))$, which contradicts the fact that $w_0 = 1$. Thus $(u_0, u_1) \in \mathcal{W}$.

We now consider the case where k=4 and m=1. For j=0,1, let $V(I_j)\cap W_1^-=\{u_j\}$. Since $v_0\in V(P[y_1,y_2))\cap W_0,\ |V(I_1)\cap N_P(Z^*)|\geq 2$ by the definition of W_0 , and hence

$$u_0^+ \neq u_1. \tag{2.29}$$

Since $w_0 = 1$, we also get

$$V(P[y_0, y_1)) \cap W_0 = V(P[y_2, y_3]) \cap W_0 = \phi.$$
 (2.30)

First assume $|A| \ge 3$. Then since G - c is 3-connected,

$$n_A(V(P)) \ge 3. \tag{2.31}$$

By Lemma 2.5, (2.29) and the assumption that $w_0 = 1$,

$$N_A(V(I_1)) = N_A(\{u_0^+, u_1\}).$$

By Lemma 2.5 and (2.30),

$$N_A(V(I_0)) = N_A(u_0), \quad N_A(V(I_2)) = N_A(u_1^+).$$

Consequently,

$$N_A(V(P)) = N_A(\{u_0, u_1\}) \cup N_A(\{u_0^+, u_1^+\}),$$

and hence by (2.31), $n_A(\{u_0,u_1\}) \geq 2$ or $n_A(\{u_0^+,u_1^+\}) \geq 2$, which implies that $(u_0,u_1) \in \mathcal{W}$ or $(u_0^+,u_1^+) \in \mathcal{W}$, respectively. Next assume $|A| \leq 2$, and take $a \in A$. Then

$$n_P(a) = d_G(a) - d_B(a) \ge d - 2 \ge n_P(Z^*) - 1$$

by (2.15), and hence $a \in N_A(u_0) \cap N_A(u_0^+)$ or $a \in N_A(u_1) \cap N_A(u_1^+)$ by (2.29). Now if $a \in N_A(u_0) \cap N_A(u_0^+)$, then since we have $N_{Z^*}(u_1) - \{a\} \neq \phi$, or $N_{Z^*}(u_1^+) - \{a\} \neq \phi$ by the fact that $(u_1, u_1^+) \in \mathcal{W}$, we get $(u_0, u_1) \in \mathcal{W}$ or $(u_0^+, u_1^+) \in \mathcal{W}$; similarly, if $a \in N_A(u_1) \cap N_A(u_1^+)$, the desired conclusion follows from the fact that $(u_0, u_0^+) \in \mathcal{W}$. \square

By the fact that $w_0 = 1$ and by Lemmas 2.17, 2.11 and 2.13,

$$l(P') > (d - n_P(Z^*) + 2) + (d - n_P(Z^*) + 6) + (n_P(Z^*) - 4) \cdot 2 = 2d,$$

as desired.

Subcase 2.2.2. $w \le k - 2$:

Lemma 2.18. $|V(B)| \ge d - n_P(Z^*) + 3$.

Proof. Take $a \in A$. We first show that

$$n_P(a) \le n_P(Z^*) - 2.$$
 (2.32)

By way of contradiction, suppose that $n_P(a) \ge n_P(Z^*) - 1$. Then $u \in W \cup \{z'\}$ for every $u \in N_P(Z^* - \{a\})$. Consequently,

$$N_P(Z^* - \{a\}) \subseteq W \cup \{z'\},$$
 (2.33)

and hence

$$n_P(Z^* - \{a\}) \le w + 1 \le k - 1$$
 (2.34)

by the assumption of Subcase 2.2.2. On the other hand, since G - c' is (k-1)-connected, $n_P(Z) \ge k-1$, and hence

$$n_P(Z^* - \{a\}) \ge k - 1.$$
 (2.35)

By (2.33), (2.34) and (2.35),

$$N_P(Z^* - \{a\}) = W \cup \{z'\}. \tag{2.36}$$

Since $n_P(Z^*) \ge k$ by the assumption of Case 1.1, (2.34) implies that

$$N_P(a) - N_P(Z^* - \{a\}) \neq \phi.$$

By (2.36), $z' \notin N_P(a) - N_P(Z^* - \{a\})$. Hence there exists $u \in N_P(a) - N_P(Z^* - \{a\})$ such that $u^+ \in N_P(Z^* - \{a\})$. Then $u \in W$, which contradicts (2.36). Thus (2.32) is proved. We now obtain

$$n_P(Z^*) - 2 \ge n_P(a) = d_G(a) - d_B(a) \ge d - (|V(B)| - 1),$$

and hence

$$|V(B)| \ge d - n_P(Z^*) + 3$$
,

as desired.

Lemma 2.19. $4 \le |V(B)| \le w + 1$.

Proof. The first inequality follows immediately from Lemma 2.18 and (2.15). To prove the second inequality, we let $m = \min\{|V(B)|, k\}(\geq 4)$, and show that $m \leq w+1$ and m = |V(B)|. We first prove the following claim.

Claim. There exist m independent edges $e_i = a_i u_i$ $(1 \le i \le m)$ with $a_i \in \mathbb{Z}^*$ and $u_i \in V(P)$ such that $|A \cap \{a_1, \dots, a_m\}| \ge m-1$.

Proof. Since G-c is (k-1)-connected and since $|V(P)|>k-1\geq m-1$, there exist m-1 independent edges $f_i=c_iv_i$ $(1\leq i\leq m-1)$ with $c_i\in A$ and $v_i\in V(P)$. If $N_P(Z^*-\{c_1,\cdots,c_{m-1}\})-\{v_1,\cdots,v_{m-1}\}\neq \phi$, then by letting e_m be an edge joining $Z^*-\{c_1,\cdots,c_{m-1}\}$ and $V(P)-\{v_1,\cdots,v_{m-1}\}$, and letting $e_i=f_i$ for each $1\leq i\leq m-1$, we get edges with the desired properties. Thus we may assume $N_P(Z^*-\{c_1,\cdots,c_{m-1}\})\subseteq \{v_1,\cdots,v_{m-1}\}$. Since we get $n_P(Z)\geq k-1$ from the fact that G-c' is (k-1)-connected, this implies that (m=k and)

$$N_P(Z^* - \{c_1, \cdots, c_{m-1}\}) = \{v_1, \cdots, v_{m-1}\}. \tag{2.37}$$

Since $n_P(Z^*) \geq k$ by the assumption of Case 1.1, we also see that one of the c_i , say c_1 , is adjacent to a vertex u in $V(P) - \{v_1, \dots, v_{m-1}\}$. By (2.37), v_1 is adjacent to a vertex a in $Z^* - \{c_1, \dots, c_{m-1}\}$. Now if we let $e_1 = c_1 u$ and $e_m = av_1$, and let $e_i = f_i$ for each $2 \leq i \leq m-1$, then the e_i $(1 \leq i \leq m)$ satisfy the desired properties. \square

Returning to the proof of the lemma, let u_i $(1 \le i \le m)$ be as in the claim. We may assume that u_i occurs before u_j on P if i < j. Then $(u_i, u_{i+1}) \in \mathcal{W}$ for each $1 \le i \le m-1$. Consequently,

$$w \ge m - 1 \tag{2.38}$$

by Lemma 2.5, and hence $m \le k-1$ by the assumption of Subcase 2.2.2. By the definition of m, this implies that m = |V(B)|, and hence $|V(B)| \le w+1$ by (2.38). This completes the proof of Lemma 2.19. \square

By the assumption of Subcase 2.2 and by Lemmas 2.18 and 2.19,

$$w_1^- + w_2 \ge w - 1 \ge |V(B)| - 2 \ge d - n_P(Z^*) + 1.$$
 (2.39)

Now assume for the moment that $w_0 + w_1^+ = 1$. Then

$$w - (w_1^- + w_2) = 1. (2.40)$$

We show that

$$l(P') \ge d + n_P(Z^*) + (w_1^- + w_2) - 2\{w - (w_1^- + w_2)\} - 1. \tag{2.41}$$

If $w_0 + w_1^* = 1$, then by Lemmas 2.11, 2.15 and (2.14),

$$l(P') \ge (d - n_P(Z^*) + 2) + (3w_1^- - 1) + 3w_2 + 2(n_P(Z^*) - w - 1),$$

and hence (2.41) holds. Thus we may assume $w_0 + w_1^* = 0$. Then $w_1' = 1$. Consequently, by Lemmas 2.11, 2.16, 2.12, 2.15 and (2.14),

$$l(P') \ge (d - n_P(Z^*) + 4) + (3w_1^- - 1) + 3w_2 + 2(n_P(Z^*) - w - 2),$$

and hence (2.41) again holds. Thus (2.41) is proved. Combining (2.41), (2.39) and (2.40), we obtain

$$l(P') \ge d + n_P(Z^*) + (d - n_P(Z^*) + 1) - 2 \cdot 1 - 1$$

= $2d - 2$.

as desired.

Thus we may assume $w_0 + w_1^+ = 0$. Then

$$w_1^- + w_2 = w. (2.42)$$

We first consider the case where there exist $u \in W_1^-$ and $v \in W_1^-$ such that $(u,v) \in \mathcal{W}$. Write $W_1^- = \{u_1, \dots, u_n\}$, where $n = w_1^-$. At the

cost of relabeling, we may assume $(u_1, u_2) \in \mathcal{W}$. Then by letting $X = W_1^- - \{u_1, u_2\}$ in Lemma 2.14, we see that

$$\sum_{u \in W_1^- - \{u_1, u_2\}} l(P'[u, u^+]) \ge 3(w_1^- - 2) - 1$$

$$= 3w_1^- - 7. \tag{2.43}$$

On the other hand,

$$l(P'[u_1, u_1^+]) + l(P'[u_2, u_2^+]) \ge d - n_P(Z^*) + 6 \tag{2.44}$$

by Lemma 2.13. Adding (2.43) and (2.44), we obtain

$$\sum_{u \in W_1^-} l(P'[u, u^+]) \ge d - n_P(Z^*) + 3w_1^- - 1,$$

and hence

$$l(P') \geq (d - n_P(Z^*) + 3w_1^- - 1) + 3w_2 + 2(n_P(Z^*) - w - 1)$$

$$= d - n_P(Z^*) + (w_1^- + w_2) + 2(w_1^- + w_2 + n_P(Z^*) - w) - 3$$

$$\geq d - n_P(Z^*) + (d - n_P(Z^*) + 1) + 2n_P(Z^*) - 3$$
(by (2.39) and (2.42))
$$= 2d - 2.$$

as desired.

Finally, we consider the case where no two vertices u and v in W_1^- satisfy $(u, v) \in \mathcal{W}$. Since $w_0 + w_1^+ = 0$, we see that for every $a \in A$,

$$n_{W_1^-}(a) + n_{N_P(Z^*) - W}(a) = d_G(a) - d_B(a) - n_{W_2}(a)$$

$$\geq d_G(a) - (|V(B)| - 1) - w_2$$

$$= d_G(a) - (|V(B)| + w_2) + 1, (2.45)$$

and hence

$$n_{W_1^-}(a) + n_{N_P(Z^*) - W}(a) \ge d - (|V(B)| + w_2) + 1.$$
 (2.46)

Since $w_0 + w_1^+ = 0$, it follows from Lemmas 2.19 and 2.4 that

$$k+1-(|V(B)|+w_2) \geq k+1-(w+1+w_2)$$

$$= k-(w_1^-+2w_2)$$

$$\geq k-(k-2)$$

$$= 2. (2.47)$$

Since $d \ge k + 1$, this implies

$$d - (|V(B)| + w_2) \ge 2. \tag{2.48}$$

Lemma 2.20. $n_P(Z^*) - w \ge d - w_2 - 1 - \varepsilon$, where

$$\varepsilon = \left\{ egin{array}{ll} 1 & & (\mbox{if } w_1^- = 1) \\ 0 & & (\mbox{otherwise}), \end{array} \right.$$

as in (2.14).

Proof. Set $X = N_P(Z^*) - W$. Since $|\{a \in A \mid u \in N_P(a)\}| \le 1$ for every $u \in X - \{z'\}$,

$$|X - \{z'\}| \ge \sum_{a \in A} n_{X - \{z'\}}(a) \ge \sum_{a \in A} (n_X(a) - 1),$$

and hence

$$n_P(Z^*) - w = |X| \ge \sum_{a \in A} (n_X(a) - 1) + 1.$$
 (2.49)

If $w_1^- = 1$, then by (2.46) and (2.48),

$$n_X(a) \ge d - (|V(B)| + w_2) \ge 2$$
 for each $a \in A$,

and hence by (2.49), we obtain

$$n_{P}(Z^{*}) - w \geq (|V(B)| - 1)\{d - (|V(B)| + w_{2}) - 1\} + 1$$

$$\geq (|V(B)| - 2) \cdot 1 + \{d - (|V(B)| + w_{2}) - 1\} + 1$$

$$= d - w_{2} - 2.$$

Thus we may assume $w_1^- \neq 1$. In this case, by the assumption that no two vertices u, v in W_1^- satisfy $(u, v) \in \mathcal{W}$, we have

$$| \{ a \in A \mid N_{W_1^-}(a) \neq \phi \} | \le 1.$$

Hence by (2.46),

at least
$$|A| - 1$$
 vertices a in A satisfy
$$n_X(a) \ge d - (|V(B)| + w_2) + 1. \tag{2.50}$$

Since $|V(B)| \ge 4$ by Lemma 2.19, we now obtain

$$n_P(Z^*) - w \ge (|V(B)| - 2)\{d - (|V(B)| + w_2)\} + 1$$

 $(by (2.49) \text{ and } (2.50))$
 $\ge (|V(B)| - 3) \cdot 2 + \{d - (|V(B)| + w_2)\} + 1$
 $(by (2.48))$
 $\ge (|V(B)| - 3) + 1 + \{d - (|V(B)| + w_2)\} + 1$
 $= d - w_2 - 1$. \square

Now since $w \geq 3$ by Lemma 2.19, we see that

$$l(P') \geq (3w_1^- - \varepsilon) + 3w_2 + 2(n_P(Z^*) - w - 1)$$

$$\geq 3w_1^- + 3w_2 + 2(d - w_2 - 2 - \varepsilon) - \varepsilon$$

$$= (2d - 2) + (w - 3) + (2w_1^- + 1 - 3\varepsilon)$$

$$\geq 2d - 2,$$

as desired. This completes the proof for Case 1.1.1.

Case 1.1.2. $y \in A$, or y = c and $d_B(y) \ge 3$:

Lemma 2.21. $W_0^* \cup U_0 \neq \phi$.

Proof. Since G is k-connected, there are k (y, V(P))-paths pairwise disjoint except at y. Let t_1, \dots, t_k be the endvertices of these paths. Then for any i, j with $i \neq j$ such that t_i occurs before t_j on P, $(t_i, t_j) \in \mathcal{W}^* \cup \mathcal{U}$. Thus, arguing exactly as in the proof of Lemma 2.10, we get $W_0^* \cup U_0 \neq \phi$. \square

Take $\alpha \in W_0^* \cup U_0$, and let P_0 be a longest (α, y, α^+) -path whose inner vertices lie in V(H). Then the path $P' = P[x, \alpha]P_0P[\alpha^+, z]$ is an (x, Y, z)-path passing through all vertices in $N_P(Z^*)$. We can now argue as in Case 1.1.1 to obtain $l(P') \geq 2d - 2$ (note that $\mathcal{W}^* = \mathcal{W}$, $W_0^* = W_0$ and $W_1^* = W_1^+$ in this case, and thus Subcase 2.1 and the case where $1 = w_0 + w_1^+ > w_0 + w_1^* = 0$ in Subcase 2.2.2 do not occur and we do not need Lemmas 2.12 and 2.16). This is the end of Case 1.1.2, and concludes the discussion for Case 1.1.

Case 1.2. $n_P(Z_B^*) \leq k-1$:

By the choice of B, the assumption of this case implies that $\mathcal{E}^* = \phi$ (see the paragraph preceding Lemma 2.1). By (2.4), the assumption of this case also implies that

$$n_P(Z^*) = n_P(A) = k - 1,$$
 (2.51)

where $Z^* = Z_B^*$ and $A = A_B$ as in Case 1.1. Since $n_P(V(H)) \ge k$ by the k-connectedness of G, we see from (2.51) that there exist u_0 and a_0 such that

$$u_0 \in V(P) - N_P(Z^*), \ a_0 \in V(H) - Z^*, \ \text{and} \ a_0 u_0 \in E(G).$$
 (2.52)

This in particular implies that $V(H) \neq Z^*$, and hence $y \notin V(B)$. Let $H' = \langle Z \cup \{c'\} \rangle$, where $Z = Z_B$ and $c' = c'_B$. We define \mathcal{E}' as follows: if H' is nonseparable, then let $\mathcal{E}' = \{H'\}$; if H' is separable, then let \mathcal{E}' be the set of endblocks of H'. We have $\mathcal{E} \cap \mathcal{E}' \neq \phi$. Take $B' \in \mathcal{E} \cap \mathcal{E}'$. Then $Z_{B'} \supseteq V(H) - Z$, and hence

$$a_0 \in Z_{B'}. \tag{2.53}$$

For simplicity, set $A' = A_{B'} = V(B') - C$. Since $A' \subseteq Z$ and since $n_P(A') \ge k - 1$, it follows from (2.51) that

$$N_P(Z^*) = N_P(A) = N_P(A') = N_P(Z).$$
 (2.54)

By (2.54), (2.53), (2.52) and (2.51), $n_P(Z_{B'}^*) \ge |N_P(Z^*) \cup \{u_0\}| = k$. Since $\mathcal{E}^* = \phi$, this implies that

$$A' \cap S \neq \phi. \tag{2.55}$$

By (2.55), (2.1) and (2.54), $V(P) \cap Y \cap S \subseteq N_P(A') = N_P(Z^*)$, and hence

$$W_1^- = \phi \tag{2.56}$$

by the definition of W_1^- . Since $B' \in \mathcal{E} \cap \mathcal{E}'$ was arbitrary, (2.55) together with (2.1) also implies that

$$|\mathcal{E} \cap \mathcal{E}'| = 1. \tag{2.57}$$

Since (2.54) implies $N_P(Z^*) = W \cup \{z'\}$ and $W = W^*$, we get the following lemma by (2.56):

Lemma 2.22. $N_P(Z^*) = W_0^* \cup W_1^* \cup W_2 \cup \{z'\}$. \square

Lemma 2.23. For every $a \in A$ and for every $a' \in A'$, there exists an (a, y, a'; 2(d - k + 1))-path in H.

Proof. By Lemma 2.1 and (2.51), B contains an (a,c;d-(k-1))-path. By extending this path, we obtain an (a,c';d-k+1)-path P_1 in H (recall that $c=c_B$ and $c'=c'_B$). Denote by B_1 the block which contains c' and y. We first consider the case where $B_1=B'$ (so $B_1=H'$). In this case, applying Proposition D to B', we see that there exists a (c',y,a';d-k+1)-path P_2 in B'. Then P_1P_2 is an (a,y,a';2(d-k+1))-path in H. We now consider the case where $B_1\neq B'$. By (2.57), $|V(B_1)\cap C|=2$. Write $(V(B_1)\cap C)-\{c'\}=\{c_1\}$ (it is possible that $c_1=y$). Note that $(V(B_1)-\{c',c_1\})\cap S=\phi$ by (2.55) and (2.1). Assume for the moment that $|V(B_1)|\geq 3$. If $y=c_1$, let y' be a vertex in $V(B_1)-\{c',c_1\}$; if $y\neq c_1$, let y'=y. Then $d_{B_1}(y')\geq d-k+1$. Now applying Proposition C to B_1 , we can find a $(c',y',c_1;d-k+1)$ -path P_2 in P_3 . Then P_3 is a P_3 is a P_3 in P_3 in P_3 is a P_3 in P_3

$$d_{B_2}(y) = d_G(y) - \{(k-1)+1\} \ge d-k.$$

First assume $B_2=B'$. Then we can apply Proposition D to B_2 to obtain a (y,a';d-k)-path in B_2 , and hence a (c',y,a';d-k+1)-path P_2 in H. Thus P_1P_2 is an $(a,y,a';\,2(d-k+1))$ -path in H. Next assume $B_2\neq B'$. Then again by (2.57), we can write $V(B_2)\cap C=\{y,c_2\}$. Applying Proposition C to B_2 , we obtain a $(y,c_2;d-k)$ -path in B_2 , which we can extend to a (c',y,a';d-k+2)-path P_2 in H. Then P_1P_2 is an (a,y,a';2(d-k+1)+1)-path in H. \square

We first consider the case where $w_0^* \ge 1$. Take $\alpha \in W_0^*$. Let P_0 be a longest (α, y, α^+) -path whose inner vertices lie in V(H), and define a path P' by $P' = P[x, \alpha]P_0P[\alpha^+, z]$. By (2.54), we can find $a \in A$ and $a' \in A'$ such that $\alpha \in N_P(a)$ and $\alpha' \in N_P(a')$, and hence $l(P_0) \ge 2(d - k + 1) + 2$

by Lemma 2.23. Hence

$$l(P') \ge 2(d-k+1) + 2 + 2(k-3) = 2d - 2,$$

as desired. We now consider the case where $w_0^* = 0$. Then by (2.51) and Lemma 2.22,

$$w_1^* + w_2 + 1 = k - 1. (2.58)$$

On the other hand,

$$w_1^* + 2w_2 \le |V(P) \cap Y| \le k - 2 \tag{2.59}$$

by the definition of W_1 and W_2 . By (2.58) and (2.59), $w_1^* = k - 2$, $w_2 = 0$ and $|V(P) \cap Y| = k - 2$. Hence $|\mathcal{I}| = k - 1$, and $|V(I_i) \cap N_P(Z^*)| = 1$ for each $I_i \in \mathcal{I}$. Let u_0 and a_0 be as in (2.52). Choose $I_{i_0} \in \mathcal{I}$ so that $u_0 \in V(I_{i_0})$, and write $V(I_{i_0}) \cap N_P(Z^*) = \{u\}$. Write $\{u_0, u\} = \{\alpha, \beta\}$ so that α occurs before β on P. Take $a' \in N_{A'}(u)$. By (2.53), there is an (a_0, y, a') -path in H, and hence there is an (α, y, β) -path P_0 whose inner vertices are in V(H). Consider the path $P' = P[x, \alpha]P_0P[\beta, z]$. Since $w_1^* = k - 2 \ge 2$, there exists $v \in W_1^*$ such that $u_0 \notin V(P[v, v^+])$. Since $N_A(v) \ne \phi$ and $N_{A'}(v^+) \ne \phi$, $l(P[v, v^+]) \ge 2(d - k + 1) + 2$ by Lemma 2.23 and by the maximality of l(P). Since $P[v, v^+] = P'[v, v^+]$ by the choice of v, we obtain

$$l(P') \ge 2(d-k+1) + 2 + 2(k-3) = 2d-2$$

as desired. This completes the proof for Case 1.2, and this is the end of Case 1.

Case 2. H is nonseparable:

In this case, we argue as in Case 1.1.2 (hence as in Case 1.1.1 as well) with some alterations:

Let

$$B=H, \qquad A=Z^*=V(H).$$

We get $n_P(V(H)) \ge k$ by the assumption that G is k-connected. Define P' as in Case 1.1.2. If $n_P(V(H)) \ge d$, then we clearly have $l(P') \ge 2(n_P(V(H)) - 1) \ge 2(d - 1)$. Thus we may assume $n_P(V(H)) \le d - 1$, and

hence $|V(H)| \geq 2$. Applying Proposition D to H, we see that Lemma 2.1 holds. Consequently, if $w_0 + w_1^+ \geq 2$, then we can argue as in Case 1.1.2. Thus we may assume $w_0 + w_1^+ \leq 1$. Only the proofs of Lemmas 2.18 and 2.20 need modification. The proof of Lemma 2.18 works if we let a = y. Thus consider Lemma 2.20. We see that (2.47) and (2.48) hold in this case as well. Further, (2.45) holds for every $a \in V(H)$, and (2.46) holds for every $a \in V(H) - S$. Consequently, if $V(H) \cap S = \phi$, then we can argue as in the proof in Case 1.1.1. Thus we may assume $V(H) \cap S \neq \phi$. Then by (2.1) and the definition of W_1^- , $w_1^- = 0$, and hence it follows from (2.45) that

$$n_{N_P(Z^*)-W}(a) \ge k - (|V(H)| + w_2) + 1$$
 for all $a \in V(H)$ (2.60)

and

$$n_{N_P(Z^{\bullet})-W}(y) \ge d - (|V(H)| + w_2) + 1.$$
 (2.61)

Now we can argue as in Case 1.1.1, using (2.60) and (2.61) in place of (2.50), and (2.47) in place of (2.48), to get

$$n_P(Z^*) - w \ge (|V(H)| - 1) \cdot 1 + \{d - (|V(H)| + w_2)\} + 1$$

= $d - w_2$.

This completes the proof of Theorem 1.

References

- Y. Egawa, R. Glas, and S.C. Locke, Cycles and paths through specified vertices in k-connected graphs, J. Combinat. Theory Ser. B 52 (1991), 20-29.
- [2] S.C. Locke, A generalization of Dirac's theorem, Combinatorica 5 (1985), 149-159.
- [3] T. Sakai, Long cycles and paths through specified vertices in graphs, Master's Thesis, Science University of Tokyo (1990).
- [4] T. Sakai, Long paths through a specified vertex in a 2-connected graph, Tokoha Gakuen University Research Review, Faculty of Education 15 (1994), 59-64.