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Abstract
In this paper, we investigate the sufficient conditions for

a graph to contain a cycle (path) C such that G — V(C) is
a disjoint union of cliques. In particular, sufficient conditions

involving degree sum and neighborhood union are obtained.

1 Introduction A cycle C of a graph G is called a covering cycle,
or C-cycle, if V(G) —V(C) is an independent set of vertices in G. Covering
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cycles have many applications in the study of longest cycles and paths in
graphs. Such cycles have also been called dominating cycles in the litera-
ture. Sufficient conditions for a graph to have a covering cycle begin with
a result of Nash-Williams.

Theorem 1 (Nash-Williams([7]) Let G be a 2-connected graph of order
n > 3. If the minimum degree 6(G) > 242, then G — V(C) is a union of
independent vertices of G for every longest cycle C.

Bondy generalized Nash-William’s result by showing the following.
Theorem 2 (Bondy [1]) Let G be a 2-connected graph of order n. If

d(u) + d(v) + d(w) > n +2

for every three independent vertices u, v, and w, then G—V(C) is a union
of independent vertices for every longest cycle C of G.

Moving further in this direction, Bondy made the following conjecture in
the same paper.

Conjecture 1 (Bondy[1]) Let G be a simple k-connected graph on n
vertices. If the degree sum of any k + 1 independent vertices is at least
n+ k(k — 1), and if C is a longest cycle of G, then G — V(C) contains no
path of length k — 1.

Let k be a positive integer. A weak k-covering cycle of a graph G is a
cycle C such that each component of G — V(C') has fewer than k vertices.
Such a cycle has also been called a k-dominating cycle. The following result
is due to Fraisse.

Theorem 3 (Fraisse[5]) Let G be a simple k-connected graph on n > 3
vertices in which the degree sum of any k+1 independent vertices is at least
n+k(k—1). Then G has a weak k-covering cycle.

In this paper we generalize the concept the covering cycle in another
direction. A cycle C of a graph G is called a weak clique-covering cycle, or a

CC-cycle, if each component of G—V(C) is a clique. Clearly, if a cycle C is
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a C-cycle then it is a CC-cycle. We will investigate the sufficient conditions
for a graph to have a CC-cycle. First notice that if G has a C'C-cycle then
G has a maximal cycle which is a CC-cycle. Let p > 3 be a positive
integer. The graph K> + 3(K, — E(K2)) shows that there are infinitely
many integers n such that there is a graph of order n with minimum degree
§ > (n—2)/3 and no CC-cycles. Thus, we do not expect much improvement
in the minimum degree in Nash-William’s theorem if we replace the C-cycle
by CC-cycle. In this paper we will investigate the neighborhood union
conditions and the mixed neighborhood union and degree sum conditions
for graphs having CC-cycles.

Let G be an arbitrary graph. Throughout this paper we will use
NC5(G) to denote the minimum value of the cardinality of the neighbor-

hood union over every pair of nonadjacent vertices in G, that is,
NC3(G) = min{|N(u) U N(v)| : © # v and uv ¢ E(G)},

and 02(G) to denote the minimum degree sum over every pair of nonadja-

cent vertices of G, that is,
02(G) = min{d(u) + d(v) : u # v and wv € E(G)}.

The following results are obtained.

Theorem 4 Let G be a 3-connected graph of order n. If
d(u) +d(v) + 2|N(u) UN(v)| > n+4

for every pair of nonadjacent vertices v and v, then G has a longest cycle
which is also a CC-cycle.

Let p > 2 be a positive integer and let My, denote the graph obtained
from K3, by removing a perfect matching. Then the graph G = K3 +4M>,

has n = 8p + 3 vertices and

d(u) + d(v) + 2IN(x) UN(v)| > 8p+4=n+1
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for every pair of nonadjacent vertices u and v. It is readily seen that G
does not have a CC-cycle. Thus the gap between the theorem and the
example for the lower bounds is the difference between n + 4 and n + 2. If
we replace the condition of 3-connectedness by 2-connectedness, we obtain
the following result.
Theorem 5 Let G be a 2-connected graph of order n. If NC3(G) > 4(n+
10), then G has a CC-cycle.

It is readily seen that if G has a weak clique-covering cycle C, then
any cycle containing all vertices of C is also a clique-covering cycle. Let

C4 = T1y172Y27) be a 4-cycle and let p; > po be two positive integers. Let
G = (2Kp, + {71, 22}) U (2Kp, + {y1, 32}) U E(Cy).

It is not difficult to see that every longest cycle of G has the vertex set of
2K,, U {z1,z2}. Hence G contains no longest cycle which is also a CC-
cycle. Therefore, even tho{lgh there is a CC-cycle, and hence a maximal
CC-cycle, guaranteed by the above theorem, it need not be a longest cycle.

A path P of G is called a weak clique-covering path, or CC-path, if each
component of G — V(P) is a clique. We will consider the condition that for
every pair of vertices u and v there is a CC-path joining u and v. In fact,
we will use the following results to prove Theorem 5.

Theorem 6 Let G be a 3-connected graph of order n. If
d(uv) +d(v) + |[N(u) UN(v)| 2 n+3

for every pair of nonadjacent vertices u and v, then for every pair of vertices
z and y there is CC-path P(z,y] which is also a longest path joining x and
Y.

Let p > 3 be a positive integer. The graph 3My, + K3 hasn =6p+3

vertices and satisfies

d(u) + d(v) + |[N(u) UN(v)| =2 6p+ 3 =mn,
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for every pair of nonadjacent vertices but fails to contain CC-paths between
two vertices of the K3. Thus, the gap between the bound given in the
above theorem and the example is the difference between n + 3 and n + 1.
The graph 2Ms, + K3 shows that the condition of 3-connected graphs is
necessary in the above theorem. Next, weakening the hypothesis from 3-
connected to 2-connected results in the loss of the longest path property
obtained in the above theorem.

Theorem 7 Let G be a 2-connected graph of order n. If |[N(u) U N(v)| >
-é-(n +4) for every pair of nonadjacent vertices u and v, then for every pair
vertices  and y there is a CC-path Pz,y).

Using the above result, we obtain the following theorem.

Theorem 8 Let G be a 2-connected graph of order n, and let o, yo be
two distinct vertices of G. If |N(u) U N(v)| > 3(n + 6) for every pair of

nonadjacent vertices u and v with
{u, v} N {zo, %0} =0,
then G has a CC-path Plzo,yo).

2 Preliminary Lemmas The first lemma, on hamiltonian graphs,
and the second, on graph structure, will be used in the proofs.

Lemma 1 (Chen [4]) Let G be a 2-connected graph of order n. If
d(u) + d(v) + 2|[N(u) UN(v)| > 2n -1,

for every pair of nonadjacent vertices u and v, then G is hamiltonian.
For a 2-connected graph G, let D(G) be the maximum integer S such
that for any two distinct vertices u and v in G there is an u-v path of length

at least S. If G is connected and has cut vertices, we set
D(G) = max{D(G*) : G* is an end block of G}.

Further, for G a connected graph with u and v distinct vertices, let uGv be

any longest u — v path contained in G.
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Lemma 2 (Fraisse and Jung[6]) Assume G is a connected graph, but is
not complete. Then, there exist non-adjacent vertices vy and vy in G such
that v; is not a cut vertez of G and D(G) > d(v;) (i =1, 2). Furthermore,
by the definition of D(G), d(v) < D(G) for allv € V(G) if G is a complete
graph. If G has cut vertices, let G, and Gy be two end-blocks of G. In this

case for any non-cut vertices v; € V(G;) (i = 1, 2), we have
[V (11Gv3))| = D(G1) + D(Ga) + 1.

Let H be a connected subgraph of a graph G and u and v be two
vertices in H. We use uHv to denote a longest path in H from u to v.
For the remainder of this paper, we assume every cycle (or path) X has
an orientation. For any two vertices u and v in X we let X[u,v] denote
the segment from u to v along the orientation of X while X ~[u,v] denotes
the segment of X from u to v along the opposite direction. We define
X (u,v] = X[u,v] —u with similar definitions for X [u,v) and X (u,v). Note,
only one of X[u,v] and X ~[u,v] is defined if X is a path and both X [u, ]
and X ~[u,v] are defined if X is a cycle. For every z € V(X), we let
zt denote the successor of z along the orientation of X and z~ denote

the predecessor of = along the orientation of X. Furthermore, we define

ztt = (z+)*, etc.

3 Proofs of Theorems We will prove the theorems according to
the following order: Theorem 6, Theorem 7, Theorem 8, Theorem 4, and

Theorem 5.

3.1 Proof of Theorem 6 Let zy and yo be any two vertices of G
and P[zo,yo) be a longest path joining z and yo. To the contrary, assume
that there is a connected component H in G — V(P|zo, yo]) which is not a
clique. Since G is 3-connected there are two subintervals of P[xzq, yo}, say,

P[z),y1] and P[z2,ys], which may share at most one vertex such that
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e For each i = 1, 2, there are two distinct vertices u;, v; in H such
that u;z;, v;y; € E(G) and one of them is in an end block H* of
H if H is not 2-connected;
e N(H)NP(z;,y:) =0 foreach i =1, 2.
Since P[zg, o) is a longest path joining xo and yo,
|V (P(z:,4:))| = |uiHvi| > D(H) + 1.
for each i = 1,2. By Lemma 2.2, there are two nonadjacent vertices in ug
and vp € V(H) such that
1
D(H) > max{dy(uo), dr(vo)} = 5|(N(uo) U N(vo)) N H].
Further, without loss of generality, assume that
dy(uo) + dy(vo) = min{dy (u) + du(v) : u, v € V(H),uw ¢ E(H)}.
We will show that
d(up) + d(vg) + |N(uo) U N(w)| < n + 2.
In the proof we will use the obvious fact that
d(uo) + d(vo) + |N(uo) U N(wo)| < 2|N(uo) U N(vo)| + |N(uo) U N(wo)|.

Using the property that P{xo, o] is a longest path joining z¢ and yo, we
have the following:
e zt, 2~ (one of which may not be defined) are not in N(ug)UN(vg)
if £ € (N(uo) U N(vg)) N V(P[xo,¥0));
o gt gtt gttt = 7~ 27~ (some of which may not exist) are
not in N(u) U N(v) if z € (N(uo) N N(vo)) N V(P[zo,¥0)).

Thus, we have
2|(N(uo) U N(vo)) N V(P[zo,yo])| + [N (uo) N N(vo) NV (P[zo,%0]))] <

(IV(Plzo, yoll +2) + (2 = [V(P(z1,y1))) + (2 = |[V(P(z2,¥2))]))
n— [V(H)| - [V(P(z1,31))| = [V(P(z2,32))| + 6.
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Note that

dp(uo) + dn(vo) < 2D(H) < |V(P(z1,31))| + [V (P(z2,92))| — 2

and
|(N(uo) UN (o)) NV(H)| < |V(H)| -2
Hence
2|N(uo) U N(vo)| + |N(uo) N N(vo)| £ n +2,
a contradiction. =]

3.2 Proof of Theorem 7 By Theorem 6, the result holds for 3-
connected graphs. We assume that G has a cut-set {ug,v}. Clearly,
G — {ug,vo} has at most three connected components by the neighbor-
hood union condition. Furthermore, if G — {ug,vo} has three connected
components, then each of them must be a clique. It is readily seen that
the result holds. Assume that G — {ug,vo} has exactly two connected com-
ponents H; and Hs. If both are cliques, the result clearly holds. It is not
difficult seeing that one of them must be complete. Assume that H; is a

clique. Let u and v be any two nonadjacent vertices in H;. Then
1 1
(N UN@)NV(HE) 2 5(n+4)-22 5 ([V(Hi)| +3).

If H, itself is 3-connected, by Theorem 6, for every pair of nonadjacent
vertices in H; there is a path connecting them in H; such that removing
all vertices of this path leaves only cliques, establishing the result. If H,
is not 3-connected, in an argument for H;, similar to the argument for G
above, let {u,v,} be a cut-set for H;. Further, let Hy,; and H; 2 be any
subgraphs of H; — {u;,v1} with no edges between. It can be shown is this
case that Hy,; and H; o, as well as Hy are cliques. It is then possible to
show that for given nonadjacent vertices u,v € V(G), there exists a path

Plu,v] such that G — V(P[u,]) is the union of disjoint cliques. m]
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3.3 Proof of Theorem 8 The proof of this theorem is similar to

the above and is left to the reader.

3.4 Proof of Theorems 4 and 5 Let G be a 2-connected graph
such that
d(u) +d(v) + 2[N(uw) UN(v)| > n+4

for every pair of nonadjacent vertices © and v. Note that
d(u) + d(v) + 2|N(v) U N(v)] < 3|N(u) UN(v)| + |N(u) N N(v)|.

Let C be a longest cycle of G such that the number of the connected
components of G — V(C) is as large as possible. Suppose, to the contrary,
there is a connected component H of G — V(C) which is not a clique. Let
m = |V(H)|. Clearly, m > 3. We will break the proof into the following
sequence of claims.

Claim 1 If z is a vertez in V(C) such that = and z+ € N¢(H), then
there is a * € V(G) — (V(C) UV (H)) such that zz* € E(G).

Proof: Let u, v € V(H) such that uz~, vz* € E(G). If u # v, then
Clz*, z-|JuHvz™ is a cycle longer than C, a contradiction. And, NV, H(zt) =
Ng(z~) and |Ng(z*)| = |[Nu(z~)| = 1. We denote Ny(zt) = Ny(z™) =
{u}. Note, C* = C[z*,z"Juz™ is also a longest cycle of G and G — V(C*)
has at least one more component than G — V(C), unless z is adjacent to
some vertex z* in G — V(C). Also, z* cannot be in H, since this would

imply a cycle longer than C. a

Claim 2 H is 2-connected.

Proof: To the contrary, suppose H is not 2-connected. Let H; be the end-
block such that D(H;) = D(H) and Hj be another end-block of H and w;
be the only cut-vertex of H in H; for each i = 1, 2. Note, w; and w; may be
the same vertex. Since G is 2-connected, there are two disjoint subintervals

C[z1,¥1] and C~[z2, y2] with at most end vertices in common, such that z;
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is adjacent to one of the non-cut vertices in H; and y; is adjacent to at least
one non-cut vertex in Hy for each i =1, 2 and {4,£} = {1,2}. Since C is a
longest cycle of G, we have |C(z;, ;)| > D(H;) + D(Hz) + 1. Furthermore,
by the maximality of the number of components of G— V(C), the inequality
holds only if H has a hamiltonian path with end vertices neighbors of z;
and y; respectively.

Let u; € V(H;) such that D(H;) > d(u;) for each ¢ = 1, 2. Since v
and uy belong to different blocks of H, it follows that dg(u;) + dg(uz) <
|V(H)| = 1. Thus, we have, by Claim 3.1,

3[(N(u1) UN(uz)) N V(C)| + [N (u1) N N(uz) N V(C)|
[V(C)| + 6 — |C(z1,51)| — |C(z2,52)|

n+6— |V(H)| - 2(du(uv1) + dr(uz) + 1)

n+ 3 —3(dgy(u1) + dg(ug)).

IN A

IA

Therefore,
3|N(u1) U N(uz2)| + |N(u1) N N(ug)| < n+3,

a contradiction. ]

An interval C[z;,y;] is called an H-interval if there are two distinct
vertices u; and v; € V(H) such that z;u; € E(G) and y;v; € E(G). Note,
if C[z;,y;] is an H-interval, then |V(C(x:,v:))| = D(H) + 1. Furthermore,
if the equality holds, replacing C(z;,y:) by u;Hv;, gives us another longest
cycle C*. By the maximality of the number of components of G —V(C), it

follows that u; Hv; is a hamiltonian path in A. Thus, it is true that
[V (C(zi, y:))| = d(u) +2
if D(H) > d(u) and u has a nonadjacent vertex in H.

Claim 3 There are at most three distinct H-intervals on C.
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Proof: To the contrary, suppose that there exist 4 distinct H-intervals. Let

ug and vp be two nonadjacent vertices in H such that
D(H) 2 d(uo) and D(H) 2 d(vo).
Without loss of generality, assume that
ds(uo) + dpr(vo) = min{dg(u) + dg(v) : u, v € V(H) and uv ¢ E(H)}.
Clearly, |(N(uo) U N(vo)) NV (H)| < |V(H)| — 2. Then

3|(N(uo) U N(v0)) NV(C)| + |(N(uo) N N(w)) NV(C)]
[V(C)| + 12 — 4max{d(uo) + 2, d(vo) + 2}

n+4 - |V(H)| - 2(du(uo) + du(vo))

n+ 2 = 2(dg (uo) + du (vo)) — [(N(uo) U N(w)) NV(H)I,

IAN IA

IA

which gives us that
3|N(uo) U N(vo)| + |N(uo) N N(vo)| < n +2,

a contradiction. o

Note, if there are three independent edges between H and C then, there

are three H-intervals, which implies that

3[(N(u)UN@)NV(C)|+|(N(w)NN(v))NV(C)| < |[V(C)|+9-3(D(H)+1).
(1)

Claim 4 If there are three independent edges between H and C, then H is
hamiltonian.

Proof: Suppose, to the contrary, that H is not hamiltonian. Then, by

Lemma 1, there are two nonadjacent vertices u$ and v such that

(2) dr(ug) + du(vg) + 2|N(ug) U N(vg)| < 2|V(H)| - 2.
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Let 4o and vp be two nonadjacent vertices of H such that
dy(uo) + dy(vo) = min{dy(u) + di(v) : v, v € V(H) and uwv € E(H)}.

Then,
3D(H) 2 S(du(uo) +dir(v0) +4) >

1
5(dr(uo) + dpr (vo) + 2/(N(uo) U N(vo)) NV (H)) +6.
Without loss of generality, we assume that
dr(uo) + dr(vo) + 2|(N(uo) U N(vo)) NV(H)| 2
dn(ug) + dn(vg) + 2|(N(ug) U N(vg)) N V(H)|.
Combining this inequality with (2), it follows that

dr(ug) + du(vg) + 2|(N(ug) UN(vg)) U V(H)|)
(IV(H)| - 1) + (3D(H) — 6)
|V(H)| + 3D(H) — 7.

IA

By (1),

3|(N(u3) UN(55)) N V(C)| + IN(ug) N N(v3) N V(C)|
n—|V(H)| - 3D(H) + 6

= n—1-(|V(H)|+3D(H)-17)

n -2 — dy(u3) — d (vg) — 2IN(u3) N N(g)  V(O)],

IA

IA

which gives us that
3IN(ug) U N(vg)| + [N (up) N N(vg)| <n +2,

a contradiction. ]

78



Claim 5 If there are three independent edges between H and C, then
dp(u) +du(v) 2 [V(H)| +1,

for every pair of nonadjacent vertices of v and v in H. In particular, H is
hamiltonian connected.
Proof: Suppose, to the contrary, that ug and vy are two nonadjacent ver-

tices in H such that
dg(uo) + du(ve) < |V(H).

By Claim 4, let C* be a hamiltonian cycle in H, and u,, ug, us be three
vertices along the cycle C* such that each of them is an end of one the
three independent edges between H and C. Since there are exactly three
H-intervals on C. These three H-intervals must be in the form C[z1,u1],
C(z2,y2], C|z3,y3) along the orientation of C such that

z1u; € E(G) and nug € E(G),

Zaug € E(G) and yaus € E(G),

z3u3z € B(G) and ysuy € E(G).

Since C is a longest cycle in G, we have
[V(C(z1,91))| + [V(C(z2,32))| + [V (Clzs3,93))| 2 2|V (H)| + 6.
Therefore, we have
3|(N(u0) U N(w0)) NV(C)| + |(N(uo) N N(wo)) NV(C)

3
n+9—|V(H)| - Z [V(C(z1,1))l

i=1

IA

IA

n+3-3|V(H)|
< n+3-3(dy(uo) + du(vo)),
which implies that

3|N(uo) U N(vo)| + [N{uo) N N(vo)| < n +3,
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a contradiction. (m}

The following claim completes the proof of Theorem 4.
Claim 6 There are no three independent edges between H and C.
Proof: To the contrary, assume that there are three independent edges
between H and C. Then C has three H-intervals. By the above claim, H
is hamiltonian connected, that is, D(H) = |V/(H)| — 1. Let ug and vy be

any two nonadjacent vertices in H. Clearly,

|(N(uo) U N(wo)) NV(H)| < [V(H)| - 2.

Then
3|(N(uo) U N(v0)) NV(C)| + |(N(uo) N N(vo)) NV(C)|
< n+9-|V(H)| -3|V(H)|
< n+3-—(dy(uo) + du(vo)) — 2|(N(uo) U N(v)) NV (C)|.
Thus,

3|(N(uo) U N(v0)) NV(C)| + |(N(uo) N N(w)) NV(C)| < n +3,
a contradiction. m]

3.4.1 The Proof of Theorem 5 With C and H as defined in the
previous proof, now consider the stronger assumption that NC5(G) > (n+
10). Since there are no three independent edges between H and C, it follows
that there are two vertices xo, yo in V(C) U V(H) such that their removal
will leave H and C in distinct components. For convenience, let H; = H
and Hy = G — V(H,), and m; = |V (H;)| and h; = |V(H;) N {zo, yo}| for
eachi=1, 2.

By Claim 3.2 we know that H, is 2-connected. Since H; is a component
in G —V(C), Hy =G — V(H,) is also 2-connected.
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Claim 7 The following inequalities hold.

%(n + 16 — 3h2)

IA

1
V(H)| < 3(2n - 16 +3hy)

%(n +16-3h) < [V(Hy)| < %(21; — 16 + 3hy).

Proof: Note that every vertex v in H; — {zo,yo} has N(v) C V(H;) U
{zo,y0}. Let z; and y; be two distinct vertices in (Ng(H))*. Then

{zo, w0} N {z1,11} =0,

and

N(z1) UN(y1) C V(H2) U {zo, 30}
Thus, |V(H2)| > %(n + 10) — h; + 2, which implies
IV(HY)| < %(271, — 16+ 3hy).
If there are two nonadjacent vertices ug, vo € V(H;) such that
{uo, vo} N {zo, %0} =0,

then
1 .
|[V(H3)| < §(2n — 16 + 3hs).

On the other hand, if there no such two vertices ug and wvp, it is readily
seen that there exist two independent edges uju;, vjv; between H and
C with u;, v; € V(H), and there is a hamiltonian path of H joining u;
and v;. Thus, C has two H-intervals, C[z;,y;] with i = 1, 2, such that
[V(C(zi,4:))| 2 |[V(H1)|. In this case, it is very easy to see that for every

two nonadjacent vertices v and v in H the following inequalities hold,
3|(N(u)UN(v))NV(C)| < [V(C)|-2IV(H)| £ n=3(|(N(x)UN (v))NV(H))),

which implies |N{u) U N(v)| < n — 2, a contradiction. o
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For each i =1, 2, by Claim 3.7, the following inequality holds,
n> %(3|V(Hi)| +16 — 3h,).

For each i = 1, 2 and every two nonadjacent vertices u, v € H; with

{u, v} N {z,y} = 0, by Claim 3.7, it follows that,

[(N(w) UN(v)) NV (H;)|

v

%(n+10) —hj, forj#1

I\

%(%(37!&; +16 — 3h3) +10) — h;, for j #1i
%(mi +12 —3hj, for j# i
%(mi-l'ﬁ)

v

v

By Theorem 8, we see that G has a cycle C* containing g, yo such that
G - V(C") is the disjoint union of cliques. o
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