Using Thresholds to Compute Chromatic Polynomials

Gary Haggard
Bucknell University
Lewisburg, PA 17837

Thomas R. Mathies

Knox College
Galesburg, IL 61401

1 Abstract

An efficient algorithm for computing chromatic polynomials of graphs is
presented. To make very large computations feasible, the algorithm com-
bines the dynamic modification of a computation tree with a hash table
to store information from isomorphically distinct graphs that occur during
execution. The idea of a threshold facilitates identifying graphs that are
isomorphic to previously processed graphs. The hash table together with
thresholds allow a table look-up procedure to be used to terminate some
branches of the computation tree. This table lookup process allows termi-
nation of a branch of the computation tree whenever the graph at a node is
isomorphic to a graph that is stored in the hash table. The hashing process
generates a large file of graphs that can be used to find any chromatically
equivalent graphs that were generated. The initial members of a new family
of chromatically equivalent graphs were discovered using this algorithm.

2 Introduction

A chromatic polynomial for a graph G is a polynomial that has as its value
for each nonnegative integer n the number of ways G can be colored using
n colors. The degree of a chromatic polynomial for a graph G is the num-
ber of vertices in G. In 1965 Hall, Siry, and Vanderslice [HSV] manually
computed the chromatic polynomial of the planar dual of the truncated
icosahedron. This is a graph with 32 vertices and 90 edges with each ver-
tex of degree five or six. The lack of any computer implementation of an
algorithm for this computation led the first author to work on this prob-
lem several times (unsuccessfully) since being introduced to the problem
by Dick Wick Hall in 1969. Now the joint effort described here has led to a

ARS COMBINATORIA 58(2001), pp. 8595

successful approach. The basic idea of the algorithm that was implemented
starts with the well-known Delete-Contract Theorem. The algorithm and
some of the subsequent enhancements that led to the computation of this
chromatic polynomial are described in [Hal], [HR], and [Ha3]. Following
the successful computation of the chromatic polynomial of the planar dual
of the truncated icosahedron, a new benchmark was needed to carry on
this program of research. The graph shown in Figure 1 which is the cubic,
planar representation of the truncated icosahedron filled the need. The
chromatic polynomial of this graph is a degree 60 polynomial. The com-
putation trees for this problem are an appropriate set to study. Future
work will focus on how the algorithmic design ideas used to compute this
chromatic polynomial can be applied to other computational problems.

Other approaches to developing algorithms for computing chromatic
polynomials have been presented. In [Sh] the algorithm for finding chro-
matic polynomials uses chordal graphs for termination conditions. In [An]
an algorithm is proposed using the Whitney expansion that is proven to
compare favorably with the estimate in [Wi]. These and other implemen-
tations of algorithms for computing chromatic polynomials, such as [Re]
and [NW], have provided experimental results for computations of only
relatively small graphs. The work of [HVS) was too large for these imple-
mentations.

i
(i
Santsal

S

The Truncated Icosahedron-T'I

80

Figure 1

86

The chromatic polynomial of T'I can be found in [HM]. For purposes of
experimentation and timing studies, we define the following subgraphs of
TI:

TIn=<{1,2,..,n}> forn=1,2,..,60.

3 The Algorithm

The problem is to compute the chromatic polynomial of a graph G = (V, E)
with vertex set V and edge set E. The major improvement to the basic
delete-contract algorithm was a technique for breaking the problem into a
set of problems associated with isomorphically distinct graphs of various
sizes. A value between 1 and |V| that determines the size of the graphs
in a set of isomorphically distinct graphs is called a threshold. A set
of thresholds is any subset of 1,2,...,|V| ordered from the largest to the
smallest value chosen. Any value included in a set of thresholds is simply
called a threshold. A threshold represents the maximum number of vertices
allowed for any graph in a particular set of isomorphically distinct graphs.
When a graph is reduced to a size less than or equal to the size of the
threshold value that is being used, it is determined whether the graph is
isomorphic to a previously found graph at this threshold. If the graph is
not isomorphic to a graph previously encountered when this threshold was
reached, the graph is further reduced until it reaches a size equal to a lower
threshold value. When the smallest threshold value designated is reached,
the chromatic polynomial of the remaining graph is computed using the
algorithm described in [Ha2]. When the graph’s chromatic polynomial is
computed, this value is used in the computation of the chromatic polyno-
mial of the graph from which it was formed. When a chromatic polynomial
is computed for a graph at a particular threshold, the chromatic polyno-
mial is stored in the hash table with the isomorphic invariant of the graph.
This recursive process continues until the original graph has its chromatic
polynomial computed. If a graph of a given threshold size is found to be
isomorphic to a previously encountered graph, its chromatic polynomial is
found in a table. This process of filtering the number of graphs passed
on from one threshold value to a smaller threshold value can be viewed
as terminating branches of the computation tree. The nodes of branches
that contained representatives of the isomorphically distinct graphs for that
threshold are then processed until they reach a smaller threshold. Thus the
number of graphs to be passed to smaller threshold values is substantially
reduced. The algorithm is given in Figure 2.

87

Enter edges of Graph and build Graph

Initialize arrays and threshold table. Allocate the first block of
storage for the hash table.

Renumber Graph vertices using breadth first
search (bfs) numbering

Delete — Contract(Graph, Threshold, C Polynomial)

Output CPolynomial /* chrom. poly. of Graph */

Delete — Contract(Graph, Threshold, C Polynomial)
while(graph to process)
If [V (Graph)] is less than or equal to Threshold
Remove any vertex of degree 1 in Graph
Remove any vertex of degree 2 in Graph in a triangle
Find isomorphic invariant
Check hash table for invariant
If invariant is in the table
Add previously calculated polynomial to CPolynomial
else
If (no smaller threshold)

FindPoly(Graph, Polynomial) /* compute chrom. poly. */

else
/* NewThreshold largest threshold less than |V (Graph)|
Determine NewThreshold
Delete ~ Contract(Graph, NewThreshold, Polynomial)

Add Polynomial with vertex deletions incorporated to C Polynomial

Add invariant and Polynomial to hash table
Get a Graph trom the stack or set end of stack flag
else
Select vertex with largest bfs number, v
Delete edge of (v, w) in Graph where w has
the largest bfs numbering among all neighbors of v
Copy Graph to Graphl
Contract vertices v and w in Graphl
Remove any vertex of degree 1 in Graphl
Remove any vertex of degree 2 in Graphl in a triangle
Stack contracted Graphl
end while

Reduction and Computation Algorithm

Figure 2

88

The isomorphism test used in the algorithm is the code of [Mc]. The pro-
cedure FindPoly calculates the chromatic polynomial of a graph passed
to it. FindPoly acts on a connected graph and preserves this property as
an invariant throughout the procedure. Therefore, it is necessary to know
that Delete — Contract also preserves connectedness as an invariant. This
needed invariance follows from the fact that the edge that is deleted or
contracted is chosen in a particular way relative to a breadth first search
numbering of the vertices of the graph.

FACT. Let Graph be a connected graph with a breadth first search bfs
numbering. Let v be the vertex of Graph with largest bfs number and
let deg(v) > 1. Delete — Contract leaves connectedness invariant after
any delete or contract operation on the edge (v, w) where w is the vertex
adjacent to v with largest bfs number.

PROOF. Let Graph be a connected graph with |V (Graph)| = n vertices.
Let bfs be a breadth first search numbering of its vertices. For any breadth
first search bfs numbering 1,2,...,n of a connected graph, all the induced
subgraphs

<{1,2,..,k}> for k=1,2,...,n

are connected graphs. Let v be the vertex of Graph with the largest bfs
number. Let w be the vertex adjacent to v with the largest bfs number.
Since deg(v) > 1, removing the edge (v, w) does not disconnect the graph
because < {1,2,...,u — 1} > is connected and v is adjacent to at least one
of those vertices.

Since the contract graph is formed by first deleting the edge (v, w) and
this does not disconnect the graph as shown above, it remains to show
that identifying two vertices does not disconnect a connected graph. This
follows since the contracted graph is just

< {1,2,...,v -1} > U{(w,a)|(v,a) € Graph}
where w € {1,2,...,v - 1}.

For the case that the vertex v that has the largest bfs number in Graph
has deg(v) = 1, the algorithm removes v and its incident edge leaving a con-
nected graph. After computing the chromatic polynomial of the resulting
graph, a factor of A — 1 is introduced to complete the computation of the
chromatic polynomial of the original graph.

89

4 Timing Studies

The idea of a threshold is the key to understanding how the algorithm
operates. The algorithm does not say anything about how many thresholds
to use or which ones to use. The empirical results show, however, that
a good choice of even one threshold for a computation can substantially
reduce the running time. This reduction in running time is seen to be
more dramatic when larger sets of thresholds are used. The chromatic
polynomial of T'I was, in fact, not computed until the idea of thresholds
was implemented. Using a set of thresholds, this chromatic polynomial can
be computed in about two minutes. This section should give the reader
a good idea of how thresholds are used in this algorithm and can perhaps
be used in other algorithms. First we show how the placement of a single
threshold value affects the running time of the algorithm. Second, we show
how using a set of thresholds with more than a single element affects the
running time. Finally, we show how the order of input also can affect the
running time. Run times for the same graph can be very different depending
on the computation tree used. In this algorithm the computation tree is
determined by the order in which edges are input.

Table 1 gives an example of the difference in performance determined
by choosing different possible values for a single threshold in computing
P(TI39,)). The labels refer to the number of thresholds (Thresh.), the
number of isomorphically distinct graphs (Iso.), and the number of graphs
that are isomorphic to one of the isomorphically distinct graphs (Non Iso.).

Thresh. | Time Iso. | Non Iso. || Thresh. | Time Iso. | Non Iso.
Sec. | Classes | Matches Sec. | Classes { Matches

39 | 30986 1 0 26 363 128 11020
38 | 30466 2 0 25 187 117 18496
37 | 17330 3 2 24 97 102 36884
36 | 15767 7 3 23 37 95 72556
35 | 16079 14 7 22 47 98 136393
34 | 12704 23 19 21 60 105 265363
33 | 9338 28 54 20 89 130 478437
32 7340 35 118 19 159 97 1077854
31| 3360 33 299 18 280 116 | 2002520
30 2002 45 792 17 534 121 4204693
29 984 50 2011 16 993 134 8037352
28 795 83 3902 15 | 1548 126 | 13374507
27 587 123 6695 14 | 1548 126 | 13374507

All runs used the same computation tree.

Running Time for Different Choices of One Threshold

Table 1

90

Table 2 shows the variability in running time and the number of non-
isomorphic graphs generated (Iso.) when the algorithm uses more than
one threshold (Thresh.). Using T739 as an example, there are 26 possible
thresholds between 39 and 14 inclusive of both extreme values. The rows of
the table give performance data for several possible choices of thresholds.

TI39
Thresh. | Thresholds Time | Iso.
0 39 30986 1
1 21 60 | 105
2 26 17 12 | 249
3 26 19 14 5| 328
4 262117 14 3] 457
5 32262117 14 2] 535
6 322621171412 2| 535
7 3226211817 1412 2| 639
8 3226242119171412 1 720
9 3228262421191714 12 1 795
10 3632282624211917 1412 1| 802
11 3432302826242119171412 1| 863
13 3634323028262421191714129 1| 887
25 38373635343332...181716 15 14 11577
All runs used the same computation tree.

Experimental Determination of Optimal Sized Threshold Set For 7139
Table 2

The results in Table 2 do not imply that the fourteen sets of thresholds
contain the set of thresholds that give the shortest running time. The
obvious question once the number of thresholds has been set is to ask which
thresholds are most effective. In Table 2 the thresholds are just chosen to
be distributed over all the candidates. In Table 3 there is a comparison
among sets of thresholds with different edge orderings to generate different
computation trees. The number of non-isomorphic graphs determines most
of the running time since all other graphs have their chromatic polynomial
found by a table looking procedure.

91

Thresholds # non-isomorphic # copies
graphs at all thresh.

363432302826242119171412 || 556 2555
837 4144
1264 6765
1971 8710

36 34 323026242220 1816 14 12 || 577 2677
786 3719
819 3778
4145 15714

Runs with Different Pernutations of the Edge Set

5 Application

Table 3

A problem of interest concerning chromatic polynomials is to determine
whether or not two non-isomorphic graphs have the same chromatic polyno-
mial. Such graphs are called chromatically equivalent. As aside effect of
the algorithm presented, a file is generated that contains the isomorphic in-
variant and the chromatic polynomial of each isomorphically distinct graph
encountered at each threshold level. Four chromatically equivalent graphs
generated by an execution of the algorithm are shown in Figure 3.

Chromatically Equivalent Graphs with 15 Vertices

Figure 3

Two other chromatically equivalent graphs discovered when computing
the chromatic polynomials of randomly generated cubic graphs are shown

in Figure 4.

92

Chromatically Equivalent Ladders with 12 Vertices
Figure 4

With the information that the graphs in Figure 4 are chromatically
equivalent, a study [GHR] has shown that these are just two examples of
a whole family of graphs that is comprised of sets of chromatically equiv-
alent graphs. For an even integer 2k where k > 6, there are |k/2] — 1
chromatically equivalent graphs with 2k vertices in this family.

6 Summary

The complexity of the algorithm presented needs a worst-case analysis that
is different from the work of either [Wi] or [Wa]. T For example, the
analysis of [Wi] for the complexity of a delete-contract approach to com-
puting chromatic polynomials has a resulting value the order of magnitude
0(1.62IVI+IEl) where V and E are the vertex and edge set of the graph
considered. The assumption of this analysis is that the delete-contract pro-
cess continue until |V| + |E| < 1. In addition, it is assumed that there are
no efficiencies introduced for termination conditions such as stopping when
a tree is generated as suggested in [NW] or even computation tree modifi-
cations as incorporated in the algorithm presented. It is not clear how to
include modification to the computation tree into the analysis and so this
remains an open question.

Using a combination of algorithm development and timing studies, an
effective algorithm was developed for computing the chromatic polynomial
of the truncated icosahedron. Computation trees are modified dynamically
by deleting either edges or vertices of small degree [Ha3]. In addition,
spanning trees in a graph are dynamically altered as a result of either
vertex deletion or edge contraction. The focus on modifying a computation
tree using thresholds shows the possibility of improving other algorithms
provided there is an effective isomorphism for the structure involved. In
addition the algorithm provided a number of new examples of chromatically
equivalent graphs that led to the discovery of the existence of a family of
chromatically equivalent graphs.

93

Bibliography

[An] Martin H.G. Anthony, Computing chromatic polynomials, Ars Com-
bin. 29C (1990), 216-220.

[GHR] Stephen Guattery, Gary Haggard and Ronald C. Read, Chromati-
cally Equivalent Cycles of Ladders, private communication.

[Hal] Gary Haggard, Computing Chromatic Polynomials of Large Graphs,
Congressus Numerantium 119, 1996, pp.113-122.

[Ha2] Gary Haggard, Computing Chromatic Polynomials of Large Graphs I,
The Journal of Combinatorial Mathematics and Combinatorial Computing,
1993(13), pp-175-186.

[Ha3] Gary Haggard, Spanning Trees and Vertex Deletion, Congressus Nu-
merantium 112 (1995), pp. 33-36.

[HM] Gary Haggard and Thomas R. Mathies, The computation of chro-
matic polynomials, Discrete Mathematics 199 (1999), pp. 227-231.

[HR] Gary Haggard and R.C. Read, Isomorphism Abstract Data Type for
Small Graphs, Caribbean Journal of Mathematics and Computer Science 3
(1 & 2), (1993), 35-43.

[HSV] D. W. Hall, J. W. Siry, and B. R. Vanderslice, The Chromatic Poly-
nomial of the Truncated Icosahedron, Proceedings of the American Mathe-
matical Society (1965), 620-628.

[Mc] B. D. McKay, nauty User’s Guide (Version 1.5), Technical Report
TR-CS-90-02, Australian National University, Department of Computer
Science, 1990.

[NW] A. Nijenhuis and H.S. Wilf, Combinatorial Algorithms, Academic
Press, New York (1975).

[Re] Ronald Read, An improved method for computing the chromatic poly-
nomials of sparse graphs, Research Report CORR 87-20, Dept. of Comb.
and Optim., U. of Waterloo, 1987.

[Sh] D. R. Shier and N. Chandrasekharan, Algorithms for computing chro-
matic polynomials, J. Combin. Math. Combin. Comput. 4 (1988), 213-222.

[Wa] Timothy R. Walsh, Worst-Case Analysis of Read’s Chromatic Poly-
nomial Algorithm, Ars Combinatoria 46 (1997), pp. 145-151.

94

[Wi] Herbert S. Wilf, Algorithms and Complezity, Prentice-Hall, Englewood
Cliffs, NJ (1986).

95

