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Abstract

We show that there is a straight line embedding of the complete graph
Kec into R® which is space-filling: every point of R? is either one of the
vertices of K'¢, or lies on exactly one straight line segment joining two of
the vertices.

1 Introduction and preliminaries

It is a familiar and basic fact to any student of graph theory that the
complete graph on 5 vertices is not planar. That is, it is impossible to choose
5 points in the plane and join every pair of them by a straight line segment
in such a way that no two of the line segments cross. Denoting the complete
graph on m vertices by K,,, we also say that K5 cannot be embedded in the Eu-
clidean plane R2. One can of course also consider the drawing and embedding
of graphs in 3-dimensional Euclidean space. Here one can show that, for any
positive integer m, it is possible to draw or represent K, in R3 in such a way
that the edges of K, are represented by straight line segments, no two of which
intersect, except at their end-points when appropriate. In fact, this can even be
done for the complete graph on a continuum of vertices. That is, let ¢ denote
the cardinal number of the set of real numbers R. It is possible to choose a
set of ¢ points in R? and draw straight line segments in R® connecting every
pair of these points in such a way that no two of these straight line segments
intersect (except possibly at their end-points). In this note we will show that
such a drawing of the complete graph K¢ can be constucted so as to fill all of
R3; that is, in such a way that every point of R3 is either one of the vertices
of K¢, or lies on exactly one straight line segment joining two of the vertices.
While this might be thought of as a kind of discrete counterpart to the notion
of a space-filling curve, it seems to us to he more akin to certain kinds of tiling
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and covering problems, as studied for example in [3] and [2].

Let us now introduce the terminology and notation to be used. We refer
the reader to [6] and [1] respectively for any additional background material on
set theory and graph theory respectively. As usual we denote the cardinality of
a set S by |S]|. Infinite cardinal numbers are thought of as initial ordinals. In
this paper, a graph G is a pair (V, E), where V is a set and where E is a set of
two-element subsets of V. As usual, the elements of 1" are called the vertices
of G and the elements of E are called the edges of Ci. If E is the set of all
two-element subsets of V then G is called the complele graph on the vertex set
V. If [V] = m we denote the complete graph on the vertex set V by . If
G = (V,E) and if S is a subset of V, we say that S is a covering for G if every
edge of (7 intersects S. A malching in G is a pairwise disjoint set of edges of
G. If W is a subset of V then the subgraph of G induced by W is the graph
H = (W, F) where FF = {{u,v} € E{ue W and ve W}.

If n is a positive integer and if p and ¢ are two distinct points in R", we
denote the straight line in R" passing through p and ¢ by L,,. The closed
segment of this line extending from p to ¢ is denoted by [p.q]. We will denote
the open line segment joining p and q by (p,q). That is, (p.q) = [p.q] — {p.q}
If S is any subset of R™ we let (S) denote the affine hull of S in R™ ; this is the
smallest subset T' of R™ which contains S and which contains the straight line
Joining any two of its points. For & < n, a translate of a k—dimensional vector
subspace of R" is called a k-flat in R™.

Let ¢ = (V,E) be a graph and let n be a positive integer. A siraight
line embedding of G in R is a one-to-one function f : V — R™ such that
(f(e1), f(21)) O (f(uz2), f(v2)) = é for any two distinct edges {u;,v;} and
{u2,v2} of G. In other words, a straight line embedding of G in R" is a “draw-
ing” of the graph G in which the vertices of G are represented by points in R®,
and each edge {u, v} of G is represented by the straight line segment {f(u), f(v)]
Joining the points corresponding to u and v. The line segments representing the
edges do not intersect except possibly at their end-points (when two edges are
incident with a common vertex). If f is a straight line embedding of G in R

and if R® = f(V) U (U(u,u)es[f(")-f(v)]) we say that f is a space-filling
embedding of G in R".

We remark that straight line embeddings of infinite graphs in R? (that is,
planar representations of infinite graphs), and infinite graphs which admit such
ermbeddings, have been studied and characterized in [8], to which we refer the
interested reader.
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2 The construction of a space-filling straight
line embedding

We will now proceed to show that there is a space-filling straight line em-
bedding of K¢ in R3. The following simple lemma is a key ingredient in our
construction.

Lemma 2.1 Let n be a positive integer. Then R" is not the union of < ¢
k-flats each of dimension less than n.

Proof: Let D be a decomposition of R™ into ¢ parallel copies of (n — I)-flats.
Suppose now that R" = {J ¢, Fa where |4] < c and each F, is a k-flat for
some k < n — 1. Then since |A| < c, there is some (n — 1)-flat K belonging to
D which is different from all of the F,. If F, = F; N K then F, is either empty
or is a k-flat of dimension at most n — 2. Since K = (J,¢ 4 F3, this shows that
R"~! is the union of < ¢ k-flats each of dimension less than n — 1. The lemma
now follows by induction. O

Theorem 2.2 Let G = (V, E) be a graph with |V| = ¢ such that G contains a
matching of size c. Then there is a space-filling straight line embedding of GG in
R3.

Proof: Let the points of R be well-ordered as {pa| a < c}, and the vertices of
G as {va] @ < c}. Our embedding of i will be constructed by transfinite induc-
tion. We will construct, for every a < c. an induced subgraph H, = (W,, F,)
of G, and a straight line embedding f, of H, in R3 such thatforalla < ¢ :
(i) Wa| < o] + w.

(i) vo € W,.

(iii) If 8 < a then Wy C W, and fi = fo|W;.

(iv) pa € fa(Wo) U (U{u.u}el",.[fn(“)-fa(v)])'

To begin the induction we let Hy be the subgraph of GG induced by the one-
element set Wy = {vp} and we define fo(vo) = po.

Now suppose that v < ¢ and that for every o < v we have constructed an
induced subgraph H, of G and a straight line embedding f, of H, into R3
satisfying the above properties for all « < . We now describe how to construct
H, and f,. We will find it convenient to use the following terminology : If fisa
straight line embedding of a graph (W, F) in R® and if p is a point of R3, we will

say that p is covered by the embedding f if p € f(W) U (U(u,u}er‘[f(“)-f(”)])'

First we let U, = UQ<7 1W,. We will eventually define W, to be a certain
subset of V containing /. Our induction hypothesis implies that g, = an fo
is a straight line embedding of the subgraph of (¢ induced by U,.



If the point p, is covered by any of the embeddings f, for some a < 7 (that
is, covered by g.), we can omit the following argument and proceed directly to
the second part of the proof below (taking V. to be {/, and h, to be g,). So
suppose that the point p, is not covered by any of the embeddings f, for o < 7.

Let F be the collection of all k-flats {g, (), g+(¥). 9+(2)) and {g ()., g+(¥), Py)
where z, y, and z are vertices of U,. These flats include all planes determined
by three non-collinear points of g,(U,), all lines through two or three points
of g,(Uy). and all of the points of g,(Uy), as well as all the lines and planes
through p, and one or two points of ¢g,(U,).

Now condition (i) clearly implies that |U,| < |y| + w < c. Therefore there
are less than c flats belonging to the collection 7. By the preceding lemma,
these flats cannot cover all of R2 and so there is a point ¢ in R? which is not
in any of them. Let L be the line in R3 passing through p, and q. Then L
is not contained in any of the flats belonging to F. Therefore, for every flat
F belonging to F, we have that L N F is either empty or consists of a single
point. Since |F| < c, this implies that |L N (Upes F)| < c. Since the line L
contains ¢ points on either side of the point p,, there are points p, and p, in
L — (Upex F) such that p, € (po.pr)-

Since the graph G has contains a matching of size ¢ there is an edge {vg, 2}
in G which is disjoint from the set U,. Let V, = U/, U {v..vs} and let h, be
the function from V, to R® which extends the function g, on U, and such that
hy(vc) = po and h,(vy) = p;.

We now show that ., is a straight line embedding into R? of the subgraph
of i induced by V,. Consider any two distinct edges #; and e of this subgraph,
at least one of which is incident with one of the vertices in the set {v.,vy}. We
consider all the various possibilities.

Case 1: If these edges are of the form e; = {vc,u} and e2 = {v«, v} where u and
v are vertices of Uy then (hy(ve), hy(1)) and (h(vc), hy(v)) must be disjoint:
otherwise the point p, = hy(v<) would be on the line {g,(u), g4(v)), contrary
to the way p, was chosen. An identical argument applies to any two edges of
the form e; = {vx,u} and e2 = {v), v} where u and v are vertices of U, .

Case 2: Suppose that e; = {ve,u} and es = {v, w} where u, v, w are vertices
of U,. In this case (see Figure 1a), if (h,(vi), hy(1u)) N (hy(v), hy(w)) # & then
Po = hy(v<) must be in (g,(u), g4(v), gv(w)), again contrary to the choice of p,

Case 3: Suppose that e; = {vc,u} and ez = {v), v} where u.v are vertices of
U/y. Suppose that (hy(vs), hy(u)) N (Ay(va), hy(V)) # & . (see Figure 1b) Since
neither of p, or p, is in the flat {g,(u),p,) we must have u # v. Since the
point p, was not covered by any of the embeddings f,, for o < v, we know that
Py ts not on the closed line segment joining g, (u) and ¢,(v) and therefore the
points p., g-(u), gy(v) cannot be collinear. Since (p,, ¢, (1)) N (pr.9+(v)) # &, it
follows that both p, and p, are in the plane {g,(u).g,(v). p,). a contradiction.
Case 4: Suppose that e; = {vc,va} and e2 = {u, v} where u, v are vertices of
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Figure 1: The various cases.

U,. In this case (see Figure lc), if (hy(vx), hy(va)) N (A (1), hy(v)) # @ then
this intersection cannot be at the point p, since p, is not covered by any of the
embeddings fa for « < 7. Therefore this would again imply that both
Ps and p, are in the plane {g(u), g,(v), P}, 2 contradiction.
Case 5: Suppose that e; = {vc, v} and ea = {vc, v} where v is a vertex of U, .
In this case, we see that the intersection (hy(vc), by(va))N (hy(vi), hy(v)) must
be empty since, otherwise, the points p,, pr and g,(v) would be collinear. Since
P~ is also on the line through p, and p-, this implies that both p,, p; are in the
flat {g,(v).p~), a contradiction. An identical argument applies when x and A
are interchanged.

Thus we have that h, is a straight line embedding into R? of the subgraph
of G induced by V,,. Furthermore, h, extends f, for all « < ¥ and p, is covered
by the embedding h.,.
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Now, if the vertex v, belongs to the set V, we let W, = V, and we let
fy = hy to complete the inductive step. If not, we consider the collection F’
of all the flats (h,(z), hy(y), h,(2)} and where z, y, and z are vertices of V.
There are less than ¢ flats belonging to this collection and so, by the lemma,
there is a point p¢ in R? which is not in any of them. We let W, = V, U {v,}
and we let f, be the function defined on W, which extends A, and for which
f+(vy) = pe. The same reasoning we applied in considering the various cases
above shows that f, is a straight line embedding into R? of the subgraph of
G induced by W,. It is clear that conditions (i), (ii), (iii) and (iv) above are
satisfied. This completes the inductive step.

Now, let f = {J,<c fa- Conditions (i), (ii), (iii) and (iv) imply that f is a
space-filling straight line embedding of G in R3. O

Since the graph K¢ obviously has a matching of cardinality c, we obtain the
following as an immediate corollary.

Corollary 2.3 There is a space-filling straight line embedding of K¢ in R3.

One naturally wonders if there is a space filling embedding of K¢ that does
not require the Axiom of Choice. For instance it is known (see [4]) that K¢ can
be embedded in 3-space by letting the vertices be the points on the moment
curve (¢,t%,¢%), t € R. For a set S C R3 let the envelope of S be the union
of all closed line segments joining pairs of points of S. Any point on (p,q),
where p, g are distinct points on the curve, is an interior point of the envelope of
the moment curve, as may be seen by applying the Inverse Function Theorem.
Intuitively we see this by constructing tangent line segments at p and ¢, which
are skew, hence their envelope is a tetrahedron with non-empty interior. The
envelope of two short arcs constructed at p and ¢ will have a similar shape, and
so also have non-empty interior. The envelope of the moment curve does not
fill all of space, but it is an interesting question if a piecewise smooth curve can
give a space filling embedding of Ke¢.

Our use of the assumption concerning the cardinality of a matching in a
graph and some related ideas will be discussed in the next section.
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3 On the cardinality of covering sets and a re-
lated question

The space-filling embedding in 2.3 gives a covering by a special family of
non=crossing closed line segments (for which, if [e,8] and [c.d] belong to the
family of line segments and a # ¢ then so does {a,c]). This kind of covering
should be contrasted with the work in [3] and [2] where the authors study the
possibility of covering spheres and planes by congruent arcs. In the case of
2.3, we note that we cannot possibly have all of the line segments congruent.
In fact, the lengths of the line segments in any space-filling embedding of K¢
cannot even be bounded above: If all their lengths were < r. choose any point
p of R® which corresponds to a vertex of K¢. Since any other point ¢ of R3
which corresponds to a vertex of K¢ is joined by one of the line segments to
p, this implies that all such points ¢ are no more than r uanits away {rom p.
Since any other point of R3 lies on a line segment between two such points ¢,
and g2, this would imply that all points of R® are within = units of p. It is
also of interest to note that neither can the lengths of the line segments in any
space-filling embedding of K¢ be bounded below. For, let P denote the set of ¢
points in space corresponding to the vertices of K¢. Since R? is the union of a
countable number of compact sets, there must be (by the pigeon-hole principle)
an uncountable number of points of P contained in a compact subset K of R3.
This infinite set of points has a cluster point in K. This implies that there are
points of P which are arbitrarily close together, and so the lengths of the line
segments joining them are arbitrarily small.

In order to construct our space-filling embedding we made essential use of
the assumption that our graph G contained a matching of size c. How essential
is this assumption? Well, for one thing, it is not necessary for a graph G to
satisfy this condition just because there is a space-filling straight line embed-
ding of G in R3. Such a graph G with no matching of size ¢ necessarily has
a covering of size < c. Indeed there is a graph G of cardinality ¢ which has a
counlable covering and for which there is a space-filling straight line embedding
of G in R3. We thank Bill Sands for suggesting the following example. which
is simpler than our original one. We partition R? into a countable number of
unit cubes {Cp|n € N} in the usual way using a three-dimensional grid. These
cubes intersect only on their boundaries. Let p, be the center of the cube C,,.
Let (¢ be the graph which has a vertex v, corresponding to each of the centers
Pn. and a vertex for each point on the boundary of any of the cubes (",. For the
edges of (i, we take an edge from each v, to all the vertices which correspond to
the points on the boundary of the cube ('n. Clearly (i has a countable covering
and there is a natural space-filling straight line embedding of ¢ in R®. We
note that an identical construction can be applied in the plane R* (using unit
squares) to give a graph G which has a countable covering and for which there
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is a straight line embedding of ¢ in R* which fills the entire plane.

Can one characterize those graphs (7 for which there is a space-filling straight
line embedding of G in R? ? The preceding example shows that the smallest
cardinality of a covering in G does not by itself lead to such a characterization.
We have not been able to find such a characterization.

Having seen an example of a graph G which has a countable covering and
for which there is a space-filling straight line embedding of G in R3, we may
wish to go one step further and ask whether there is a graph G which has a
finite covering and for which there is a space-filling straight line embedding of
G in R3. At first glance, it may seem intuitively clear that such a graph cannot
exist. However, we have only been been able to establish a few very special
cases of this problem : the case when the graph G has a covering of size at most
3, and the case when G has a special kind of covering K of size 4 (for which any
two edges incident with two different vertices of K are disjoint). The general
finite case has so far eluded us. We will return to discuss these special cases
in R3 at the end of this section. For the moment, let us instead consider the
corresponding question for filling the plane. Here we can show, as expected,
that there is no such graph with a finite covering. Our argument here has a
much different flavour than the discussion in Section 2 above and, as we will
see, leads to an interesting related question concerning the plane.

We will make use of the following terminology and notation in the plane. Let
A be a point in R, and let 8 be a number such that 0 < § < 2. We let LA(6)
denote the unbounded straight line ray in R? extending from A in a direction
which makes an angle of § radians with the horizontal. If r is any non-negative
real number, we let L4(f,7) denote the set of points on the ray L,4(8) whose
distance from A is at most r. Note that if A has coordinates (a1, az), this is
the same as the closed line segment {4, B] where B = (a; + r cos 8, az + rsin§).
When r = 0, L4(8,r) just consists of the single point A. If §; and 8, are two
numbers such that 0 < 8, < 0, < 27, we let C4(8,,8,) = Uo.<9<a, LA(8). The
set Ca(6h,0) is called a sector at A. The set of points in the sector C4(8;,85)
whose distance from A is > r is denoted by C1(6,,8,) and is referred to as a
tail of the sector Ca(6,,802).

It is easy to see that, if A and B are any two points in the plane, then any
tail of a sector at A contains a tail of a sector at B (see Figure 2).

Let A be a point in the plane R? and let g be a non-negative function defined
on [0, 27] with g(0) = g(2x). The set Jycgcar La(8,9(8)) is called

a star at A (corresponding to the function g) in R? and will be denoted by
Sa(g). Thus a star at A contains a line segment in every direction from A:
these segments can have all different lengths or even have length 0. A subset S
of R? is called a star if there is a point A and a function g such that S = Sa(g)-
These sets have also been called radial sets by other authors (for example, see

104



A

Figure 2: Tail of one sector contained in another.

{9]-

Stars arise in an obvious way in connection with embeddings of graphs in
R2. Let G = (V.E) be a graph and let f be a straight line embedding of
G in R? . Let u be a vertex of G. We will let £, denote the set of all the
line segments which correspond to the edges of G incident with u. That is,
Ly = {[f(w), f(v)]| {u,v} € E}. For any two distinct vertices ¢, and va of ¢
which are adjacent to v in G, the two line segments [f(u), f(v1)] and {f(u), f(v2))
intersect only in the point f(u) and so extend in different directions

from this point. Thus the set S, = {f(u)}U (U{u'u}es[f(u)‘f(v)]) is a star in
R? at the point f(u).

It is clear that, if f is a space-filling straight line cmbedding of ¢ in R?, and
if U is a covering in G, then R? = J, ¢y Su-

Theorem 3.1 Let G = (V, E) be a graph and suppose that i has a finite
covering. Then there is no space-filling straight line embedding of G in R>.

Proof: We argue by contradiction. Suppose there is a space-filling straight
line embedding f of G in R2. Let U = {uy,uz,...,u,} be a finite covering of
G, where n is some positive integer. As above, we consider the sets of lines
Lyys Lyy oo Ly, which correspond to the set of edges incident with each of the
vertices uy, Uy, ..., Un, and the stars Sy, , Su;, ... Sy, in R? corresponding to these
vertices. The union of these stars is all of R2. Let g, g3, ..., gn be non-negative
real-valued functions on [0, 27) such that Sy, = Sy, )(gi) foralli=1,2,... . n.

We consider two possibilities. First, suppose that, for all { = 1.2,..,n
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and for every non-empty interval [ contained in [0,27], there is a non-empty
interval J C [ such that g; is bounded on J. Then there is a non-empty interval
J1 = (%1, A1) and a positive real number r; such that 91(8) < ry for all 8 in
Jy. The tail Cfluyy(K1, ML) of the sector at f(uy) corresponding to the interval
Jy is disjoint from the star Sriu)(g1). Let Ty = C;('u,)("l-'\l)- Now there is
a tail of a sector at f(u2) which is contained in the tail T). That is, there is
an interval (x, ) and a positive r such that er(u,)("* A) C T,. Because of our
assumption, there is an interval J, = (x2, A2) contained in the interval (k. 2)
and a positive number ry > r such that g5(8) < r, for all 8 in Ji. Note that
the tail C,"(’uz)(xg, Az) is disjoint from the star S;(4,)(g2) and also from the star
Sy(uy)(g1), since C;(2u2)(f€2,/\2) C er(u,)('c"\) CT. Let Ty, = C;(’uz)(:cg,«\g).
(see Figure 3) Continuing in this way, we can construct T} for all i = 1,2,...,n
such that, for all'i, T; is a tail of a sector at the point f(u;) and T; is disjoint
from all of the stars Spui)(91), Spua)(92)s - Sp(u,)(9:). When we reach i = n,
the tail 7}, is disjoint from all of the stars

Sru)(91), Sp(us)(92), .. Syun)(gn), contradicting the fact that these n stars
cover the whole plane.

Thus we can assume that there is one of the functions gi, say ¢, and a
non-empty interval / = (x, ), such that g; is unbounded on every non-empty
interval J contained in /. Now, choose a non-empty interval I} = (x, )
contained in [ and so small that the sector Ct(ui)(®1, A1) contains none of
the points f(u2), f(u3), f(ua), ..., f(tn). Let R be a positive number such that
R > d(f(u1), f(ui)) for all i = 2,3,...,n.(d denotes the usual Euclidean dis-
tance). Let @ be any number in the interval I, such that the ray Ly(u,)€0) is not
parallel to any of the lines Ly, su,) for i = 2,3,...,n. Since g1 is unbounded
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on every non-empty interval contained in / there is a number 8, in the interval
(%1,8) and a number 65 in the interval (8, A;) such that both g,(6;) and g,(6>)
are larger than both of the numbers R and g,(#). Now, let p be any point which
lies on the ray Ljy,)(f) and whose distance from f(u)) is larger than ¢,(0)
but smaller than both g,(8;) and g;(f2). Then p is not in the star Sy, )(g1)-
Since the stars Sy(u,)(91): Ssu)(92)s -+ Sp(uar(gn) cover the plane, there must
be some i # | such that p is in the star corresponding to u;. But (see Figure 4)
any line segment extending from f(u;) which contains p obviously must meet
one of the line segments Ly(y,)(61, 91(61)) or Ly, (82,91(02)) at a point in the
interior of that line segment. This contradicts the fact that no line segment in
the set L,, crosses any line segment in the set L,,, since f is a straight line
embedding. O

There is an interesting related question which arises very naturally in light
of 3.1. Suppose that f is a straight line embedding of a graph G in R2. For any
two vertices u and v of G, the line segments which make up the corresponding
stars S, and S, do not intersect, except possibly at their end-points. What
we have shown in the proof of 3.1 is that no finite number of such stars can
cover the whole plane. Now, let us ignore graphs for the moment, and forget
about the condition involving the non-intersection of the line segments making
up the stars. Let us just think of stars in R? in their own right. Can there be a
finite number of stars in R whose union is all of R®*? One’s intuition suggests
no. It is easy to see that two stars cannot cover R%. Also, a finite number of
measurable stars cannot cover R?. This follows from the fact that the measure
inside a big disk of a measurable star is sinall when compared to the’measure
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of the disk. However, the general case has so far eluded us.

As mentioned above, we find ourselves in a much more unsatisfying state for
R3. In this case we have only been able to establish the following very special-
ized result.

Theorem 3.2 Let G = (V, E) be a graph. If (¢ has a covering consisting of
three or fewer vertices, or if G has a covering A consisting of four vertices such
that any two edges of G incident with two different vertices of K are disjoint,
then there is no space-filling straight line embedding of GG in R3.

Proof: We will sketch the argument. Suppose there is a space-filling straight line
embedding f of G in R3. [f G has a cover K with |K| < 3 then the result follows
by applying 3.1 to a plane containing the points of f(K). In the second case,
we can assume that the four vertices of f(K') are not coplanar, otherwise again
we can apply 3.1 to a plane containing f(K). So, letting K = {uy, uz, u3, uq}
, and letting p; = f(u;), we can assume that p;, ps, p3, ps are the vertices of a
tetrahedron T in R®. Our assumption concerning K implies that, for every pair
i,j with i # j there is a point on the line segment (p;, p;) which is covered by a
line ¢; ; through one of the other points pi. The intersection ET of this line with
T is contained in one of the faces of T. Since there are six such line segments
(pi,p;) and T has only four faces, there must be two of the line segments 8
which are contained in the same face of T and which cross. O

4 Addendum

Recently P. Komjath [7) has shown that three stars can cover the plane if the
Continuum Hypothesis holds. In fact the result is shown for certain subsets of
stars called clouds, a cloud around a being a set of points that intersects every
line through a in a finite set, and this result is shown to be equivalent to the
Continuum Hypothesis.
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