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Abstract
Combinatorial properties of the multi-peg Tower of Hanoi prob-
lem on n discs and p pegs are studied. Top-maps are introduced as
maps which reflect topmost discs of regular states. We study these
maps from several points of view. We also count the number of edges
in graphs of the multi-peg Tower of Hanoi problem and in this way
obtain some combinatorial identities.

1 Introduction

The Tower of Hanoi problem posed in 1884 [1] is by now very well un-
derstood. The classical problem consists of finding the minimum number
of moves necessary to transfer a tower of n discs from one peg to another.
Several variants and generalizations of the problem have been proposed, cf.,
for instance, [5, 7). Papers [2, 3, 9] nicely survey the topic and/or give the
corresponding large bibliography. When the classical problem with three
pegs is generalized to more pegs, the problem becomes notoriously difficult
although Hinz [4] suspects that the problem might be solvable by closer
examining the graphs associated to the problem.
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In this paper we introduce a partial description of regular states of the
problem by considering only the topmost disc of every peg. Formally this
is done via so-called top-maps which assign to every regular state a vector
whose components are labels of topmost discs. For a fixed number of pegs
this description is polynomial in the number of discs, in contrast to the
usual description of regular states which is exponential in the number of
discs.

In the rest of this section we introduce the concepts and notations
needed later. In the next section we describe several properties of top-
maps, for instance we compute sizes of their images and classify their
unique preimages. In Section 3 we then apply our considerations to graphs
of multi-peg Tower of Hanoi problem and to obtain certain combinatorial
identities related to the Stirling numbers of the second kind.

The multi-peg Tower of Hanoi problem consists of p > 3 pegs numbered
0,1,...p— 1 and n > 1 discs of different sizes. Discs will be numbered
1,2,...,n and we assume that they are ordered by size, disc 1 being the
smallest one. Initially all discs lie on peg 0 in small-on-large ordering. The
objective is to transfer all the discs to peg p — 1 in the minimum number
of legal moves. A legal move is a transfer of the topmost disc from one peg
to another peg such that no disc can be moved onto a smaller one.

As usual, a state is regular if no larger disc is placed on a smaller one.
A regular state can be uniquely described with an n-tuple r € (Zy)" =
{0,1,...,p — 1}". More precisely, we set

T=(r1,72,...,Tn),

where r4 denotes the peg on which the disc d is placed. An example of a
regular state on p = 5 pegs with n = 6 discs is shown in Figure 1. The
corresponding 6-tuple r is also given (as well as a 5-tuple s to be defined
in the next section).

regular state
r=(3,3,3,0,2,0) 1
5=(4,0,5,1,0) 4 2

0 1 2 3 4

Figure 1: A regular state

A regular state is perfect if all the discs lie on the same peg. In Figure
2 an example of a perfect state is shown with all discs on peg 3.
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perfect state
r=(3,3,3,3.3,3)
$=(0,0,0,1,0)

0 1 2 3 4

Figure 2: A perfect state

We call a regular state a spread state, if all the discs are on different
pegs, see Figure 3. Clearly, for n > p there are no spread states.

spread state
r=(1,4,0,2)
5=(3,1,4,0,2)

0 1 2 3 4

Figure 3: A spread state

A regular state is an almost spread state, if for some & > 1, discs 1,...,k
are on a common peg, while discs k£ + 1,...,7n are each on a private peg,
cf. Figure 4.

Note that a perfect state is an almost spread state with £ = n and a
spread state is an almost spread state with k = 1.

Let r = (r1,72,...,7n—1,7n) be a regular state. Then r is a perfect
state if and only if all the components r; are equal. The state r is a spread
state if and only if r; # r; for any ¢ # j. Finally, 7 is an almost spread
state if and only if there exists £ > 1 such that all r; are equal for 7 < k
and r; #r; Fryfori,j>ki#j.

Finally, as usual, let (n)y, = n(n — 1)+ (n — m + 1) and let S(n, k)
denote the Stirling numbers of the second kind.
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almost spread state
r=(3,3,3,2,4,0) 1
5=(6,0,4,1,5) 2
6 4 3 5
1 2 3 4

0

Figure 4: An almost spread state

2 Top-maps

Information about topmost discs suffices to know all the possible legal
moves from a given regular state. From this reason we introduce mappings

Taw : (Zp)" = (Zn1)?
as 7;;4,(1‘1,7’2,. N ,'I’n) = (30,81, e ,sp_1), where

0; . re #iforl <k<n,
8; = . . = 1. . .
i lrsr}elgn{k ; T, =1}; otherwise
Hence, the component s; of s is the topmost disc on peg i, if peg ¢ is
nonempty; otherwise s; = 0. We will briefly refer to these mappings as
top-maps. As usual, R(7y,p) denotes the image of Ty, and [R(7y,p)| its
size.

Observe that in general a top-map need not be surjective. For instance,
the 4-tuples (2,3,4,5) and (2, 1, 4,4) are not in the image of some top-map.
In the first case the smallest disc is not present and in the second case the
disc 4 is supposed to be simultaneously on two discs.

We begin with the lemma which is useful for computing |R(7x,p)|-

Lemma 2.1 Let 8 = (S0,81,-..,8p—1) € (Zn+1)”. Then s € R(Tn,p) if
and only if the following two conditions are fulfilled:

(i) Jie{0,....p-1}:85=1,
(i) Vi,j€{0,...,.p-1}: 8 =38;=>(i=jVs; =0).

Proof. The conditions are clearly necessary. Indeed, the smallest disc must
be one of the top discs and no disc can be topmost simultaneously on two
pegs.

Assume now that s = (so, 81,--.,3p—1) fulfills the two conditions. We
need to show that there exists r = (r1,r2,...,7n) € (Zp)" with T, p(r) = s.

58



We define the components r; as follows. For any ¢ with s; # Owe set r;, = 1.
By condition (i) such i is uniquely determined. For all the other discs 3
(i-e. for all those which do not appear as the topmost discs) we set r; = ry.
(Note that by condition (i) the component 71 has already been defined.)
It is now easy to verify that r € (Z,)™ represents a regular state and that
Tap(r) = s. o

Proposition 2.2 For any n > 1 and p > 3 we have

-1 _
R(Tap) =5 3 (” . ‘) (n=1)y_es.

k=0

Proof. Let s € R(T, ). Then, by condition (¢) of Lemma 2.1 we have
8; = 1 for some i. There are p possibilities for that. After fixing this %,
there may be k empty pegs for any k with 0 <k<p-1. Forafixed k
there are (*7*) possible selections of k empty pegs. The remaining p—1—k
pegs are nonempty, and by the condition (i) of Lemma 2.1, which asserts
that the topmost discs must be different, we infer that there are

(n—l)((n—l)—l))-~-((n—1)—(p—1-k—1)) = (n— Dps

possibilities to select the p — 1 — k top discs. (]

Let p be fixed. Then, as R(7;, ;) C (Zp41)P, the size of R(Thp) is a
polynomial function in n. This observation can be made more precise as
follows:

Corollary 2.3 Let p > 3. Then IR(Tnp)| = pnP~! 4+ O(nP-2).

Proof. Result follows by noting that the leading term from Proposition
2.2 is obtained for k£ = 0. m]

Recall that the number of regular states is p", i.e. the number of reg-
ular states is exponential in the number of discs. Therefore Corollary 2.3
seems to be interesting from the algorithmic point of view, because the
exponential number of regular states is a source of difficulties in studying
the graphs of the Tower of Hanoi problem.

Let 3 € R(Tn,p)- In order to determine |7;, , ™ (s)| we introduce the fol-
lowing function. For a positive integer d and a p-tuple s = (3o, 51, ... ySp—1)
let

hid,s)=|{i € {0,...,p—1}; 0< s; < d}|.

Now we have:
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Lemma 2.4 Let 38 € R(Tn,p)- Then

1; h(n+1,8) =n,

[ Tnp ™' (8)] = H h(i,s); otherwise.

i=1

XTI sp—1

Proof. Suppose that h(n + 1,s) = n. Then every disc in (any element
of) Tn p‘l(s) is topmost. It follows that the preimage of s is unique, i.e.
[Tap ™ (8)] = L

Assume now that at least one disc in T,.,,,‘l(s), say i, is not topmost.
Then h(4, s) is nonzero and represents the number of pegs on which we can
place the disc i in a regular state corresponding to s. Therefore ()]
is at least []; h(4,s), where i runs over all discs that are not topmost. On
the other hand, a disc i can only be placed on a peg j if i < s;. If there
are several discs that can be placed on the same peg, then they must be on
this peg sorted by their sizes, i.e. there is only one possibility to do that.
Therefore, |Tn, " (3)| is at most []; k(, s). o

The case when the preimage of s is unique is characterized in the next
theorem.

Theorem 2.5 Let Tpp(r) = 5. Then Top~'(s) = {r} if and only if r is
an almost spread state.

Proof. Suppose first that r is a perfect state, a spread state, or an almost
spread state. Then, using Lemma 2.4, it is easy to verify that [T~ (8)] =
1.

Conversely, let |7,,'(s)] = 1. By, Lemma 2.4 we then either have
h(n + 1,8) = n or []; h(i,s) = 1. In the first case r is a spread state and
thus an almost spread state.

Assume now that [, h(i,s) = 1. It follows that the index set of this
product is nonempty and for any such i we have h(i, s) = 1. Let 1 be such
number with h(i, s) = 1. Clearly, i > 1. Moreover, Lemma 2.1, implies that
there exists a peg j such that s; = 1. Therefore, i < s; and as h(i,s) =1
disc ¢ must lie on peg s;. Hence, all the discs ¢ with h(i,s) = 1 must be on
the same disc (i.e. on the disc s;). Now, if the number of such discs i is
n— 1, then r is a perfect state which is an almost spread state. Otherwise,
for any other disc k we have k = s, for some t. In other words, all the other
discs are topmost. They clearly lie on pegs different from s;, and we can
conclude that we have an almost spread state. O



3 Top-maps and combinatorial identities

We have seen in the previous section that the image of a top-map is of
polynomial size in the number of discs. Therefore it is natural to ask which
information can be deduced from the image of Ty, itself. Here we show
how to compute the number of legal moves from a regular state r using
only information of 7y, »(r).

Proposition 3.1 Let T, ,(r) = s. Then the number of legal moves from r
is

h(n +1,5) (p - %) - %h(n +1,8)%.

Proof. Observe first that the number of nonempty pegs is h(n + 1, s), and
so the number of empty pegs is p—h(n+1, 8). Any topmost disc of a peg can
be moved to any empty peg. Therefore, there are h(n+1,8)(p—h(n+1,s))
legal moves of this kind.

It remains to consider the legal moves in which a topmost disc is moved
to a nonempty peg. Recall that the h(n + 1, 3) topmost discs are different.
Thus, the smallest one can be moved to any other of h(n+1, 5)—1 nonempty
pegs, the second smallest can be moved to h(n + 1,8) — 2, and so on.
Therefore, there are

h(n+1,8)—1 1
Y. i=5(hn+1,8) = Dh(n+1,5)
i=1
different moves from a nonempty onto a nonempty peg.
Summing the above expressions we get the result. ]

The number of topmost discs that can be moved to a peg 7 is equal to
h(s;, ). Moreover, if 3; = 0, i.e. if peg j is empty, then by definition we
have h(s;j, ) = 0. Therefore, the number of legal moves in which a topmost
disc is moved to an nonempty peg is equal to Y, h(s;,s) and so we also
have (cf. the above proof)

p—1
z:h(s;,s) = —;—(h(n +1,8) — h(n+1,s).
i=0

By Theorem 3.1 we thus only need to know the number of nonempty
pegs h(n + 1, s) in order to compute the number of legal moves.

In order to obtain some additional results, we shall consider graphs of
the multi-peg tower of Hanoi problem. They are defined as follows. The
graph G} = (V;*, Ep) of n discs and p pegs has regular states as vertices,
two vertices being adjacent if one state is obtained from the other by a
legal move.
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Theorem 3.2 For anyn > 1 and p > 3 we haeve:

4 n—1
> (k- 3) - 3#) SEuBN = 0= ) L p* - 2.
k=1 i=0
Proof. We will prove the theorem by counting the number of edges in G
in two ways.
Note first that the number of regular states where exactly k¥ pegs are
nonempty is equal to S(n, k)(p). Therefore, using Proposition 3.1, we have

|Ep| = Z (k(p— - —kz) S(n, k) ()

k_

Consider now the set of states in which the largest disc is fixed on some
peg. We infer that the corresponding vertices induce a subgraph of Gy
isomorphic to G’“1 There are p such subgraphs and they form a partltlon
of VP. Two vertlces belonging to two such subgraphs are adjacent if and
only if they differ exactly in position of the largest disc. Since all the
remaining discs except the largest one lie on p — 2 discs (i.e. on the pegs
that are not involved in the move of the largest disc), there are |V,
edges connecting two such subgraphs. It follows that the number of edges
of G can be expressed recursively as

- Y4 -
121 =g+ (§) vzl

Thus, |E}| is equal to:

stz () v =

o () (o

p (o =1 (3)mist) « () + (5w -
P(p-(--- (pIE.1I+ ( )I -2|> (‘2”) |v,3_2|) +) ( )| )| =
w(’z’) +‘(’2’)(p—2)‘)+ (g)@-2>2)+...>+ (12’)(,,_2)“1‘=

n—

n—1

z (g)p‘(p _ 2)(71-1)—3‘ .
i=0
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Combining the above expressions the result follows. ]

Using standard methods the right-hand side expression of Theorem 3.2
can be summed up. In this way we obtain:

Corollary 3.3 For anyn > 1 and p > 3 we have:
P

> (ko= 3 - 3 S(o. k) p)e = () o -0-271.

k=1

In the proof of Theorem 3.2 we observed that the number of regular
states where exactly k pegs are nonempty is S(n,k)(p)r. On the other
hand the number of all regular states is p". Thus in passing we get the
following well-known identity, cf. [6, 8]:

Corollary 3.4

3 n
Ph=) SmE)pk = S(n,k)(p)-
k=1 k=1

In this formula the choice of the upper bound for summation makes no
difference, since S(n, k) =0, if n < k, and (p)g = 0, if p < k.
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