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ABSTRACT. Let S be the set of vectors {em: f= 0,-;—'.%} ,and let S

be a nonempty simply connected union of finitely many convex polygons

whose edges are parallel to vectors in S. If every three points of S see a

common point via paths which are permissible (relative to 5 ), then S is

starshaped via permissible paths. The number three is best possible.

1. Introduction. We begin with some definitions. For vectors §, ¢ in the

plane with s= & ¢, we say that the parallel vectors s and # have the same

direction if a >0, opposite direction if a <0. Let 5= {Sl, . Sk} be a set

of vectors in the plane with s; and S; nonparallel for i= ;. Let 1 be a

simple polygonal path whose edges [v,-_],v,-] » 1=i<m, are parallel to the
vectors in 5. Path 1 is called permissible relative to S if and only if no two
associated vectors V;_; v; have opposite direction. For S a set in the plane and
X,y points in S, we say x sees y (x is visible from y) via permissible
paths if and only if there is a path in S which is permissible relative to § and
which contains both x and y. Set S is starshaped via permissible paths if and
only if for somé point p in S, p sees each point of S via permissible paths,

and the set of all such points p is the permissible kernel of S.
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In case set S above contains exactly two vectors, one parallel to each of

the coordinate axes, then a permissible path relative to S is called a staircase path.

Staircase paths have been useful in studying orthogonal polygons (i.e., polygons
whose edges are parallel to the coordinate axes), and in fact analogues of the
familiar Krasnosel’skii theorem [7] have been obtained by replacing the usual
notion of visibility via straight line segments with the related idea of visibility via

staircase paths. (See [9], [4], [3], [2]) The planar version of Krasnosel’skii’s

theorem states that for S nonempty and compact, S is starshaped (via segments) if

and only if every three points of S are visible (via segments) from a common point.

Analogously, for S a nonempty simply connected orthogonal polygon in R? ,Sis

starshaped via staircase paths if and only if every two points of S are visible via

staircase paths from a common point [2].
An interesting question which arises is the following: Can the results

for staircase paths and orthogonal polygons be extended to permissible paths
and polygons whose edges are parallel to vectors in set 5= {sl 5 bes ,Sk} for

k > 29 This paper investigates the problem when k = 3, replacing the vector

ﬂ} by the analogous set {ei0:9= 0 n 2”}. It turns out

i0.
set {e’ .6=O,7 ,—3‘,—3—

that although the staircase number two no longer works as the Krasnosel’skii

number, the usual Krasnosel’skii number three produces the desired result.

The following familiar terminology will be used: cl S, int S, and bdry
S will denote the closure, interior, and boundary, respectively, for set S. The

distance between points x and y will be denoted dist (x, y). When

x# y,R(x, y) will be the ray from X emanating through y, and L (x, y)



will be the corresponding line. If A is a simple path containing points X and
y, then A (x, y) will denote the subpath of A from x to y. The reader

may refer to Valentine [10], to Lay [8], to Danzer, Griinbaum, Klee [5], and to
Eckhoff [6] for discussions concerning visibility via segments and

Krasnosel’skii - type theorems.

2. The Results. We will establish the following theorem.

Theorem 1. Let Sbe the set of vectors {ew:H = O,%,g} , and let

S be a nonempty simply connected union of finitely many convex polygons
whose edges are parallel to vectors in S If every three points of S see a

common point via paths which are permissible (relative to 5), then S is

starshaped via permissible paths. The number three is best possible.

Proof. For each point x in set S, define set A, = { y:ix sees y

via a permissible path in S} . The proof of the theorem will be accomplished by

a sequence of lemmas.

Lemma 1. For each point X in set S, the corresponding set A, is

closed.

Proof of Lemma 1. We use a variation of a technique from [3, Lemma
1]. For convenience of notation, let .S ={s,- 1<i< 3} . Consider the finite

family of lines determined by edges of polygons which contribute to set S, and

let V/denote the set of points which belong to at least two of these lines. To



each point v in |} we associate three lines L ,, L ,, L 5, where L; contains v
and is parallel to the vector §; in 5, 1<i<3. The corresponding family of

lines L gives rise to a collection T of nondegenerate closed polygonal regions
such that
1) No member of T contains any other nondegenerate closed polygonal region

determined by L, and
2)U{T:Tin T }=cl(intS).

Let B be the family {int 7:T in T} U {(s,¢):[s,¢] an edge of
T,Tin T}U {(s,2) :[s,¢] an edge of S and (s,£)" cl(intS)=2}.

Clearly B is finite and U {cl B:Bin B}=S.
The following result will be useful in finishing the proof of Lemma 1.

Proposition 1. For points X,y in set S and set B in B, if

yeBNA4, ,thenclBc Ax'

Proof of Proposition 1. Assume for the moment that B is fully two
dimensional. For each vector s; in 5, there are two lines parallel to 5; which
support B, 1<i<3. Let U; denote the open strip bounded by these two
parallel lines. Certainly no parallel member of L lies in U; and hence no point
of Vliesin Uj;.

Let A be a permissible X —y path ordered from x to y. Without

loss of generality, assume that A has as few segments as possible. There is a



first segment of A which meets the open set B, and for an appropriate
labeling, this first segment is parallel to vector §;. Assume that its vector is in
the direction of s, as well. Observe that this segment necessarily lies in the
open strip U, defined above.

There are two cases to consider.

Case 1. Assume that A C U,. For any # in cl B, a permissible
X — 2 path may be obtained by using a vector parallel to s; from x to a

suitable point in ¢l B, followed by a vector parallel to §, or §; to point £.

(See Figure 1.) ThusclB < 4, .

Figure 1. Figure 2.



Case 2. Assume that A & U, . Then there is a first segment w of 4
such that w meets U, and all successive segments of A liein U,. Clearly
W is not parallel to s;, and for an appropriate labeling, W is parallel to s,.
Assume also that its vector is in the direction of S,. Since A has fewest
possible segments, w cannot be extended to meet B. Hence w can be
extended to cross U, (i.e., to meet both lines bounding U,) without entering
B. For £ in cl B, a permissible x — £ path may be obtained this way: Use

A from X to the first point of segment W, followed by a vector in the

direction of s, to a suitable point of cl U,, followed by a vector in the

direction of §; to point £ . (See Figure 2.) Again cl Bc 4, .

It remains to consider the case in which B is a segment. Again let 4

be a permissible x — y path. Then either

1) A enters B by way of some setint T, Tin T, where B is an edge of T, or
2) A enters B along the edge B itself from an end point of B.

If 1) occurs, then using the earlier part of the proof, cl BcTc4,. If2)

occurs, clearly cl B A, . This finishes the proof of Proposition 1.

Finally, using Proposition 1, it is easy to see that set A, is closed, for

A, is a finite union of appropriate sets from{ cl B:B in B}.

Note: The proof of Lemma 1 may be extended to any set of vectors
S ={s, yeen ,sk} in the plane.

Lemma 2. If @,b €4, and [a,b] S, then [a,b] < 4, .



Proof of Lemma 2. Let p € (a,b) to show that p € 4,. Select
permissible paths £, , &, in S from x to a, from x to b, respectively, and
let W denote the simply connected subset of S determined by
KoLy U[a,b] . Observe that if one of 4, or 4, contains point p, then
P € Ay, and the argument is finished. Otherwise, 4, \U i1, \U[a,b] bounds
a full hemisphere H W at p along [a,b]. Let 5= {S],SZ,S3} and let
t,t,,1; be three rays emanating from point p such that #; is parallel to
vector §; and f; meets H ~{ p}, 1<i<3. For convenience of notation,
assume that §; and f; have the same direction, 1</ <3, and that Lyt
are labeled in a clockwise direction from ray R(p,a) toray R(p,b).

For the moment, assume that neither 42, U [a,b] nor y,, U [2,5]
alone determines hemisphere /. Let #;,V; denote the first point of ray ¢
(i.e. the point of #; nearest p)on U,, i, respectively, if such a point exists,
1<i<3. (At least one of u;,V; will exist for each #;.) Without loss of
generality, assume that %, exists on /, and that, if t, meets u,, the
corresponding order on {, is p <u, < v,. Then [p,uz]g WcC S, anditis
not hard to see that #; exists and [p,ul] c HcW ¢ Salso. (See Figure 3.)

If either ,ua(x,u,)u[ul,p] or ,ua(x,uz)u[uz,p] is a permissible x— p
path, then the argument is finished. Otherwise, M, must contain both a vector in

the direction of ) (and f) and a vector in the direction of s, (and £, ).
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Figure 3.

Clearly vectors in the directions of §; and s;alone cannot comprise
the permissible x —a path #,. A similar statement holds for the triple s,
sy, and s3. Therefore, 4, must contain vectors in the directions of 5y, S;,

and -s;. Observe that X and f, must lie in the same closed halfplane

determined by the line of 7, . There are two cases to consider.

Case 1. Suppose that x lies in the convex region bounded by rays 7,

and f,. Observe that [p,uz]u Ha (uz,a)u[p,a] bounds a simply
connected subset W' < W < S. The vector at X in the direction of —53
necessarily meets [ p,uz] at some point W, and since £, consists exclusively

of vectors of type s, S,,-S3, M, lies in one of the closed halfplanes

determined by L(x, w) .
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If [x, w]g S, then [x, W]U[w, p] is a permissible x— p path,
finishing Case 1. If [x, w] & S, then path 4, must cross [x, w].
Consider path £, . Certainly Hp meets I3 at point V5. If ,u(x, v3) employs
no vector in the direction of Sy, then (x,v3)u[v3, p] comprises a
permissible X — p path, again finishing the argument. Otherwise, L/, (x,v3)
contains vectors of type 53. To reach point b, path Hp must contain either a
vector of type -, or a vector of type -$, , and since Hp crosses [x, w] s My
must contain vectors of type 5; and -s,. Hence M employs vectors of type
$1,-8, and ;.

Observe that there is a first segment in Hp which meets
R(p,b)~ {p}, and this segment must be in the direction of -8, . Consider
the first point ¢ of g, such that a vector at q in the direction of -5, lies in

S and meets R( p,b) ,say at b’. (See Figure 4.) (Of course (q,b’] need not

meet 44, .) Then u, (x,q)u [q,b’] is a permissible pathin S .

If b' = p, we have a permissible x — D path, the desired result. Otherwise,
the ray from b’ in the direction of §; will meet ray t,, say at ¢, and by our
choice of b ,[b’,c] cWcSs. Then
Hp (x,q) ) [q,b'] v [b',c] ) [c, p] € S consists exclusively of vectors of

type Sy, -5, and §;, producing the required permissible x — p path. This

completes Case 1.
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Figure 4.

Case 2. Suppose that point x fails to lie in the convex region

determined by rays f, and f3. Then 4, necessarily meets ; before meeting

t,. Hence u3 € 4, M t3, and ,ua(x,u3)u[u3,p] is a permissible X — p

path, finishing Case 2.

Finally, if one of 4, \[a,b] or Uy V[a,b] alone determines
hemisphere H € W, assume that £, \J [a,b] determines H . Then vectors

of type $;,8,,5; cannot comprise path 4,, so for one of the §; vectors, say

Sy, M4, employs vectors of type -S). Moreover, i, meets each ray #; at

point % closest to p,1<i< 3. Thus Y4, (x,ul)u[ul, p] is a permissible

X — p path, finishing the proof of Lemma 2.

Lemma 3. For X,y in §, the corresponding set A, U A4, is simply

connected.
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Proof of Lemma 3. Let A be a simple closed curve in 4, U 4,,

with point p interior to the closed bounded region U < S determined by A4 .

We will show that p € A, \U 4. For each line L through p, there is at

least one pair @,b in AN L for which p e(a,b)gU. To each L we
may  associate  such  pairs  a;,b; and a L’ N L' with
a,<a, <p<b, <b, for which dist (a;,b;) is maximal and dist
(aL',bLI) is minimal. If one of @;,a; isin A, and one of b, ,b,  isin
Ax , then by Lemma 2, p € Ax , finishing the proof. Hence we assume that
for an appropriate labeling, a,,a;, €A, and b, ,b,’ €A,. Then by
Lemma 2 [aL,aL']g A, and [bL,bL']g 4,.

Define set U' = {[a,b] :a,b in A and p e(a,b)g U}.
Certainly U" is starshaped via straight line segments at p,and p €int U’.
Moreover, it is easy to see that set U’ is closed. (A converging sequence of
appropriate segments [an,bn] will have as its limit a segment [aa,bo] at p

and in U, with a,,b, ezl.) Notice that for any line L at p and for the
associated pairs @;,b, and a; ,b; defined previously, if 7 e(a L,b,_'),

then [r, p] cU~A=int U, and clearly [r, p] cintU’. Hence each

boundary point of U’ on line L must belong to

[aL,aL']U[bL' ,bL]g A,V A, and thereforebdry U' c 4, U 4, .
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The following observations will be useful: For points s, t in bdry U’
and on a common ray at p, clearly [S,t] cU'.  Futhermore,
[s,£]NintU’' =@, for if there existed a point u in intU’' with
s<u<t<p,then p would see via straight line segments in U’ all points
in some neighborhood of u, and ¢ e(u, p)c; intU’, impossible by our
choice of ¢ . It follows that [S, t] C bdry U'.

Certainly bdry U’ is closed. We assert that bdry U’ is connected as

well. Suppose on the contrary that bdry U’ has two or more components. Let
C be such a component, and define D = (bdryU’ )~ C. Set C is open and
closed in bdry U’ ; hence D is closed in bdry U’ , and both C and D are

closed in the plane.
Notice that for c in C and d in D, d ER(p,c). Otherwise, by a
previous observation, [d ,c] cbdry U’, forcing d and ¢ to belong to the

same component of bdry U’ , impossible. Therefore, no ray at p meets both

Cand D.
Since C\u D = bdry U’ , for at least one of these sets, say C, set C

contains points ¢, and c, with ¢, €R(p,c;). Corresponding rays
R(p,cl) and R( D, c2) determine two closed subsets of the plane, say V'
and W. I\:Ioreover, at least one int¥ or intW is disjoint from D, for if
d, e(int¥)nD and d, e(intW)n D, then
R(p,dl)U R(p,dz) c R? ~C would separate ¢; from c,, impossible.

Assume that intV is disjoint from D, and select an angle at p of minimal

measure such that one of the corresponding closed subsets of the plane contains
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set C (and hence contains V). Let R,R, (not necessarily distinct) denote
the associated rays. Since C is closed, each of R, and R, meets C.
Observe that the remaining closed set (possibly degenerate) determined by R,
and R, contains D. If R # R,, then every ray at p which meets the
corresponding open region must intersect (bdry U ’) ~C=D,andsince D is
closed, RNDzQ for i=1,2. If R =R,, then trivially
RND#D,i=1,2. Either way, we have the ray R, from p which
meets both C and D. However, we noticed earlier that no ray from p has

this property. We have a contradiction, our supposition is false, and bdry U’

is connected, the desired result.

The rest of the argument is easy. By Lemma 1, sets A, and Ay are
closed. Hence A, M (bdry U') and A, N (bdry U") are closed subsets of
bdry U’ and their union is exactly bdry U’ . Since bdry U’ is connected, it
cannot be a union of separated sets. Therefore, either one of the set Ax N (bdry
U') or A, (bdry U') is empty, orAxr\Ayﬁ(bdryU')=®.
If A, N (bdryU’) =@, then for any line L at p, the endpoints of LU’
belong to bdry U'c4,, and (by Lemma 2) pe A,.
If4.n4, m(bdryU ') #(J, choose a point 2z in this intersection. The ray
emanating from # through p meets bdry U’ at a last point 2’ with
Z<p<#',and 2’ €4, UA4,. Assume that 2’ € 4,. Then (again by
Lemma 2) p EEZ , &' ]g 4.

We conclude that p € 4, U A, and 4, L A, is simply connected, finishing

the proof of Lemma 3.
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Lemma 4. For points Xx,y,2 in set S, the corresponding union

A, U A,V 4, issimply connected.

Proof of Lemma 4. Certainly {Ax, 4,4, } is a family of compact
connected sets in the plane. By our original hypothesis,
4.N 4,0 A, # . Certainly since every two of these sets meet, every
two have a connected union. By Lemma 3, every two have a simply connected
union. Hence we may apply [1 , Proposition l] to conclude that

A,V A, U 4, issimply connected.

We use the lemmas above to prove Theorem 1. Let A denote the family
of nonempty compact sets A, ,x in S. By a comment in Lemma 4, every two
members of A have a connected union, and by Lemma 4 every three members of
A have a simply connected union.

Therefore, by [1 , Theorem 1] Na {AX 1xin S} is nonempty (as well as simply

connected and connected). Certainly any point p in M {Ax :x in S} sees

every point of S via permissible paths, so S is starshaped via such paths,

finishing the proof of the theorem.

To see that the number three in Theorem 1 is best possible, consider the

following example.

Example 1. Let S denote the compact simply connected set in Figure 5,

and let 5= {ei6:9= 0,%,2—3“—}. Observe that points @ and ¢ see b, b and ¢

see @', @ and b see ¢' via paths which are permissible relative to 5. In fact,

every two points of S see via permissible paths a common point. However, set
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A, U 4, U A, is not simply connected, and points @,b,c see via permissible

paths no common point.

cl
c
b
S
b. \— a'
a
Figure 5.

Finally, we close with an interesting observation. It is well known that
for set A starshaped via straight line segments, the kernel of A is convex.
Likewise, for simply connected orthogonal polygon B starshaped via staircase

paths, the staircase kemel of B is both horizontally and vertically convex.

(See [3 , Theorem I]) Hence we might expect an analogous result to hold for

sets which are starshaped via paths permissible relative to 5= {S,,s2 ,S3}.

However, the following example shows that such a result fails.

Example 2. Let S=1{e”:0= O,%,Esﬂ} , and let S be the compact

simply connected set in Figure 6. Observe  that path

17



U {[x~_| ,xi] 12<i< 5} is permissible relative to 5. In fact, for any pair
y,2 in S,y sees 2 via permissible paths. However, set S is not convex in

any direction. That is, for any line L, some translate of L contains points of

S whose segment fails to lie in S.

X2 X1 Xs X4

Figure 6.
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