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Abstract

Let G be a spanning subgraph of K., and let H be the comple-
ment of G relative to K, ,; that is, K, . = G @ H is a factorization
of K, . For a graphical parameter u(G), a graph G is pu(G)-critical
if #(G + €) < pu(G) for every e in the ordinary complement G of G,
while G is u(G)-critical relative to K, if u(G + ) < p(G) for all
e € E(H). We show that no tree T is u(T)-critical and characterize
the trees T' that are u(T)-critical relative to K, ,, where u(T) is the
domination number and the total domination number of T
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1 Introduction

A set S C V(G) of a graph G is a dominating set if every vertex not in S
is adjacent to a vertex in S. The domination number 4(G) is the minimum
cardinality of a dominating set. A total dominating set in a graph G is a
subset S of V(G) such that every vertex in V(G) is adjacent to a vertex
of S. Every graph G without isolated vertices has a total dominating set,
since S = V(G) is such a set. The total domination number v,(G) is the
minimum cardinality of a total dominating set. A dominating set of G
of cardinality y(G) is called a v(G)-set, or just a v-set, if the graph G
is understood from the context. We use similar notation for the other
domination parameters. Domination in graphs, with its many variations,
is now well studied in graph theory. For a more thorough treatment of
domination and for terminology not defined here, we refer the reader to
[2, 6].

A graph is said to be y-domination critical, or just y-critical, if v(G) =
v and ¥(G +e) = v — 1 for every edge e in the complement G of G.
This concept of y-critical graphs has been studied by, among others, Blitch
(1], Sumner [12], Sumner and Blitch [13], Sumner and Wojcicka [14], and
Wojcicka [15]. Haynes, Mynhardt, and van der Merwe [8] - [11] defined
a graph G to be total domination edge critical, or simply k;-critical, if
7%(G + €) < %(G) = k for any edge e € E(G). Whereas the addition of
an edge from the complement G can change the domination number of G
by at most one, it can change the total domination number by as much as
two.

Proposition 1 [8] For any edge e € E(G),

7(G) -2 < 1(C +¢) < n(G).

In this paper we consider a different complement concept. If G is a
spanning subgraph of F', then the graph F — E(G) is the complement of G
relative to F with respect to a fixed embedding of G into F'. The idea of a
relative complement of a graph was suggested by Cockayne [3] and is studied
in [4]. We shall assume that the complete bipartite graph K ; has partite
sets £ and R (representing “left” and “right”), and that G@ H = K, ;5 is
a factorization of K. (If G and H are graphs on the same vertex set but
with disjoint edge sets, then G @ H denotes the graph whose edge set is
the union of their edge sets.) Notice that if G is uniquely embeddable in
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K5, then H is unique. We henceforth consider only spanning subgraphs
G of K, such that G is uniquely embeddable in K, ;. For the remainder
of this paper H will always denote the complement of G relative to K ;.

Haynes and Henning [7] studied domination critical graphs with respect
to the relative complement. They defined a graph G to be «-critical relative
to Kss if ¥(G) =+ and (G +€) =+ — 1 for all e € E(H). Furthermore,
if  and v are non-adjacent vertices in different partite sets of G, then
(G +wv) = v — 1 and so there exists a set W of cardinality v — 1 that
dominates G + uv. Since W does not dominate G, it must be that exactly
one of u and v, say v, belongs to W and that W dominates all of G except .
Thus, § = W — {v} is a set of cardinality v —2 such that SU{v} dominates
G —u and we write [v,S] — u. In particular, when we write [v,5] — u
it is understood that u is not dominated by S. To distinguish between
domination critical graphs relative to K, , and domination critical graphs
relative to ordinary complements, we say that a graph is - critical (RC) if
it is domination critical relative to K, s and just +-critical if the ordinary
complement is being considered.

We extend the concept of domination critical graphs with respect to the
relative complement to total domination. A graph G is total domination
edge critical relative to K, 4, or just k;-critical (RC), if 4,(G+¢) < 7(G) =
k for all e € E(H). Suppose u and v are non-adjacent vertices in different
partite sets of a k;-critical(RC) graph G. Then, v,(G + wv) < k — 1 and
so there exists a set W of cardinality at most k — 1 that totally dominates
G +wuv. If W contains exactly one of » and v, say v, then W dominates all
of G except u. Thus, § = W — {v} is a set of cardinality at most k —2 such
that SU{v} totally dominates G~u and we write [v, S] -, u. In particular,
when we write [v, S] —; u it is understood that u is not dominated by S.

In Section 2 we characterize the y-critical(RC) trees and show that no
tree is y-critical. In Section 3 we charcterize the k,-critical(RC) trees and
show that no tree is k;-critical.

We use the following notation. An endvertez is a vertex of degree 1 and
its neighbor is called a support vertexr. An endvertex of a tree is also called
a leaf. For a graph G = (V, E) and X C V, let Lx denote the set of leaves
in G that belong to X, and let Sx denote the set of support vertices in
G that belong to X. For sets S, X C V, if S dominates X , then we write
S > X, while if S totally dominates X, we write § =; X. If § = {s} or
X = {z}, we also write s > X, S >, z, etc.
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2 Domination Critical Trees

Our aim in this section is first to show that no tree is ~y-critical and sec-
ondly to characterize domination critical trees with respect to the relative
complement. We begin with two straightforward but useful results.

Observation 2 For any y-critical (y-critical (RC)) graph G and edge uv €
E(G) (uv € BE(H)), exactly one of u and v is in any y-set of G +uv.

Lemma 3 No path is y-critical or y-critical(RC).

Proof. First we note that if P, is domination critical relative to K s, then

= 2s implying that its endvertices are in different partite sets (that is,
the edge between the endvertices is in the relative complement). Adding
the edge between the endvertices of a path P, yields a cycle C,. But
¥(P,) = v(Cn), so Py is not -y-critical or v-critical(RC). O

We show first that no tree is «y-critical.
Theorem 4 No tree is y-critical.

Proof. Suppose T is a +-critical tree. If a support vertex is adjacent to
two leaves u and v, then 4(T") = (T + uv), contradicting the fact that
T is ~-critical. Hence, each support vertex is adjacent to only one leaf.
If » and v are different support vertices, then there exists a y-set of T
containing both u and v. Observation 2 implies that u and v must be
adjacent. Hence, T has can have at most two support vertices. Thus, T is
a path, which contradicts Lemma 3. O

Next, we characterize those trees that are domination critical relative to
K, 5. For this purpose, we need the following notation. Recall that a star is
the complete bipartite graph K k. The corona Go K, is the graph formed
from a copy of G by adding a new vertex v’ for each v € V(G) such that
v and v’ are adjacent. We now characterize the trees that are ~-critical
relative to K, ;.

Theorem 5 A tree T is vy-critical(RC) if and only if T is the corona
Kl,‘y—l [} K1 fOT Y 2 3.
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Proof. First, we show that the corona T = K;,_j0 K, for v > 3 is
v-critical(RC). It is easy to see that y(Kj,—1 © K1) = v and the set S
consisting of all the support vertices is a y-set. Note that without loss
of generality, £ consists of one support vertex and v — 1 leaves, while R
consists of v — 1 support vertices and one leaf. Consider first adding an
edge from a support vertex v to a leaf u. Let »’ be the support vertex of
u. Then § — {v'} > T + wv. Next consider adding an edge between two
leaves u € £ and v € R, where v’ € £ and v’ € R are the support vertices
of » and w, respectively. Then (S — {/,v’'}) U {u} > T + uv and hence T
is vy-critical.

Conversely, we show that any «-critical(RC) tree T is the corona K1 ,—10
K. Assume that T is +y-critical relative to K, ;. Then T has partite sets £
and R such that |£| = |R| = s. By Lemma 3, no path is y-critical implying
that T has at least three leaves. First we show that no vertex is adjacent
to two or more leaves.

Claim 6 No vertez is adjacent to two or more leaves.

Proof. Suppose v € L is adjacent to two leaves, say v; and vp. Since
no star is y-critical(RC), v has at least one neighbor u in R that is not
a leaf. Let u; € N(u) — {v}. Then u; € L. Consider T + ujv;. Then
[u1,8] — v or [v1,S] = uy. In either case, we may assume that » € S to
dominate v;. Since S dominates vy, it is not the case that [u;,S] — v;.
Thus, [v1,8] + u;. Since v € S, vy is in S just to dominate u;. It follows
that (S — {v1}) U {u} dominates T and has cardinality less than y(T'), a
contradiction. Thus, each vertex is adjacent to at most one leaf. O

Claim 7 Ifu € £ and v € R are support vertices, then uwv € E(T).

Proof. Suppose « € £ and v € R are support vertices. Then there exists a
v-set of T' containing both u and ». Therefore it follows, from Observation 2,
that » and v must be adjacent. O

Claim 8 One partite set, L say, contains at most one support verter and
R contains at most one leaf.

Proof. Suppose each of £ and R contains two support vertices. By Claim
7, support vertices in different partite sets are adjacent, so these four ver-
tices induce a cycle, contradicting the fact that T is a tree. Hence one of the
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partite sets, £ say, has at most one support vertex. Then Claim 6 implies
that R has at most one leaf. O

iFrom Claim 8, we may assume that £ has at most one support vertex
and R has at most one leaf. If R has no leaf, then each vertex in R has
degree at least 2 in T, and so T has at least 2s edges, which contradicts
the fact that T is a tree of order 2s. Thus, R has exactly one leaf, say 7/,
and £ has exactly one support vertex, say y.

;From Claim 7 we know that y is adjacent to every vertex in Sg. Let
A=L-Lc—{y} and B=R — Sg — {y'}. Since |L¢| = |Sr| by Claim 6,
|A] = |B|. Suppose, A # 0. Then every vertex in A (B, respectively) has
degree at least 2 in T'. If each vertex of A is adjacent only to vertices of B,
then (AU B) contains a cycle. Hence, at least one vertex of Sz, z say, is
adjacent to a vertex of A. Let TV = (AUBU{z,y}). Then, T is a bipartite
graph with partite sets AU {y} and BU {z} where |AU {y}| = |BU {z}|.
However, every vertex of B U {z} has degree at least 2 in 77, and so T”
contains a cycle, a contradiction. Hence, A =0 and B = 0. Thus, T =
K -1 0 K, for some -y > 3, completing the proof of Theorem 5. O

3 Total Domination Critical Trees

We have two aims in this section. Our first aim is to show that no tree
is kg-critical. Our second aim is to characterize total domination critical
trees with respect to the relative complement. We again begin with a useful
observation.

Observation 9 For any k,-critical (k;-criticel(RC)) graph G and edge uv €
E(G) (uv € E(H)), at least one of u and v is in any y,-set of G + uv.

Since v:(Pn) = 7:(Cnr), a proof similar to that of Lemma 3 yields the
following result.

Lemma 10 No path is k;-critical or k;-critical(RC).

We show first that no tree is k,-critical.

Theorem 11 No tree is k;-critical.
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Proof. Suppose T is a k,-critical tree. If a support vertex is adjacent to
two leaves u and v, then 7,(T) = v(T + wv), contradicting the fact that T
is ke-critical. Hence, each support vertex is adjacent to only one leaf. We
show next that no two support vertices are adjacent.

Claim 12 No two support vertices are adjacent.

Proof. Suppose that « and v are support vertices of 2’ and v’ , respectively,
and that » and v are adjacent. Consider 7’ = T'+ '+ and let S’ be a total
dominating set of T". If both «’ and v’ are in S, then (8 - {u,v}Hhu
{u,v} > T, a contradiction since || < 7, (T). Hence we may assume that
u' € §' and v ¢ S, implying that v € S’ and v’ is the only neighbor
of v’ in T” that belongs to §’. But then (S — {u'}) U {v} > T, again a
contradiction. O

Let u’ and v’ be the leaves on a longest path in T, and let » and v be
the support vertices of »’ and v/, respectively. Since each support vertex
is adjacent to only one leaf, it follows that each of % and v has degree
exactly 2. We show now that » and v have a common neighbor.

Claim 13 The vertices u and v have a common neighbor.

Proof. Suppose that u and v do not have a common neighbor. Let N(u) =
{v/,w} and let N(v) = {+',2}. If wz ¢ E(T), then 7(T) = % (T + wz),
contradicting the fact that T is k,-critical. Hence, w and z must be adjacent.

Since T is not a path, by Lemma 10, at least one of w and z, say w, has
degree at least 3. Let z be a neighbor of w different from v and z. Since
no two support vertices are adjacent, w cannot be a support vertex of T'.
Hence, z is not a leaf. We now consider a longest path from w to a leaf that
contains z as its internal vertex. Let 3’ be the leaf on such a path, and let
y be the neighbor of 3'. Then, y is necessarily a support vertex of degree
exactly 2 (possibly, ¥ = z). If the neighbor of y different from v’ is distinct
from w, then adding an edge between that neighbor of y and z produces
a graph with the same total domination number as T, a contradiction.
Hence, z = y, and so z is a remote vertex of degree exactly 2. (In fact, we
have shown that every neighbor of w, different from z, is a remote vertex
of degree exactly 2.) But now ,(T) = 7,(T + uz), contradicting the fact
that T is k,-critical. O

By Claim 13, u and v must have a common neighbor, w say. Since T
is not a path, by Lemma 10, w has degree at least 3. Furthermore, since
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no two support vertices are adjacent, w cannot be a support vertex of T.
However, by our choice of «’ and v/, diam T = d(u',v') = 4. It follows that
T is a obtained from a star K1x—1, k > 4, with center w by subdividing each
edge exactly once. But then we can add an edge between any two support
vertices of T to produce a tree T’ with ,(T) = 7(T"), contradicting the
fact that T is k,-critical. We deduce, therefore, that no tree is k,-critical. O

Next, we characterize those trees that are k,-critical relative to K, ;. We
will use the concept of an internal private neighbor. A vertex u is said to
be an internal private neighbor (ipn) of a vertex v with respect to a set S
ifue Sand N(w)nS = {v}.

T

u] up "7’ Uk—2
m Vg We—2

Vk-2

Figure 1: A ky-critical(RC) tree K7 ,_o.

Theorem 14 A tree T is ke-critical(RC) if and only if T is o subdivided
star K3 .o, for k > 5, with ezactly one edge subdivided twice.

Proof. Let T be the subdivided star K}, , for k > 5 with one edge
subdivided twice as shown in Figure 1. Then, 7(T) = k and the set S
consisting of the nonleaf vertices, that is, § = {z, wk—2,u: |1€i<k-2},
is a 7,-set for T'.

To see that T is k,-critical(RC), we consider each edge in the relative
complement of 7 and demonstrate that its addition to T decreases the
total domination number. The set S — {wg—2} >¢ T +zvg—2. Fori <k—2,
the set (S — {ui, uk—2, wr—2}) U {vi, ve—2} >=¢ T +vivk—2. Furthermore, for
i< k—2,theset S - {uk_z} ¢ T + wi—2u;. Finally, S — {u.-} > T +viug
for1<i<k-—3,1<¢<k-2andi#¢ Thus, Tis k,-critical(RC).

Conversely, we show that if T is a ke-critical(RC) tree, then T is a sub-
divided star K}, , for k > 5 with exactly one edge subdivided twice.
Assume that T is k.-critical with respect to K ,. Then T is bipartite with

124



partite sets £ and R such that |£] = |R| = s. By Lemma 10, no path is
k¢-critical(RC) implying that T has at least three leaves.

To complete the proof, we proceed with a series of claims. The proof of
the first claim is identical to the proof of Claim 12.

Claim 15 No two support vertices are adjacent.
Claim 16 No vertex is adjacent to two or more leaves.

Proof. Suppose v € L is adjacent to two leaves, say v; and v2. Since no
star is k¢-critical(RC), v has at least one neighbor » in R that is not a leaf.
Let u; € N(u) — {v}. Then u; € L. Consider " = T + ujv; and let &'
be a ,-set of 7’. Then v € S’ to dominate v,. If both u; and v, are in
S, then (S’ — {v1}) U {u} > T, a contradiction since |S’| < :(T). Hence
exactly one of u; and v; is in S. Thus, [u1,S] —, v or [v1,S] ¢ uy. If
[u1, 8] —¢ v1, then, since v € S, v; is dominated by S, a contradiction.
Thus, [v1, S} =¢ 1. Since v € S, v; is in S just to dominate ;. It follows
that (S — {v1}) U {u} totally dominates T and has cardinality less than
7(T), a contradiction. Thus, each vertex is adjacent to at most one leaf. O

If there is no leaf in R, then each vertex in R has degree at least 2 in T,
and so T has at least 2s edges, which contradicts the fact that T is a tree
of order 2s. Hence, Lz # 0, and so S¢ # 0. Similarly, Lz # 0 and Sg # 0.
By Claim 16, |L¢z| = |Sr| and |Lzr| = |S¢|. Let Oc = L — L — S and
let O = R — Li — Sr. Since |£] = |R| = s, it follows that |Og| = |Or|.
By Claim 15, there are no edges between vertices in the sets S and Sx.
Moreover, since T is connected, each vertex in Sz (Sr, respectively) has a
neighbor in Ox (O, respectively) implying that O and Og are not empty.
Hence, L., Sc, and O (respectively, Lr, Sr, and Or) is a partition of £
(respectively, R).

Lemma 10 implies that at least one of Sz and S has cardinality two or
more. We may assume that |Sg| > 2. We show, then, that |S| = 1.

Claim 17 |S¢| = |Lg| = 1.

Proof. Suppose to the contrary that |Sz| > 2. Consider 7/ = T'+uv where
u € Sz and v € Sg. Now u and v are still support vertices in T, so they are
in some ~,-set of T". Since T is k;-critical, without loss of generality, there
must be a vertex u’ € Op that isin a -y,-set S of T only to totally dominate
u. In other words, »’ is an ipn of u and S — {u’} > T". Note that S can be
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chosen to contain no leaves, that is, ScUSgr C S. It follows that SNO, £ 9
and SNOxr # 0. Let z € SN O, and assume that «’ is not adjacent to
z. Since S is minimal, v,(T + v'z) = v,(T), contradicting the fact that T
is ke-critcal. Thus, v’z € E(T). Since v’ and z are arbitrary, it follows
that each such ipn in Or (O, respectively) is adjacent to every vertex in
O£ NS (Or N S, respectively). In particular, if there are at least two ipn
with respect to S in both Oz and O¢, a cycle is formed, contradicting the
fact that T is a tree. Hence we may assume, without loss of generality,
that at most one vertex in Sz has an ipn in Og. Since |S¢| > 2, there is a
vertex in S with at least two neighbors in Og N S. Furthermore, since T
is k¢-critical and there are no edges between S and Sg, each vertex in Sg
has an ipn in O¢. But then since |Sr| > 2, there are at least two such ipn
in O and they must be adjacent to every vertex in Og N'S. We have just
seen that |Og N S| > 2, so again a cycle is formed contradicting that T is
a tree. We deduce, therefore, that |[S¢| =1, and so |[Lz|=1. 0

By Claim 17, |Sg| = 1. Let Sz = {u} and Lg = {w}, and so w is the
leaf adjacent to u.

Claim 18 |Og| = [Og|=1.

Proof. Suppose |Oz| = |Or| > 2. We show first that u has an ipn in
Or NS. Suppose u has two or more neighbors in Or N'S. Then each of
these neighbors is necessary to dominate a vertex in Oz. Now since u is
not adjacent to any vertex in Sg, every vertex in Sg must have an ipn in
OcNS. Since |Sr| > 2, it follows that there are at least two such ipns.
Furthermore, each of these ipn must be adjacent to all the neighbors of u
in Og N S. Hence a cycle is formed, producing a contradiction. Thus, »
has an ipn in Og N S, say «'.

Now ' is adjacent to every vertex in ONS. Since [Sr| > 2, |0NS| > 2,
and so v’ is adjacent to at least two vertices of O, NS. Let TV = (Oc U
Or U {u,w}). Then, T" is a bipartite graph with partite sets Oz U {u} and
Or U {w}. Furthermore, |0z U {u}| = |Or U {w}|. However, every vertex
of Og — {u'} has degree at least 2 in T”, while «’ has degree at least 3 in
T’ and w has degree 1 in T”. Thus, T” has at least 2|Or U {w}| edges, and
so T"-a graph of order |Or U {w}|-contains a cycle, contradicting the fact
that T is a tree. O

By Claim 18, |Oz| = |Oz| = 1. Since T is connected, the vertex of O is
adjacent to every vertex of Sg UOx and the vertex of O is adjacent to w.
Hence, T is the subdivided star K}, _, with exactly one edge subdivided
twice as shown in Figure 1. O
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