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Abstract

We present results that characterize the covering number and the
rank partition of the dual of a matroid M using properties of M. We
prove, in particular, that the elements of covering number 2 in M*
are the elements of the closure of the maximal 2-transversals of M.

From the results presented it can be seen that every matroid M
is a weak map image of a transversal matroid with the same rank
partition.

1 Introduction

Let S be a nonempty finite set with cardinality m and M a matroid on
S. By M* we mean the dual of M. If B is a basis of M then the basis of
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M*, S\ B, will be called the dual basis of B. The rank function of M is
denoted by rk ps (briefly by rk). We use rk* to denote the rank function
of M*. The closure operator of M is denoted by cl s (briefly by cl). Let
X be a subset of S. The restriction of M to X is denoted by M|X. The
restriction of M to S\ X is usually denoted by M \ X. An element z € S
is a loop of M if = does not belong to any basis of M, and z is a coloop of
M if z belongs to every basis of M. The set of loops of M will be denoted
by L(M) and the set of coloops of M is denoted by CL(M).

Let A = (Hy,...,H,) be a family of nonempty subsets of the set S.
We denote by M[A] the transversal matroid associated with A, i.e. the
matroid on S whose independent sets are the partial transversals of A.

Let My, ..., M be matroids on S. The family of subsets of S,

{Ih...UI; : I;is an independent set of M;, i =1,...,k}

is the family of independent sets of a matroid on S, called the union of
My, ..., My, and denoted by \/%_, M;, [6]. It is well known that

k
s vevan, (4) = min (Z rk o, (X) + |A\X|) (1)

i=1

The union of & copies of a matroid M on S, is called the kth power of
M. We denote this matroid by M(¥) and its rank by p(M) or briefly by
pi. We denote by p} the rank of (M*)*). The rank function in M®*) will

be denoted by rk . In particular rky = rk p. We use rk}, to denote the
rank function of (M*)(¥),

By convention po = 0. The sequence [2]

(M) =(p1—po,p2 = pP1,-+,Pm — Pm—1)

is a partition of |S'\ L(M)| and is called the rank partition of M.
It is known from [2] that if B is a basis of M(¥) there exists independent
subsets of M, By,..., By such that B = B;U...UB and

t
pe=> B, t=1,...,k
i=1

We say that By U---U By is a k-factorization of B.

It is easy to see that if By U-.- U By is a k-factorization of a basis B
of M(¥) then B, is a basis of M. However not all the bases of M occur as
factors in a k-factorization of a basis of M(¥), as we can see in the following
example:
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Example

Let V be a real vector space and let (e, €2) be a family of linearly inde-
pendent vectors of V. Let

Ti=¢€), Ta=¢€2, T3=¢€1, Tg=€; + ey

Let M be the vectorial matroid on Lin(z), 3, z3, z4) (matroid on
{1,2,3, 4} such that J is independent in Lin(zy, 23, z3, z4) if {2; : i € J}
is linearly independent).

Then B = {2,4} is a basis of M, which is not the first factor of a
2-factorization of a basis of M(?,

A basis of M that occurs, as first factor, in a factorization of a basis
of M® is called k-special. We say that a basis B of M is special if it is
m-special. We can easily see that a special basis is k-special for every k,
1<k<m.

The covering number of z € (S\ £(M)), is the smallest positive integer
¢ such that z € CL(M®), [3] (i.e. rk t(S\z) < rk((S)).

We denote this integer by s,,(M) and we extend this concept to elements
z € L(M) by defining s,(M) =m+ 1.

The element = € M is a coloop of M (i.e. sz(M) = 1) if and only if
x € L(M*) (ie. sz(M*)=m+1)andzx € L(M) (ie. sz(M)=m+1)if
and only if x € CL(M™) (i.e. s;(M*) =1).

Let M be a matroid on S. A set T C S is k-transversal of M if Tis
independent in M(*) and there exists pairwise disjoint independents subsets
of T, I,..., Iy satisfying:

1) Lisabasisof M|T,i=1,...,k;
2) hu---Ul=T.

The study of the k-transversals has been done in (1]. In particular, it
is proved in [1] that T is a k-transversal if and only if T is an independent
set of M) satisfying

ITI =krk M) (T)

It is proven in the above referred article that if C is a circuit of M®) and
y € C then C'\ y is a k-transversal. It is also proved that the maximal k-
transversals, by inclusion, have the same closure in M , denoted by Dy(M),
or briefly by D, and that there is a maximal k-transversal contained in each
basis of M{¥). Furthermore, if T is the maximal k-transversal contained in
the basis B of M(*) then
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S\ B = c y(T)\T = du(T)\T. (2)

In this article we are going to study the covering number of the elements
of M* and the rank partition of M*.

2 The relations between the matroid M* and
the matroid M[Ap:]

Let M be a matroid on S, and let the g-set F* = {y1,...,%,} be a basis of
M* and F be the dual basis of F*. We define Ap. = (H\,..., Hg), where
H, is the fundamental circuit of y; in F, i = 1,...,q. We denote by M[A%)
the matroid whose independent sets are the partial transversals of Ap-.
Given a subset X of S we are going to denote by Rx the set of integers
that index the circuits H; which have a nonempty intersection with X, i.e.

Rx={ie{l,....q} : in X #0}.

2.1 Theorem

Every independent set of M* is an independent set of M|Ap-), i.e. a partial
transversal of (Hy, ..., Hy)

Proof

We start by proving the following claim:

Claim

Let G* be a basis of M* and G the dual basis of G*. Let A be the subset of
{1,...,q} such that GNF* = {y; : j € A}. Then there exits a bijection

P:A-GNF
such that ¢¥(j) € H;, j€A.

Proof

We are going to prove this claim by induction on the cardinality of GN F*.
We start by remarking that if z € G* N F and C is the fundamental circuit
of z in G there exists k € A such that yx € C and z € Hy.

Let T be the subset of A such that

CNGNF*={y; : jeT}.
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Since z € cl (C) we have

ze d(CNG) cd ((CNG)N(FUF*))
d((CnGNF)U({y; : j€T})
d(cnenFyu(l Hy)

jer
d(€nGaFR uf(|JH;)\{y; : s€T}).

jer

N N

N

Sincez € G* thenz ¢ CNGNF. If
¢ |JH;

jer

(bear in mind the third equation before) we get
zg(CnGnF)V[(JH)\{y; : jeT)).

jer

Therefore i
zu(CNGNF)U[(|JH;)\{y; : jeTHCF

is an independent set. Contradiction. Therefore ' # @ and z € Hj for
some k €.

IGAF*| =1. _
Define ¥ : A = {k} — G* N F by setting ¥(k) = =. Obviously
¥(k) € Hy.

This proves the case |G N F*| =1.

|G N F*| > 1 Since there exists k € I such that yx € C and z € Hy,
G' = (G\ yx) U z is a basis of M. Denote by (G’)* the dual basis of
G'. It can be easily seen that .

|G'NF*|=|GNF*| -1.
Let A be the subset of {1,...,q} such that

G'NF ={y; : jeA}

(A = AU k). By induction hypothesis there exists a bijection
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p: A= (G NF

such that () € H; ,j € A. Define ¥ as the extension of ¢ satisfying
(k) = z. It is easy to see that 9 satisfies the requirements of the
claim.

[ |

Let X be an independent set of M*. Let X; = XNF and X, = XN F*.

Then we have X = X; U X,. Since X is independent in M* there exists a

basis G* of M* that contains X and such that G*\ X C F*. By the claim

we know that there is a bijective map, % from the index set of G N F*, A,

on X;. Since G* N F* O X, we have that G N F* is disjoint of X3. Then
if A’ is the subset of {1,...,q} such that

{y; :jeld}=X,

and

x:AUA' - X
defined by xja = ¥ and x(j) = y;, j € A’ is a bijection and obviously
x(j) € H;, j€ AUA'. Therefore X is a partial transversal.
[ ]
The following result is very well known
2.2 Proposition

If C is a circuit of M and C* is a circuit of M* then |CNC*| # 1

2.3 Proposition

Let A be an independent set of M* and C a circuit of M disjoint of A.
Then for every y € C, AUy is independent in M*.

Proof

Assume that AUy is not an independent set of M*. Let C* be the circuit
of M* such that

C*CAuy.
Then CNC* = {y}. Contradiction (remind Proposition 2.2).

134



Remark

It is not difficult to see from the previous proposition that if C is a circuit
of M and A is a subset of M* then

CNA=0&Cncy.(A)=0.
Therefore if A and B are subsets of M* then
d m-(A) = d M-(B) = R4 = Rpg. (3)

2.4 Proposition

Let F* be an r-special basis of M*. Let T be an r-transversal of M*. If
there exists a basis of ¢l p«(T) contained in F*, then the following holds:

(3) T is an r-transversal of M[Ap-).
(i) el me(T)\ LIM*) = ¢l pa,.)(T).
Proof
(i) Let B* be a basis of (M*)(") and let
F*UBjU...UB?
be an r-factorization of B* in M*. Let U be a basis of m+(T)

contained in F*. It is easy to see that |Ry| = |U|. Then, using (3),
we have Rr = Ry. Therefore

tk*(T) = |U| = |Rx.
By definition of M[Ap«] we have

rk MI-AF'](T) < rk‘(T) = IRTI.

Since the independents of M* are also independent in M [Ape] we
have

k*(T) < rk miap.)(T).

Therefore

tk*(T) = tkmiap.)(T) = |Rrl.
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Again, since the independent sets of M* are also independent in
M|[Ap.] we get that T is independent in M[Ap.](") and

rtk miap.) (T) = rk*(T) = |T|.
Thus T is an r-transversal of M[AF-].

(ii) Let z € ol pr+(T) \ L(M?*). Then, if z € F* it is obvious that R #
0. If x ¢ F*, assume, to get a contradiction, R; = 0. Let C* be
the fundamental circuit of z in F*. Then if y; € C* N F* we have
C* N H; = {y;}. Contradiction. Therefore R, # 9. On the other
hand we have using (3)

ze€d Mc(T) = dM~(TU z)=d m(T)
= Rry, =Rr
= Rx - RT

Since we have already seen that |Ry| = rk ap4..)(T) we conclude
from the former implications that = € cl p4,.](T). Then we have
c p«(T)\ £(M*) C cl pmiap.](T). The reverse inclusion can be ob-
tained by using Theorem 2.1.

3 The covering number of the elements of M*

The main results we are going to present in this section are the following.

3.5 Theorem
Let M be a matroid on S. We have

4

Do\ L(M)={z €8 : sz(M*) =2}

3.6 Theorem

Let z be an element of S*which is not coloop of M. If C is a circuit of M
and x € C then

sz(M*) <|C|.
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3.7 Theorem
Let F* be a special basis of M*. Then for allz € S\ L(M*) we have

so(M*) = s,(M[Ap-]).

We start be proving some auxiliary results.

3.8 Proposition
Let M be a matroid on S. Then we have

P2 —p1=p2—p1.

Proof

Let B* be a special basis of M* and B = S\ B* be the corresponding basis
of M. We say that X C B can be replaced if there exists Y C B* such that
(B\ X)UY is a basis of M. Since (B\ X)UY is a basis of M we conclude
that if X can be replaced then it is an independent of M*. Moreover if X
is a maximal (by inclusion) subset of B independent in M* and C* is a
basis of M* containing X, we have C* N B = X. On the other hand, fixing
Y =(5\C*)n B* we have

(B\X)UY =8\C".
Therefore X can be replaced. Thus

p1(M*|B) = max{|X|: X C B and X can be replaced }.
Since B* is special p3 — p} = py(M*|B). So

max {|X| : X € B and X can be replaced }
max{|Y] : Y is independent and contained in S\ B}
P2 —p1

P2 — Pi

ININ A

Now from (M*)* = M we have

P2 = P1 = p2—p1.
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3.9 Proposition

Let B a basis of M®), Let By U By be a 2-factorization of Bin M. Let
Z C By be such that (B U Z)U (By \ Z) is a 2-factorization of B in M.
Then the following is true:

1. S\ Z is a basis of (M*)®;
2. S\Z=(S\B1)U(B:1\ 2);
3. Do(M*) N (B1\ Z) = Do(M*)N(S\ (B2 U Z)), is a 2-factorization
of S\ Z in M*.
Proof
1. Since S\ (B2 VU Z) is a basis of M* then

Bi\Z ¢ (§\(B:u 2))

is an independent set of M*. Therefore S\ Z = (S\ B1)U(B;\ Z) is
independent in (M*)® (remind that S\ B; is a basis of M*). Thus

k3(S\2) = IS\ Z|

IS - 12|

= |S\ Bi|+|B1UBy| - |ByU Z|
P1+p2—p1

Pi+ 05— pi

P2

The fifth equality follows from Proposition 3.8

2. Since S\ B is a basis of M* and S\ Z = (S\BI)U(Bl\Z) we
conclude that (S'\ B;)U(B \ Z) is a 2-factorization of (M*)(2),
3. Let T be the maximal 2-transversal of (M*)( contained in S\ Z.
Then
T = (Dy(M*) N (B1\ 2)) U (D2(M*) N (S\ By))

is a 2-factorization of T. Therefore cl p«(Dao(M*) N (B \ Z)) =
D5(M?*). Since S\ (B2U Z) is a basis of M* and Do(M*)N (B \ Z)
and Dy(M*) N (S\ (B U Z)) are bases of Dy(M*), all elements of
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S\ (B2U Z) that do not belong to B, \ Z are not elements of Dy(M*).
Thus

Dy(M*) N (B1\ Z) = Da(M*) N (S \ (B2 U Z)).

Proof of Theorem 3.5

Let z € Dy \ £(M). Assume, to get a contradiction, that s,(M*) > 2.
Then there exists a basis B of (M*)@ such that = € B. Let B=B,U B,
a 2-factorization of B in M*. Let Z C B, be such that (B2UZ)U(B1\ 2)
is a 2-factorization of B. Since we have assumed that z & B we have

z &€ Dy (B, \ 2).

Using the part 3) of Proposition 3.9 we have

x € Dan(S\ (B Z)).

Then z ¢ S\ (B U Z) and, consequently, z € By U Z. Contradiction.
So we conclude that s,(M*) < 2. Since z & L(M) we have s,(M*) = 2.
Therefore

D\LM)C{z €S : s,(M*)=2}.
To show that {z € § : s,(M*) = 2} C Dy \ L(M) we are going to
prove that if z ¢ D, then s,(M*) > 3.
Claim
Let B be a basis of M), If z & D, there exists a factorization in M
B=B,UB,
satisfying x € By and z & B,.

Proof

Let =’ be an element that does not belong to S and Mz} the principal
modular cut defined by the flat {z}. Let

N=M +{z} z'.

Assume that does not exist any 2-factorization of B in the conditions of
the claim. Then it is easy to see that BU z’ is dependent in N(?), So B is
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a basis of N . We can now see that z' € Do(N) = Da(M)U {z'}. Then
z € Dy(M). Contradiction. [ |

Assume that z ¢ D5 then, using the claim, if B is a basis of M@ there
exists a 2-factorization of B, B = By U By, such that 2 & By. Let Z C B,
be such that z € Z and By U Z is a basis of M. By Proposition 3.9 S\ Z
is a basis of (M*)®). Since z ¢ S\ Z, we have s;(M*) > 3. [ ]
Proof of Theorem 3.6

Let C be a circuit of M and let z € C. Let p be the cardinality of C.
Assume, to get a contradiction, that s;(M*) > p. Then there exists a basis
B* of (M*)® such that = ¢ B*. Let

Bju---UB;

be a p-factorization of B*. Therefore there exists an integer j, 1 <j <p
such that B N C = 0. Using Proposition 2.3 we have that Bj Uz is

independent. Then B* is not a basis of (M *)(?), Contradiction.
]

Proof of Theorem 3.7
Let s;(M*) = r and let B* be a basis of (M*)(") such that
F*uB;---UB;_;UB;
is an r-factorization of B*.
We are going to prove that

sz(M[AF‘]) >

If » = 1 the inequality follows from the definitions. Let r > 1. Using
Proposition 3.2 of [3] we know that there exists a maximal (r—1)-transversal
T such that

z € clpy«(TI\T.

Let P be the maximal transversal contained in F*U B3 ---U B;_;. Since

d pme(T) = d m«(P) = clmu-(PNF*)

we have, using Proposition 2.4, T is an r-transversal of M[Ap.] and = €
ol piag.}(T) \ T. Using again Proposition 3.2 of [3] we have

sz(M[Ap-]) 2 7.
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Next we prove that sz(M[Ap«]) <.

Since s,(M*) = r, B*\z is a basis of (M*)(")\z = (M*\z)("). We will
show that B* \ z is a basis of M[Ap.] \ 2. It is obviously an independent
set if M[Ap-] by Theorem 2.1 so, an independent set of M[Ap-] \ z.

Let T be the inclusion maximum r-transversal of M* \ z contained in
B*\ z. Then T is an r-transversal of M* contained in B* and

cl M"\z(T) =d M+ (T) =cl M-(Tn F*) (4)
Then by (2) we have S\ B* C dl p+(T). Bearing in mind (4) and Propo-
sition 2.4 we conclude that T is a transversal of M[Ap.] and
S\ B* C d miap.)(T)

Therefore the independent set of SM [AF<]))\ z cannot be extended to a
larger independent set of M[Ap.](") \ z. This means that B* \ z is a basis
of M[Ap+]™) \ z and z is a coloop of M[Ap«]("). Then

sz(M[Ap.]) < 7.

4 The rank partition of M*

Let ¢ ba a nonegative integer. Let A = (Ay,...,A;) and g = (p1, . . -, poe) be
two partitions of t. We say that A = p if

k k
DNz k=1t
i=1 i=1

It is well known that X C S is a spanning set of the matroid M on S
if cl p(X) = S. Let M; and M5 be matroids on S and §; and S; be the
collections of spanning sets of M; and Mj; respectively. The intersection
My A My is the matroid on S whose family of spanning sets is the collection

81/\82={X1FIX2 : X1 €8, XzESz}.
It is known that

MiyAMy = (M} VM) (5)

The purpose of this section is to get information on the rank partition of
M* coming from the matroid structure of M without an explicit reference
to the independents of M*. The main results we are going to present are
the following:
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4.10 Theorem
Let F* be a basis of M*. Then

P(M[Ap-]) = p(M*). (6)
If F* is special then

P(M[Ap-]) = p(M*). )
4.11 Theorem
Let k > 1 be an integer. Then
Pk = Pr—y = rk(/\'=-‘M)vM(S) - rk(S),
where A'M denotes the matroid intersection of t copies of M.

Proof of Theorem 4.10

To prove (6) just remark that, by Theorem 2.1 every independent of M* is
an independent of M[Ap.]. Then using the definition of rank partition we

get (6).
To prove (7) consider B* a basis of (M*)™ and let

F*UB,U---UB?,

be a factorization of B*.
Let k € {1,...,m}. We prove that

F*u...uB;

is a basis of M[Ap-]*). Using Theorem 2.1 we conclude that F*U---U B
is independent in M[Ap.]®). To prove that F*U...u By}, is a basis of
M[Ap-]*®) it suffices to show that S\ (F* U ..U BY) is included in

¢l Miag.(F*U---U Bg).

Let P the maximal transversal contained in the basis of M (k)

F*UBjU...UB;.

Using (2) we can conclude that

S\(F*UB{U---UB}) = dl ey (TI\T.
The Proposition 2.4 allows us to get from the former equality, that
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S\(F*UBJU---UB) = cl pap(T\T.

4.12 Corollary
Let M be a matroid and M* the dual of M. Then

pMT) = min  p(M[Ap-]),
where min is considered for the majonzatzon order in the set of partitions
of m — |C(M*|.
Remarks

1) The definition of dual matroid implies that the first term of p(M*) is
m — rk (). The second term of p(M*) is also known by Proposition
3.8.

2) Bearing in mind that (M*)* = M we can easily see from Theorem
4.10 that every matroid M is a weak map image of a transversal
matroid with the same rank partition.

Proof of Theorem 4.11
Using (5) and the fact that, [5, pg 72],
tk*(X) = |X] = rk(S) + rk(S\ X)

we get:

p; = C' (l’k(M.)(l. l)vM'(X)+ rk* (X)+|S\X|)

min (rk (e-nany-(X) + rk*(X) +15\ X])
= ng(l’k,\k-lM(s\X)-l- rkM(S\X)—I- |X|)_ rk/\k—lM(S)— rk(s)‘l'ISI

= rkae-1aryvm (S) — rk (S) + pi_;.
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