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Abstract

‘We present several new non-isomorphic one-factorizations of Ksg
and K40 which were found through hill-climbing and testing Skolem
sequences. We also give a brief comparison of the effectiveness of
hill-climbing versus exhaustive search for perfect one-factorizations
of K3, for small values of 2n.

1. Introduction

A one-factor in a complete graph K>, is a set of edges in which every
vertex appears exactly once. A one-factorization of K,, is a partition
of the edge-set of K», into 2n — 1 one-factors. A perfect one-factorization
(P1F) is a one-factorization in which every pair of distinct one-factors forms
a Hamiltonian cycle of K5,. P1Fs of K3, are known to exist when 2n—1 or
n is prime, and for 2n € {16, 28, 36, 40, 50, 126, 170, 244, 344, 730, 1332,
1370, 1850, 2198, 3126, 6860, 12168, 16808, 29792}. It has been conjectured
that a perfect one-factorization of K3, exists for all n > 2 [2]. The known
results strongly suggest that P1Fs are difficult to construct.

For more details about P1Fs the reader is referred to [13, 7, 2].

Most of the known P1Fs are constructed through starters or even
starters. A starter in Zsny is a set S = {{z1, 11}, {z2,92},--+» {Zn,yn}}
such that:

(1) z1,%1,...,%n,Yn, are all the non-zero elements in Zyp 41
(2) £(z1 —u1),...,£(zn — yn), are all the non-zero elements in Zz, ;.

Let S* = SU {0,00} and define 0o + 2 = 2 + 00 = oo for all z € Zgpy:.
Then it is easy to see that F = {S* + 2 : 2 € Zap4,1} is a one-factorization
in Konya.

For example, the starter {{14,15}, {5,7}, {19,22}, {28, 32}, {25, 30},
{11,17}, {6,13), {18,26}, {29,3}, {34,9}, {20,31}, {33,10}, {23,1},
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{2,16}, {12,27}, {8,24}, {4,21}} generates a one-factorization in Kgzs.
Moreover, as demonstrated by Seah and Stinson [8], it generates a per-
fect one-factorization.

An even starterin Zon isaset E = {{z1,11}, {z2, %2}, ., {Tn-1,¥n-1}}
such that:

(1) every non-zero element of Zz, except one, denoted m, occurs as an
element in E,

(2) every non-zero element of Z5,, except n occurs as a difference of some
pair of E.

Let E* = E U {{0,001}, {m, 002}}, and define z + 00; = 00; + z = o0, for
all 2 € Zop,i =1,2. Let Q* = {{2,z+n} : 2 € Zan} U {{001,002}}. It is
easy to see that F = {E* + z : 2z € Zy,} U {Q*} is a one-factorization of
Kop+2 (moreover, the structure of F is such that it is known as a rotational
one-factorization [13]).

In 1957, Th. Skolem [11], when studying Steiner triple systems, con-
sidered the possibility of distributing the numbers 1,2,...,2n in n pairs
(ar,b,) such that b, — a, = r for r = 1,2,...,n. For example, for n = 4,
the pairs (1,2), (5,7), (3,6), and (4,8) form such a partition of the num-
bers 1,2,...,8. Later, this partition was written as a sequence, for which
the previous partition would be written as (1,1, 3,4,2,3,2,4), which is now
known as a Skolem sequence of order 4.

Formally, a Skolem sequence of order n is a sequence S = (51, S2,.. .,
Sa5,) of 2n integers that satisfy the following conditions:

(1) for every k € {1,2,...,n} there exist exactly two elements S;, S; such
that S; = S; =k,

(2) if ;= S; =k and i < j, then j —i = k.

An exstended Skolem sequence of order n is a sequence ES = (51,85s,...,
San+1) of 2n + 1 integers that satisfy conditions (1), (2), and:

(3) there is exactly one i € {1,...,2n + 1} for which S; =0.

S; = 0 is also known as the hook (*) of the sequence, and if Sz, = 0, then
the sequence is called hooked Skolem sequence. It has been shown that
the necessary conditions for the existence of (hooked) (extended) Skolem
sequences are sufficient.

Theorem 1 [Skolem [11]] A Skolem sequence of order n ezists if and
only if n= 0 or 1 (mod 4).

[O’Keefe [5]] A hooked Skolem sequence of order n ezists if and only if
n=2or 3 (mod 4).

[Abrham & Kotzig [1]] An extended Skolem sequence of order n exists
for all n.
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A Skolem sequence (S, Ss, ..., San) of order n can be used to construct
a starter in Zyy,,1, and hence a one-factorization in Kspt2. In particular,
we obtain the starter set § = {{z1,91}, {Z2,92}, ..., {Zn,¥n}} Where S, .=
Sy, =iforeachi=1,2,...,n.

For example, the Skolem sequence of order 8; (1,1,3,7,8,3,2,6,2,5,7,4,8,6,
5,4) gives rise to the starter § = {z;,y;},i=1,.. -,8,{{1,2},{7,9}, {3,6},
{12,16}, {10, 15}, {8, 14}, {4, 11}, {5, 13} }, which also induces a perfect one-
factorization of K. Further, the triples {0,4,9:+n} (or {0,z;+n,y;+n)),
i =1,...,8, give the base blocks, {0,1,10}, {0,2, 17}, {0, 3,14}, {0,4, 24},
{0,5,23},{0,6,22},{0,7,19}, {0, 8,21} (mod 49) of a cyclic STS(49).

Similarly, any extended Skolem sequence (S1,S2,...,S20+1) of order
n can be used to construct an even starter in Zon+2, and hence a one-
factorization in K5,44. Specifically, the even starter is obtained from the
set E = {{z1,11},{22,52},...,{Tn,¥n}} where S,, = y = 1 for each
i=12,...,n.

For more details about (extended) Skolem sequences the reader is re-
ferred to [10).

In the following sections we present several P1Fs of K. 3¢ and Ky which
were induced from Skolem sequences and extended Skolem sequences. More-
over, we make a statistical comparison of the effectiveness of hill-climbing
versus exhaustive search to find P1Fs. We also consider the likelihood of
finding a P1F of K, by means of (even) starters which are induced from
(extended) Skolem sequences versus (even) starters which are not induced
from (extended) Skolem sequences.

2. Methodology and Results

We implemented a hill-climbing heuristic, as described in [3], to search for
Skolem sequences of order 17. For each sequence which was constructed, we
then generated a one-factorization for K3g and then determined whether
the one-factorization was perfect. Below we present eight Skolem sequences
which give rise to P1Fs for Ksg:

(17,12,8,15,10,6,9,14,11,3,8,6,3,12,10,9,16,17,15,11,13,14,2,7,2,4,5,1,1,4,7,5,16,13)
(15,3,9,14,3,16,12,17,4,1,1,9,4,13,2,15,2,14,12,10,8,16,11,7,17,6,13,5,8,10,7,6,5,11)
(10,14,9,13,17,8,6,16,12,5,10,9,6,8,5,14,13,15,7,11,12,17,2,16,2,7,1,1,3,4,11,3,15,4)
(16,4,7,17,13,4,1,1,6,7,9,14,10,15,6,11,16,13,5,9,17,12,10,5,8,14,11,3,15,2,3,2,8,12)
(11,8,1,1,14,2,6,2,15,8,3,11,6,3,16,10,17,12,14,13,7,5,9,15,4,10,5,7,4,12,16,9,13,17)
(4,13,5,7,4,8,12,5,15,3,7,17,3,8,13,10,16,9,12,14,11,1,1,15,6,10,9,2,17,2,6,11,16,14)
(7,12,15,17,11,3,13,7,3,5,8,10,14,12,5,11,16,15,8,13,17,10,9,1,1,4,14,6,2,4,2,9,16,6)
(11,3,13,17,3,8,2,5,2,14,7,11,5,8,12,13,16,7,15,10,17,9,6,14,1,1,12,4,6,10,9,4,16,15)
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These eight P1Fs for K3 were tested by computer and found to be
mutually non-isomorphic. Additionally, they are each non-isomorphic to
the P1F published by Seah and Stinson (8].

We also implemented a hill-climbing heuristic to search for extended
Skolem sequences of orders 16 and 18; such sequences naturally give rise to
rotational one-factorizations in K3g and Kjo, respectively. The following
two extended Skolem sequences were found to produce P1Fs for Kag:

(14,9,1,1,4,16,10,2,4,2,9,13,7,12,14,8,10,15,11,7,6,16,5,8,13,12,6,5,3,11,0,3,15)
(13,8,4,14,3,9,4,3,15,8,12,7,16,13,9,10,11,14,7,2,6,2,12,15,5,10,6,11,16,5,1,1,0)

When tested, these two P1Fs were found to be non-isomorphic to each
other, as well as non-isomorphic to the P1F for K3 which was published
by Kobayashi et al [4].

We found three extended Skolem sequences of order 18 which produced
P1Fs for K 40

(4,15,10,17,4,2,16,2,3,18,8,3,10,12,9,11,15,14,8,13,17,7,16,9,6,12,11,18,7,5,6,14,13,0,5,1,1)
(3,1,1,3,8,9,2,18,2,7,10,17,8,14,9,15,7,6,16,13,10,5,11,6,12,18,5,14,17,0,15,4,13,11,16,4,12)
(17,12,18,0,10,7,2,16,2,6,9,16,7,12,10,6,11,17,13,9,18,14,8,16,1,1,15,11,4,5,8,13,4,3,5,14,3)

The three corresponding P1Fs are mutually non-isomorphic and are also
non-isomorphic to that of Seah and Stinson [9].

Regarding the isomorphism tests, it should be noted that this was done
by comparing the in-degree sequences of the trains of the P1Fs (see [13]
for details on trains). All of the in-degree sequences produced by the P1Fs
tested were distinct.

The results in this section improve on the known results [2, 4, 8, 9] and
are summarized in the following theorem.

Theorem 2 Let NP(2n) denote the number of pairwise non-isomorphic
P1Fs of Kon. Then NP(36) > 12 and NP(40) > 4.

3. Analysis

In Table 1, we enumerate the number of Skolem sequences generated from
our hill-climbing heuristic and the number of corresponding P1Fs. Likewise,
we present the total number of distinct Skolem sequences of each order and
the number of corresponding P1Fs. These data allow us to compare the
exact probability of finding a P1F from a starter generated from a Skolem
sequence, as well as an estimated probability from the hill-climbing data.
Moreover, a least squares analysis of this data suggests that S(n), the
number of Skolem sequences that would have to be tested before finding
a P1F of K, is S(n) = 100-3282n—4.0094 hased on the hill-climbing data.
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Hill-Climbing Exhaustive Enumeration

No. of 53 No. of Estimated No. of 35 No. of Exact
Graph P1F  Probability P1F  Probability
Kis 1825832 11981 0.6562-1072 504 6 0.1905-10"!
Kao 1388635 10329 0.7438-1072 2 656 12 0.4518.10"2
Kae 182 456 680 7 873  0.4315-10~* 455 936 22  0.4825-10"*%
Kas 141 560 480 1 003  0.7085-10~% 3 040 560 18  0.5920 -10~5
Ksa 701 709 022 56 0.7981-10"7 1 400 156 768 122  0.8713-107

Table 1: Probabilities for finding P1Fs from Skolem Sequences

Total No. of No. of P1IF Exact Prob. Exact Prob.

Total No. No. of non-SS  from non-SS of P1F from of P1F from

Graph of Starters PiF starters starters non-SS starter SS starter
Kis 3 857 17 3 353 11 0.3281 - 10~ 0.1905 - 10~ "
Kao 25 905 65 23 249 53 0.2280-10"2  0.4518 - 1072
Kag 13 376 125 460 12 920 189 438 0.3390 . 10~4 0.4825 - 10~4
Kog 128 102 625 900 125 062 065 882 0.7052 - 105 0.5920 - 10~%

Table 2: Probabilities based on non-SS-induced and SS-induced starters

Based on the exhaustive data, the approximation is S(n) ~ 100-3287n—4.1083,

For Kso, our data suggests that about 101290 or 10128 Skolem sequences
will have to be tested before finding a P1F, based on the hill-climbing and
exhaustive data, respectively.

In Table 2, we show the exact probability of finding a P1F from starters
that are not induced by Skolem sequences as well as the exact probability
for starters that are induced by Skolem sequences. From a comparison of
these data, it seems to be more efficient to search for a P1F by using starters
induced by Skolem sequences than by using general starters.

Similar to Table 1, in Table 3 we present probability information for
finding P1Fs from even starters that are generated from extended Skolem
sequences. A least squares analysis of this data suggests that E(n), the
number of extended Skolem sequences that would have to be tested
before finding a PIF of K, is E(n) ~ 100-2940n=33707 pased on the
hill-climbing data. Based on the exhaustive data, the approximation is
E(n) s 100-3201n—3.9783

For K49, this suggests that we would need to test approximately 108-39
or 10883 extended Skolem sequences, based on the hill-climbing or ex-

- haustive data, respectively. For Ksz, our data suggests that about 101-92
or 10126, respectively, extended Skolem sequences will have to be tested
before finding a P1F.

In Table 4, we compare the probability of finding a P1F based on even
starters which are not induced by extended Skolem sequences versus those
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Hill-Climbing Exhaustive Enumeration

No. of ESS  No. of Estimated No. of ES5 No. of Exact

Graph P1F  Probability P1F  Probability
Kis 813153 24 318 0.2991-10"} 636 20 0.3145-107!
Kao 20 576 354 16 893  0.8210-10~% 3 556 4 0.1125.10"2
Koz 16 303 799 12899 0.7912-10"° 19 488 24 0.1232-10"2
Koy 25 057 057 14 329 0.5719-10"3 95 872 26 0.2712-10°3
Kog 65243860 1540 0.2360-10"* 594 320 18  0.3029-10~*
Kag 55331468 1126 0.2035-10"% 4 459 888 64 0.1435.10%
Kso 52 103 606 143 0.2745.10°5 32 131 648 94 0.2925.10"%
Ksa 131 180 634 71 0.5412.10"° 227 072 544 92 0.4052-10~°
K34 2 330 980 1 0.4290-10"° 1 875 064 880 240 0.1280-10~°

Table 3: Probabilities for finding P1Fs from Extended Skolem Sequences

Total No. of No. of P1F Exact Prob. Exact Prob

Total No. No. of non-ESS  from non-ESS of P1F from of P1F fron

Graph of Starters P1F starters starters non-ESS starter ESS starte
Kig 5 760 80 5124 60 0.1171-10"" 0.3145 - 10~
Kao 42 816 120 39 260 116 0.2955 - 10~2 0.1125 10~
K22 320 512 272 301 024 248 0.8239 -10~° 0.1232- 10"
Koaq 2 366 080 440 2 270 208 414 0.1824-10~° 0.2712- 107
Ko 20 857 088 576 20 262 768 558 0.2754-10™4 0.3029 - 10~
Koag 216 731 392 2016 212 271 504 1 952 0.9196 -10~5  0.1435-10~

Table 4: Probabilities based on non-ESS-induced and ESS-induced even
starters

which are. Again, we find that there tends to be a higher probability when
using even starters that are induced by extended Skolem sequences.

4. Conclusions and Questions

It is clear that we were successful in generating numerous P1Fs from (ex-
tended) Skolem sequences. The data presented also suggests that it is
generally better to use Skolem starters than using non-Skolem starters.
Additionally, Theorem 2, Table 1, and Table 3 update information pub-
lished in Theorem V1.4.45, Table IV.43.20, and Table IV.43.23, respectively,
of the Handbook of Combinatorial Designs [2, 10].

Regarding questions which arise, it is natural to ask if the properties
and direct (or recursive) constructions of Skolem sequences can be applied
to generate further P1Fs. This is not clear to us yet.

An extended Skolem sequence of order n with S;,4; = 0 (known also as
a Rosa sequence) can be used to construct a cyclic STS(6n + 3) [6]. There
are no known examples of Rosa sequences that induce P1Fs, and so we ask
whether there exist any Rosa sequences which generate P1Fs.
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