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ABSTRACT. The toughness {(G) of a noncomplete graph G is
defined as

¥(G) = min{|S|/w(G - 5) | 5 C V(G),w(C - 5) > 2},

where w(G — S) is the number of components of G— §. We also
define t(K,n) = +oo for every n.

In this article, we discuss the toughness of the endline graph
of a graph and the middle graph of a graph.

1 Introduction

In this article, all graphs are finite, undirected, without loops or multiple
edges. The toughness of a graph is an invariant first introduced by Chvétal
[1]. He observed some relationships between this parameter and the exis-
tence of hamiltonian cycles or k-factors. The toughness is an interesting
invariant in graph theory.

Let G be a graph. We denote by V(G) and E(G) the set of vertices and
the set of edges, respectively.

We denote the order of G by |G| and the number of connected components
of G by w(G). If S is a subset of G with w(G - S) > 2, we call it a cutset
of G. If S C V(G), (S) is the subgraph of G induced by S. We write G—S
for (V(G) — S). Terms not defined here can be found in [2].

A graph G is t-tough if the implication
wG-=8)>1-|5]2t -w(G-S9)

holds for any S C V(G).

A complete graph is t-tough for any real number ¢. If G is not complete,
there exists the largest ¢ such that G is t-tough. This number is denoted by
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t(G) and is called the toughness of G. We define t(K,,) = +co for every n.
If G is not complete, ¢(G) = min{|S|/w(G-S) | S C V(G),w(G -S) > 2}.

In this article, we study the toughness of the endline graph of a graph
and the middle graph of a graph.

2 Results

We first give the definition of the endline graph of a graph. Let G be a
graph and V(G) = {v1,v2,...,%,}. We add to G n new vertices and n
edges {u;, v} (i =1,2,...,n}, where u; are different from any vertex of G
and from each other. Then we obtain a new graph G+ with 2n vertices,
called the endline graph of G.

Theorem 1. Let G be a graph with at least two vertices, then

_JUG)/(1+4G)) f0<tG)<1
HET) = {1/2 if1 < t(G).

In order to prove Theorem 1, we need the following two lemmas.

Lemma 1. Let G be noncomplete and S be a cutset of G minimizing
IS|/w(G — S), further let U be a cutset of G and let us set |U| =
w(G—-U)=m and ¢t(G) =t. Then t/(1 +t) < u/(u+m).

Proof: Let us set |S| = s and w(G — S) = k. From the minimality of S, we
easily check that s/(s+k) < u/(u+m), which implies t/(1+t) < u/(u+ m)
since s/k = t.

Lemma 2. Let G be noncomplete, then t(G*) < t(G)/(1 + ¢(G)).

Proof: Let S be a cutset such that ¢(G) = |S|/w(G—S). Then S would be a
cutset of G*. Hence from the definition of ¢(G*), we have t(G*) < s/(s+k),
where |S| = s and w(G — S) = k. This implies the result. O

Proof of Theorem 1: If G is not connected, there is nothing to show.
Next let G be a complete graph K, and S be a cutset of the endline graph
K}. Then since K, has not a cutset, w(G — S) = s+ 1, where |S| = s.
Hence

t(K;F) = min{|S|/w(G — S)} =min{s/(s +1) | s > 1} = 1/2.

Therefore we may assume G is connected and noncomplete. Let U be a
cutset of G such that

t(G*) = min{|U|/w(G — U)}.

We here distinguish two cases.
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Case 1. U is a cutset of G.
Let us set |U| = u and w(G —U) = k. Then we have w(G+ — U)=k+u.
From the minimality of U, we have

H(GT) = u/(k +u). (1)
On the other hand, from Lemma 1,
HG)/(1+UG)) < u/(k + u). (2

Combining (1) with (2), we have ¢(G)/(1 + t(G)) < ¢(G+).
By the way, from Lemma 2, ¢(G*) < ¢(G)/(1 +t(G)).
Hence, we obtain ¢(G+) = t(G)/(1 + ¢(G)).
Case 2. U is not a cutset of G.
Let us set |U| = u. Then w(Gt —U) = u+ 1. Hence we have

#(G*) = min{|U|/w(G* — U)} = min{u/(u+1) |u > 1}=1/2
Therefore, from case 1 and case 2, we obtain
t(G*) = min{t(G)/(1 + t(G)), 1/2}.

This completes the proof. (]

Let us denote the vertex-connectivity of a graph G by «(G) and the
vertex-independence number of a graph G by B(G) respectively. Then we
have, ¢{(G) > k(G)/B(G), which is proved by Chv4tal [1]. Therefore we
immediately have the following:

Corollary 1. If |G| > 2 and &(G) > B(G), then t((GT)=1/2.

Using the theorem 1, we can construct the family {Gn} such that ¢(G,) =
1/(n+1) (n=1,2,...).

In fact, let us set that G, = P3, G,, = Gn-1 (n 2 1), where P, is a path

with order n. Then, from Theorem 1, we obtain the following recurrence
formula:

t1=1/2, a1 =t /(1 + ta)(n > 1),
where t, = t(G,).

Hence, we have £(G,) = 1/(n + 1).

Finally we shall give a bound of the toughness of the middle graph of a
graph. The middle graph M(G) of a graph G is the graph obtained from
G by inserting a new vertex into every edge of G and by joining by edges
those pairs of these new vertices which lie on adjacent edges of G.

Let us denote the line graph of a graph G by L(G). Then, from the
definition of the endline graph and the middle graph of a graph G, we
have, L(G*) = M(G), which is proved in [3).
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Let us denote the edge-connectivity of graph G by A(G) and let G be
a connected and noncomplete graph, then it is already known [1} that
MG)/2 < t(L(G)). Hence we can obtain the following result.

Theorem 2. Let G be a connected and a noncomplete graph, then

1/2 < {(M(G)) < XG)/2.

Proof: Since L(G*) = M(G) and M(G*) = 1, the inequality on the left
side is clear. Hence we may prove only the inequality on the right side.
From now on we denote A(G) by A.

As ) is the edge-connectivity of graph G, there exists an edge-set F C
E(G) such that |F| =X and G- F'is disconnected.

Now, let F = {e;,e2,...,ex} and let v; be a new vertex inserting into an
edge e; of G. Then S = {v1,v2,...,v2} would be a cutset of M(G). Let us
set w(M(G) — S) = k, then we have

t(M(G)) < |ISI/k < MG)/2-

This completes the proof. O
Corollary 2. If a connected graph G has a bridge, t(M(G))=1/2.
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