A Note on the Toughness of Certain Graphs

Masakazu Nihei Fujishiro High School Fujishiro, Ibaraki, 300-1537, Japan

ABSTRACT. The toughness t(G) of a noncomplete graph G is defined as

$$t(G) = \min\{|S|/\omega(G-S) \mid S \subset V(G), \omega(G-S) \ge 2\},\$$

where $\omega(G-S)$ is the number of components of G-S. We also define $t(K_n) = +\infty$ for every n.

In this article, we discuss the toughness of the endline graph of a graph and the middle graph of a graph.

1 Introduction

In this article, all graphs are finite, undirected, without loops or multiple edges. The toughness of a graph is an invariant first introduced by Chvátal [1]. He observed some relationships between this parameter and the existence of hamiltonian cycles or k-factors. The toughness is an interesting invariant in graph theory.

Let G be a graph. We denote by V(G) and E(G) the set of vertices and the set of edges, respectively.

We denote the order of G by |G| and the number of connected components of G by $\omega(G)$. If S is a subset of G with $\omega(G-S) \geq 2$, we call it a cutset of G. If $S \subset V(G)$, $\langle S \rangle$ is the subgraph of G induced by S. We write G-S for $\langle V(G)-S \rangle$. Terms not defined here can be found in [2].

A graph G is t-tough if the implication

$$\omega(G-S) > 1 \to |S| \ge t \cdot \omega(G-S)$$

holds for any $S \subset V(G)$.

A complete graph is t-tough for any real number t. If G is not complete, there exists the largest t such that G is t-tough. This number is denoted by

t(G) and is called the toughness of G. We define $t(K_n) = +\infty$ for every n. If G is not complete, $t(G) = \min\{|S|/\omega(G-S) \mid S \subset V(G), \omega(G-S) \geq 2\}$.

In this article, we study the toughness of the endline graph of a graph and the middle graph of a graph.

2 Results

We first give the definition of the endline graph of a graph. Let G be a graph and $V(G) = \{v_1, v_2, \ldots, v_n\}$. We add to G n new vertices and n edges $\{u_i, v_i\}$ $(i = 1, 2, \ldots, n\}$, where u_i are different from any vertex of G and from each other. Then we obtain a new graph G^+ with 2n vertices, called the endline graph of G.

Theorem 1. Let G be a graph with at least two vertices, then

$$t(G^{+}) = \begin{cases} t(G)/(1+t(G)) & \text{if } 0 \le t(G) \le 1\\ 1/2 & \text{if } 1 < t(G). \end{cases}$$

In order to prove Theorem 1, we need the following two lemmas.

Lemma 1. Let G be noncomplete and S be a cutset of G minimizing $|S|/\omega(G-S)$, further let U be a cutset of G and let us set |U|=u, $\omega(G-U)=m$ and t(G)=t. Then $t/(1+t) \le u/(u+m)$.

Proof: Let us set |S| = s and $\omega(G - S) = k$. From the minimality of S, we easily check that $s/(s+k) \le u/(u+m)$, which implies $t/(1+t) \le u/(u+m)$ since s/k = t.

Lemma 2. Let G be noncomplete, then $t(G^+) \leq t(G)/(1+t(G))$.

Proof: Let S be a cutset such that $t(G) = |S|/\omega(G-S)$. Then S would be a cutset of G^+ . Hence from the definition of $t(G^+)$, we have $t(G^+) \leq s/(s+k)$, where |S| = s and $\omega(G - S) = k$. This implies the result.

Proof of Theorem 1: If G is not connected, there is nothing to show. Next let G be a complete graph K_n and S be a cutset of the endline graph K_n^+ . Then since K_n has not a cutset, $\omega(G-S)=s+1$, where |S|=s. Hence

$$t(K_n^+) = \min\{|S|/\omega(G-S)\} = \min\{s/(s+1) \mid s \ge 1\} = 1/2.$$

Therefore we may assume G is connected and noncomplete. Let U be a cutset of G^+ such that

$$t(G^+) = \min\{|U|/\omega(G^+ - U)\}.$$

We here distinguish two cases.

Case 1. U is a cutset of G.

Let us set |U| = u and $\omega(G - U) = k$. Then we have $\omega(G^+ - U) = k + u$. From the minimality of U, we have

$$t(G^+) = u/(k+u). \tag{1}$$

On the other hand, from Lemma 1,

$$t(G)/(1+t(G)) \le u/(k+u).$$
 (2)

Combining (1) with (2), we have $t(G)/(1+t(G)) \le t(G^+)$.

By the way, from Lemma 2, $t(G^+) \le t(G)/(1+t(G))$.

Hence, we obtain $t(G^+) = t(G)/(1 + t(G))$.

Case 2. U is not a cutset of G.

Let us set |U| = u. Then $\omega(G^+ - U) = u + 1$. Hence we have

$$t(G^+) = \min\{|U|/\omega(G^+ - U)\} = \min\{u/(u+1) \mid u \ge 1\} = 1/2.$$

Therefore, from case 1 and case 2, we obtain

$$t(G^+) = \min\{t(G)/(1+t(G)), 1/2\}.$$

This completes the proof.

Let us denote the vertex-connectivity of a graph G by $\kappa(G)$ and the vertex-independence number of a graph G by $\beta(G)$ respectively. Then we have, $t(G) \geq \kappa(G)/\beta(G)$, which is proved by Chvátal [1]. Therefore we immediately have the following:

Corollary 1. If $|G| \ge 2$ and $\kappa(G) > \beta(G)$, then $t(G^+) = 1/2$.

Using the theorem 1, we can construct the family $\{G_n\}$ such that $t(G_n) = 1/(n+1)$ $(n=1,2,\ldots)$.

In fact, let us set that $G_1 = P_3$, $G_n = G_{n-1}$ $(n \ge 1)$, where P_n is a path with order n. Then, from Theorem 1, we obtain the following recurrence formula:

$$t_1 = 1/2, t_{n+1} = t_n/(1+t_n)(n \ge 1),$$

where $t_n = t(G_n)$.

Hence, we have $t(G_n) = 1/(n+1)$.

Finally we shall give a bound of the toughness of the middle graph of a graph. The middle graph M(G) of a graph G is the graph obtained from G by inserting a new vertex into every edge of G and by joining by edges those pairs of these new vertices which lie on adjacent edges of G.

Let us denote the line graph of a graph G by L(G). Then, from the definition of the endline graph and the middle graph of a graph G, we have, $L(G^+) = M(G)$, which is proved in [3].

Let us denote the edge-connectivity of graph G by $\lambda(G)$ and let G be a connected and noncomplete graph, then it is already known [1] that $\lambda(G)/2 \leq t(L(G))$. Hence we can obtain the following result.

Theorem 2. Let G be a connected and a noncomplete graph, then

$$1/2 \le t(M(G)) \le \lambda(G)/2.$$

Proof: Since $L(G^+) = M(G)$ and $\lambda(G^+) = 1$, the inequality on the left side is clear. Hence we may prove only the inequality on the right side. From now on we denote $\lambda(G)$ by λ .

As λ is the edge-connectivity of graph G, there exists an edge-set $F \subset E(G)$ such that $|F| = \lambda$ and G - F is disconnected.

Now, let $F = \{e_1, e_2, \ldots, e_{\lambda}\}$ and let v_i be a new vertex inserting into an edge e_i of G. Then $S = \{v_1, v_2, \ldots, v_{\lambda}\}$ would be a cutset of M(G). Let us set $\omega(M(G) - S) = k$, then we have

$$t(M(G)) \le |S|/k \le \lambda(G)/2.$$

This completes the proof.

Corollary 2. If a connected graph G has a bridge, t(M(G)) = 1/2.

References

- [1] V. Chvátal, Tough graphs and Hamiltonian circuits, Discrete Math. 5 (1973), 215-228.
- [2] G. Chartrand and L. Lesniak, Graphs and Digraphs, Second edition, Wadsworth & Brooks / Cole, Advanced Books & Software Monterey, CA (1986).
- [3] T. Hamada and I. Yoshimura, Traversability and connectivity of the middle graph of a graph, Discrete Math. 14 (1976), 247-255.