SHORT EVEN CYCLES IN CAGES WITH ODD GIRTH
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ABSTRACT. A (k;g)-cage is a smallest k-regular graph with girth g. Harary
and Kovacs[2] conjectured that for all k£ > 3 and odd g > 5, there exists a
(k; g)-cage which contains a cycle of length g + 1. Among other results, we
prove the conjecture for all £ > 3 and g € {5,7}.

1. INTRODUCTION

We consider only simple graphs. The odd girth (even girth) of G is the
length of a shortest odd (even) cycle in G. If there is no odd (even) cycle
in G then the odd (even) girth of G is taken as co. Let g = g(G) denote
the smaller of the odd and even girths, and let A = A(G) denote the larger.
Then g is the called girth of G, and (g, k) is called the girth pairof G. A k-
regular graph with girth g is called a (k; g)-graph; the minimum number of
vertices of a (k; g)-graph is denoted by f(k;g). A (k;g)-graph with f(k;g)
vertices is called a (k;g)-cage. Equivalently, a (k; g)-cage is a smallest k-
regular graph with girth at least g (see [1]). A k-regular graph with girth
pair (g, h) is called a (k; g, h)-graph; the minimum number of vertices ofa
(k; g, h)-graph is denoted by f(k; g, k).

The girth pairs were introduced by Harary and Kovacs[2] in 1983. Several
interesting questions concerning girth pairs remain open. For example, it
is clear that f(k;g,h) > f(k;g), and this inequality may be strict; the
unique (k; 4)-cage is K x, which does not contain a 5-cycle, thus f(k;4,5) >
f(k; 4). Related to this is the following conjecture by Harary and Kovacs[2].
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Conjecture. For allk >3, and odd g > 5, f(k; 9,9+ 1) = f(k;9).

In other words, they conjected that for all ¥ > 3 and odd g > 5, there
exists a (k; g)-cage with even girth g + 1. We prove this conjecture for all
k>3 and g € {5,7). We do so by obtaining, for all k¥ > 3 and odd g > 5,
an upper bound on the smallest possible even girth of a (k; g)-cage. Given
a cycle C and two vertices z,y on it, we use C[z, y] to denote the portion
of C from z to y in the clockwise direction. We use [m] to denote the set

{1,...,m}.
2. MAIN RESULTS

Lemma 1. Let G be a bipartite graph with bipartion X,Y, where |X| =
|Y| = m. If G contains more than m? —m edges, then G contains a perfect
matching.

Proof. By Konig-Egervary’s Theorem, it suffices to show that a minimum
vertex cover of G contains at least m vertices. Since A(G) < m, each
vertex can cover at most m edges. In order to cover more than m?2 — m =
m(m — 1) edges, at least m vertices are needed. Hence a minimum vertex
cover contains at least m vertices. [

The following lemma is interesting in its own right.

Lemma 2. Let G be a (k;g)-cage, where k > 3 and g > 5. Then every
edge of G is contained in at least k — 1 cycles of length at most g+ 1.

Proof. Suppose there exists an edge uv which belongs to fewer than k — 1
cycles of length at most g + 1 in G. Suppose N(u) — v = {u1,... ,ux—1}
and N(v) —u = {v1,...,%-1}. Since G has girth g > 5, N(u) N N(v) = 0.
Now construct a bipartite graph H with bipartition X = {z,,...,zx_1}
and Y = {y1,... ,¥k-1} such that z;y; € E(H) if and only if path u;uvy;
does not belong to a cycle of length at most g+1 in G. Since uv belongs to
fewer than k£ —1 cycles of length at most g+ 1 in G, H has more than (k —
1)2 — (k — 1) edges. By Lemma 1 H contains a perfect matching. Without
loss of generality, suppose {z1y1,...,%x-1¥k-1} is a perfect matching in
H. By our definition of H, for each i € [k — 1], u;uvv; does not belong to a
cycle of length at most g+1 in G; in other words every cycle in G containing
u;uvy; has length at least g + 2. Now let G” be the graph obtained from G
by deleting vertices u, v, and adding edges u;v; for i € [k — 1]. It’s easy to
verify that G” is a k-regular graph with girth at least g, contradicting the
minimality of G. O

Given a path P, we use I(P) to denote the number of edges in it.
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Lemma 3. Let G be a simple graph with odd girth g and even girth h.
Suppose u,v are two vertices in G and Py, P; are two different u, v-paths
whose lengths have the same parity, then I(Py) + I(P,) > min(2g, ).

Proof. Let F be the subgraph formed by the set of edges belonging to
exactly one of P; and P,. Since P;, P; are different and {(P,),!(P2) have
the same parity, F is nonempty and contains an even number of edges.
Furthermore, each vertex in F has degree 2 or 4. Hence F is an edge-
disjoint union of cycles. If F contains an even cycle, then it contains at
least h edges; if F' does not contain an even cycle, then it must consist of
an even number of odd cycles, in which case it contains at least 2g edges.
Hence I(Py) + I(P;) > e(F) > min{2¢g,k}. O

Lemma 4. Let G be a (k; g)-cage, where k > 3,9 > 5 and g is odd. If G
contains a cycle of length g which shares at most one edge with every other
cycle of length g in G, then there exists a (k; g)-cage with even girth g + 1.

Proof. We may assume that G has no cycle of length g + 1, since otherwise
we are done. Let C; be a cycle of length g in G that shares at most one
edge with every other cycle of length g. Suppose the vertices on C; are
labeled with vy,...,v, in the clockwise direction. Consider edge v;v2, by
Lemma 2 there exists another cycle C; of length g containing it. By our
assumption, E(C1) N E(C;) = vyv;. Now, let G” be the graph obtained
from G by replacing edges vyvs, v3v4 with edges vyvs, v3v4. We show that
G" is a (k; g)-cage containing a cycle of length g + 1. Clearly, G" is k-
regular. To show that G” has girth at least g, we consider an arbitrary
cycle C in G”. If C avoids edges v1v3, v2v4, then it is also a cycle in G
and hence has length at least g. If C uses both v;v3 and v,v,, then it
consists of v1vs, v2v4 and two paths Py, P; in G (and in G”), where either
Py is a v1, v2-path and P; is a v3, v4-path or P, is a v;, v4-path and P, is a
vz, v3-path. In the former case, Py, P; each has length at least g — 1, since
P; Uvyvz and P; U v3vy are both cycles in G, and hence C has length at
least 2(g — 1) + 2 > g. In the latter case, C U {v1v2, v3v4} — {v1vs, v2v4}
is a cycle in G having the same length as C, hence C has length at least
g. It remains to consider the case where C uses exactly one of v,vs, vavs.
Without loss of generality, suppose C uses v;v3 but not vyvs. Then C
consists of edge viv3 and a vy, v3-path P, where P is a path in both G
and G”. It suffices to show that P has length at least g — 1. Since P is a
path in G” and hence avoids v1v2,v3vs, P # Cy[v1,v3), P # Ci[vs,w1). If
P has length less than g — 2, then P U Cj[v;, v3] would contain a cycle of
length less than ¢ in G; if P has length g — 2, then PU Ci[v1, v3] either
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contains a cycle of length less than g in G or is itself a cycle of length g
in G, which is different from C; and shares at least two common edges
with C;, namely v1v2 and vzv3, contradicting our assumption. Hence P
has length at least g — 1. This proves that G” has girth at least g. On the
other hand, C; U {v1v3,v2v4} — {v1v2,v3v4} is a cycle of length g in G”.
Since G” also has the same number of vertices as G, G” is a (k; g)-cage.
Now (Cz — v1v2) UvavaUvvz is a cycle of lengthg+1in G”. O

Theorem 1. For all k > 3 and odd g > 5, there exists a (k;g)-cage with
even girth at most g+ |%] —¢, wheree =1ifg=1 (mod 4), ande =2 if
g =3 (mod 4).

Proof. First notice that g + |£] — ¢, where ¢ = 1 if g = 1 (mod 4), and
€ = 2if g = 3 (mod 4), is the largest even integer strictly less than g+ | £].
Hence it suffices to show that there exists a (k; g)-cage with even girth less
than g + | £].

Let G be a (k; g)-cage. We may assume that G has even girth ~(G) >
g+|%]; otherwise we are done. We are going to modify G to obtain a (k; g)-
cage with even girth less than g + | £|. By our assumption, G contains no
cycles of length g + 1. Let C; be a cycle of length g. Among all other
cycles of length g in G, we choose one that shares maximum number of
edges with Cj, call it C;. Suppose Cj, C; share ¢ edges, by Lemma 4 we
may assume that ¢ > 2. It is easy to see that those common edges must be
consecutive on both C; and C3, otherwise we would get a cycle of length
less than g. Suppose the vertices on C are labeled with vy,...,vg in the
clockwise direction such that the common segment that C; and C: share
is Cy[v1, ve41]. Since (Cy — Cz) U (Cz — C1) is an even cycle of length
2g — 2t > h(G), we have 2t < 29 — h(G) < g— 2 and hence ¢ < |£] - 1.

Let m be the even one of |£] and [£]. Let G” be the graph obtained
from G by deleting edges v1v2, Vm41Vm42 and adding edges v1Vm+1, V2Vm42-
Clearly, G" is k-regular. We show that G" has girth at least g. Let C be
a cycle in G”. If C uses neither or both of the new edges v1Vm41, V2Um+2,
then we argue as in Lemma 4. It hence remains to consider the case where
C contains exactly one of the new edges. Without loss of generality, sup-
pose C contains v19m41 but not v2vm4s. Then C consists of edge v1Vm41
and a vy, Ums1-path P, where P is a path in both G and G”. It suffices
to show that P has length at least g — 1. Let P, = Ci[v1,9m41] and
P; = Ci[tm+1,v1); one of them has length |£] and the other has length
[£)]. Since P does not use edges v192, Vm+19m+2, P # P,P # P;. De-
pending the parity of the length of P, we can apply Lemma 3 to either
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P, P, or P, P, to get either {(P)+1(P1) > min{2g, h(G)} or [(P) +1(P2) >
min{2g, k(G)}. In either case, we have (P} > (g+ []) - [§]1 =¢— 1
This completes the proof that G" has girth at least g. On the other hand,
C1 U {v1Vm4+1, V2Umt2} — {v192, Um41Um42} is a cycle of length g in G”.
Since G” also has the same number of vertices as G, G” is a (k; g)-cage.
Now C = (Cz - Cl) v, [vt.,.l, vm+1] U v19m41 (note thatt+1<m+ 1) is
a cycle in G” with even length g+ (m 4 1) — 2¢. Since m = | %] or [£] and
1>2,94+(m+1)-2t<g+(|%)+2)-2t<g+|%] -2 Hence G” has
even girth less than ¢+ [£]. O

Corollary 1. For all k > 3, f(k;5,6) = f(k;5), f(k;7,8) = f(k; 7).

Proof. By Theorem 1, for all k > 3, there exists a (k;5)-cage with even
girth (at most) 6, and a (k; 7)-cage with even girth (at most) 8. O
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