On normal quotients of transitive graphs

M. Muzychuk
Department of Mathematics and Computer Science
Netanya Academic College
16 Kibutz Galuyot St.
42365 Netanya, Israel

December 30, 1999

Abstract

The notion of normal quotient of a vertex-transitive graph was introduced in [5]. It was shown there that many graph properties are inherited by normal quotients. The definition of a normal quotient was given in [5] in group-theoretical terms. In this note we give a combinatorial approximation to this notion which extends the original definition. We show that many of the properties that were inherited by group-theoretical normal quotients are also inherited by combinatorial ones.

1 Introduction

Graph-theoretical approach to the investigation of permutation groups goes back to the seminal papers of D.G.Higman [3] and C.C.Sims [6]. It exploits the connection between the properties of a permutation group and its 2-orbits: the orbits of the diagonal action of the group on the Cartesian square of the underlying set. The best known example of using this connection is the graph-theoretical criterion of primitivity of a transitive permutation group which asserts that a permutation group is primitive if and only if all non-diagonal 2-orbits of the group are connected (as graphs).

In this paper we consider two different weakenings of primitivity: "group-theoretical" and "combinatorial" ones. Group-theoretical weakening was

introduced by C.Praeger in [5]. A transitive permutation group is called quasiprimitive if each normal subgroup of the group is transitive. A finite graph is called quasiprimitive if it is a 2-orbit of some quasiprimitive group. The combinatorial analog of a quasiprimitive graph, introduced in this paper, is based on the notion of the normal quotient of a graph which we define in a purely combinatorial way. Our main result shows that many of properties of a graph are inherited by its normal quotient. The definition of a normal quotient is given via a homogeneous coherent configuration.

It turns out that combinatorial quasiprimitivity is stronger than group-theoretical one but weaker than usual primitivity. Nevertheless, a combinatorial quasiprimitivity has an important advantage comparing the group-theoretical one: if r is combinatorially quasiprimitive graph then the automorphism group of r is quasiprimitive. This gives a partial answer on the Question 7.1(a) formulated in [5].

The paper is organized as follows. Next section contains preliminaries and formulation of main results. In Section 3 we prove some results about homogeneous coherent configurations that we need in the rest of the paper. We think that a part of these results are of independent interest. The last Section contains the proof of the main result formulated in Section 2.

2 Preliminaries

In this note a graph with a node set Ω means an arbitrary binary relation r on Ω . If $r,s\subseteq\Omega^2$, then rs will denote the usual product of relations. If $\omega\in\Omega$ and $r\subseteq\Omega^2$, then $\omega^r:=\{\beta\in\Omega\,|\,(\omega,\beta)\in r\}$. If $H\subset 2^{\Omega\times\Omega}$, then we write ω^H for $\cup_{h\in H}\omega^h$. As usual $r,r\subseteq\Omega^2$ is said to be regular if $|\omega^r|$ is constant for all $\omega\in\Omega$. In this case we shall write |r| for $|\omega^r|$. A permutation $g\in \operatorname{Sym}(\Omega)$ will be always treated as a binary relation on Ω .

A graph (Ω, r) is called vertex-transitive if its automorphism group $\operatorname{Aut}(r)$ is transitive on Ω . Following [5] we shall say that a graph (Ω, r) is G-transitive, $G \leq \operatorname{Aut}(r)$ if G acts transitively on Ω . If G acts transitively on r, then r is said to be (G,1)-arc transitive. If $N \leq G$, then the orbits of N form a G-invariant partition Ω/N of Ω . The quotient graph $r^{\Omega/N} := \{(\omega_1^N, \omega_2^N) \mid (\omega_1, \omega_2) \in r\}$ is called a normal quotient of (Ω, r) [5]. It inherits many of the properties of the original graph. If each normal subgroup of G is transitive, then G and r are called quasiprimitive [5]. However, it might happen that a (G,1)-arc transitive quasiprimitive graph still has a "good" quotient. Let us say that a partition $\mathcal P$ of Ω is r-normal if the equivalence relation e corresponding to $\mathcal P$ satisfies the equality er = re. If r is a G-transitive graph, then the partition induced by a normal subgroup of G is always normal (Section 3). The converse is not true, in general. For example, the symmetric group S_{2m} acting on the set of all m-element

subsets of $\{1, 2, ..., 2m\}$ is quasiprimitive, but there exists a partition which is normal with respect to each of S_{2m} -transitive graphs.

We shall say that a (G,1)-arc transitive graph r is (G,n)-primitive if there is no non-trivial G-invariant r-normal equivalence relation. Since the partition induced by an intransitive action of a normal subgroup of G is always an r-normal partition, each (G,n)-primitive graph is G-quasiprimitive. The most important property of (G,n)-primitive graphs is formulated below. Its proof is so easy that we omit it here.

Proposition 2.1 Let (Ω, r) be a (G, n)-primitive graph. Then (Ω, r) is an (M, n)-primitive graph for each $M, G \leq M \leq \operatorname{Aut}(r)$.

Thus if r is a G-quasiprimitive graph which is also (G,n)-primitive then r is M-quasiprimitive for each overgroup $M,G \leq M \leq \operatorname{Aut}(r)$. It is worth to mention that in general a G-quasiprimitive graph may be not a M-quasiprimitive for some $G \leq M \leq \operatorname{Aut}(r)$ [5].

It turns out that the r-normal partitions are also good enough for taking quotients of r. To formulate the corresponding claim we need to remind some definitions.

Let (Ω, r) be a graph and let $e \subseteq \Omega^2$ be an equivalence relation on Ω . The quotient graph $r^{\Omega/e}$ is a graph with the vertex set $\Omega/e := \{\omega^e \mid \omega \in \Omega\}$ and the edge set $\{(\alpha^e, \beta^e) \mid (\alpha, \beta) \in r\}$. We shall say that r is a multicover of $r^{\Omega/e}$ if for each edge (α^e, β^e) of $r^{\Omega/e}$ the intersections $\omega^r \cap \beta^e$, $\eta^{r^i} \cap \alpha^e$ are non-empty for each $\omega \in \alpha^e, \eta \in \beta^e$. A graph r is said to be a cover of its quotient $r^{\Omega/e}$ if $|\omega^r \cap \beta^e| = |\eta^{r^i} \cap \alpha^e| = 1$ for each $\omega \in \alpha^e, \eta \in \beta^e$. If r is symmetric, then these definitions coincides with the definitions of cover and multicover given in [5].

The result below is an analogue of Theorem 4.1 [5].

Theorem 2.2 Let (Ω,r) be a (G,1)-transitive connected graph and e be a G-invariant non-trivial r-normal equivalence relation on Ω . Denote by $\widehat{G} \leq \operatorname{Sym}(\Omega/e)$ the permutation group induced by the action of G on the equivalence classes of e; denote by $\overline{\alpha} \in \Omega/e$ the equivalence class of $\alpha \in \Omega$. Then the quotient graph $\overline{r} := r^{\Omega/e}$ is $(\widehat{G},1)$ -arc transitive graph of valency k/l where k is the valency of r and $l = |\omega^r \cap \omega^e|$, and r is a multicover of $r^{\Omega/e}$. Moreover if $r^{\Omega/e}$ is not a directed full cycle on Ω/e then

- (i) If r is G-locally primitive, then r is a cover of $r^{\Omega/e}$ and $(G_{\alpha})^{\alpha^r}$ is transitively embedded into $(\widehat{G}_{\overline{\alpha}})^{\overline{\alpha^r}}$ and $r^{\Omega/e}$ is \widehat{G} -locally primitive.
- (ii) If r is (G, k)-transitive, $2 \le k$, then $r^{\Omega/e}$ is (\widehat{G}, k) -transitive and r is a cover of $r^{\Omega/e}$, i.e., l = 1.

Given a (G,1)-arc transitive graph (Ω,r) , one can associate a homogeneous coherent configuration $2-\operatorname{orb}(G;\Omega)$ by taking the set of all 2-orbits (orbitals) of $(G;\Omega)$. Since G acts arc transitively on $r, r \in 2-\operatorname{orb}(G;\Omega)$.

In the next section we study the situation, when r is a basic relation of a homogeneous coherent configuration (Ω, R) .

3 Homogeneous coherent configurations.

Let (Ω, R) be a homogeneous coherent configuration [3]. We write $\operatorname{Rel}(R)$ for the set of all binary relations on Ω which may be represented as a union of basic relations of (Ω, R) . For each $S \subseteq R$, we write |S| for the sum $\sum_{s \in S} |s|$. For arbitrary ring F, we denote by $F\Omega$ the F-module of all F-valued functions on Ω . We write a function $f \in F^{\Omega}$ as a formal sum $\sum_{\omega} f(\omega)\omega$. If $\Delta \subseteq \Omega$, then $\Delta^+ = \sum_{\delta \in \Delta} \delta \in F\Omega$ denotes the characteristic function of Δ . For each $g \in \operatorname{Rel}(R)$, we denote by A(g) its adjacency matrix. For each pair A, B of $\Omega \times \Omega$ -matrices, we write $\langle A, B \rangle$ for the following expression $\frac{1}{|\Omega|} \sum_{(\alpha,\beta) \in \Omega^2} A_{\alpha\beta} B_{\alpha\beta}$.

Proposition 3.1 Let $e \in Rel(R)$ be an equivalence relation. Then for each $r \in R$ there exist $l(r, e) \in \mathbb{N}$ such that

(i)
$$A(r)A(e) = l(r,e)A(re), A(e)A(r) = l(r^t,e)A(er);$$

(ii)
$$\forall_{\omega',\omega\in\Omega} (\omega'^r \cap \omega^e \neq \emptyset \Rightarrow |\omega'^r \cap \omega^e| = l(r,e));$$

(iii)
$$l(r,e)||r|$$
;

(iv)
$$|r||e| = l(r, e)|re| = l(r^t, e)|er|;$$

$$|ere||re \cap er|l(r,e)l(r^t,e) = |e|^2|r|^2;$$

$$|r^{\Omega/e}| = \frac{|e||r|^2}{l(r,e)l(r^t,e)|re \cap er|}.$$

Proof.

- (i) It follows from Proposition 3, page 51,[8] that A(r)A(e) = mA(re) for a suitable $m \in \mathbb{R}$. Since all structure constants of the Bose-Mesner algebra of R are non-negative integers, $m \in \mathbb{N}$. By setting l(r,e) := m we obtain A(r)A(e) = l(r,e)A(re). Now $A(e)A(r) = l(r^t,e)A(er)$ is a direct consequence of the equality $A(r^t)A(e) = l(r^t,e)A(r^te)$.
- (ii) Let ω' , ω be arbitrary points that satisfy $\omega'^r \cap \omega^e \neq \emptyset$. Then $|\omega'^r \cap \omega^e|$ is equal to the coeffcient of $E_{\omega',\omega}$ in the product $A(r)A(e^t) = A(r)A(e)$, i.e.,

 $|\omega'^r \cap \omega^e| = l(r, e)$, as desired (here $E_{\alpha, \beta}$ is the matrix unit corresponding to the pair α, β).

(iii) Let $\Delta \subseteq \Omega$ intersect each e-class by one element, i.e., Δ is a transversal of the partition Ω/e . Fix a point $\omega \in \Omega$ and consider the set $\Delta' = \{\delta \in \Delta \mid \delta^e \cap \omega^r \neq \emptyset\}$. Then $\omega^r = \bigcup_{\delta \in \Delta'} (\omega^r \cap \delta^e)$, implying $|r| = |\omega^r| = |\Delta'| l(r, e)$.

Part (iv) follows if we apply | | to the both sides of (i).

(v) It follows from Proposition 3, page 51,[8] that $A(e)A(r)A(e) = \lambda A(ere)$ for a suitable $\lambda \in \mathbb{N}$. Hence $\lambda |ere| = |e||r||e|$.

Since A(r) appears in A(ere) with coefficient 1,

$$\lambda = \frac{1}{|r|} \langle A(e)A(r)A(e), A(r) \rangle = \frac{1}{|r|} \langle A(e)A(r), A(r)A(e) \rangle.$$

By part (i),

 $\langle A(r)A(e),A(e)A(r)\rangle=l(r,e)l(r^t,e)\langle A(re),A(er)\rangle=l(r,e)l(r^t,e)|\!|\!| re\cap er|\!|\!|,$ implying

$$\lambda = \frac{l(r,e)l(r^t,e)|re \cap er|}{|r|}.$$

Now part (v) is a direct consequence of this equality.

(vi) According to [9] $|r^{\Omega/e}| = \frac{|ere|}{|e|}$. Now part (v) of our claim implies the desired result.

Remark 1. More general version of part (i) was proved in [1] for generalized table algebras.

Remark 2. In general $l(r, e) \neq l(r^t, e)$.

Proposition 3.2 Let $e \in Rel(R)$ be an equivalence relation Then for each $r \in R$ the following are equivalent:

- (i) re = er;
- (ii) A(r)A(e) = A(e)A(r);
- (iii) Ω/e is an equitable partition with respect to r and r^t .
- (iv) r is a multicover of $r^{\Omega/e}$.

Proof. (i) \Rightarrow (ii). By Proposition 3.1 A(r)A(e) = l(r, e)A(re), $A(e)A(r) = l(r^t, e)A(er)$ where

$$l(r,e) = \frac{|r||e|}{|re|}, l(r^t,e) = \frac{|r||e|}{|er|}.$$

Since re = er, $l(r, e) = l(r^t, e)$, and, consequently, A(r)A(e) = A(e)A(r).

(ii) \Rightarrow (iii) Since A(e) commutes with A(r), $\operatorname{Im}(A(e))$ is an A(r)-invariant subspace. But $\operatorname{Im}(A(e)) = \operatorname{Span}(\Pi^+)_{\Pi \in \Omega/e}$. Thus $\operatorname{Span}(\Pi^+)_{\Pi \in \Omega/e}$ is an A(r)-invariant subspace, which is one of the equivalent definitions of equitable partition. Applying t to the both parts of (ii) we obtain $A(e)A(r^t) = A(r^t)A(e)$. Hence Ω/e is also an r^t -equitable partition.

(iii) \Rightarrow (i) Let $(\alpha, \gamma) \in er$. Then there exists $\beta \in \alpha^e$ such that $(\beta, \gamma) \in r$. So $\beta^r \cap \gamma^e \neq \emptyset$. Since Ω/e is r-equitable and $(\alpha, \beta) \in e$, $\alpha^r \cap \gamma^e \neq \emptyset$. Hence there exists $\delta \in \Omega$ such that $(\alpha, \delta) \in r$ and $(\delta, \gamma) \in e$ which implies $(\alpha, \gamma) \in re$. Thus $er \subseteq re$.

Since Ω/e is r^t -equitable, $er^t \subseteq r^t e$. Applying t to the both sides of the inclusion we obtain $re \subseteq er$, and, therefore er = re.

The equivalence (i) \Leftrightarrow (iv) follows directly from the definition of a multicover.

As a direct consequence we obtain the following

Proposition 3.3 Let $e \in Rel(R)$ be an equivalence relation. Then e is R-normal if and only if Ω/e is an R-equitable partition of Ω .

In what follows we call an equivalence relation $e \in \text{Rel}(R)$ r-normal, $r \in R$ if re = er. There are two trivial r-normal equivalence relations: id_{Ω} and Ω^2 . We shall say that r is (R, n)-primitive if id_{Ω} , Ω^2 are the only r-normal equivalence relations. If an equivalence relation $e \in \text{Rel}(R)$ is r-normal for every $r \in R$, then e is called R-normal (see [9]). The homogeneous coherent configuration (Ω, R) will be called n-primitive, if id_{Ω} , Ω^2 are the only normal equivalence relations in Rel(R).

Since connected components of a basic graph $r \in R$ always form an r, r^t -equitable partition of Ω , each (R, n)-primitive basic graph is always connected. In order to formulate next proposition we remind that an m-arc of graph $r \subseteq \Omega^2$ is an (m+1)-tuple $(\omega_0, \omega_1, ..., \omega_m)$ of points of Ω such that $(\omega_i, \omega_{i+1}) \in r$ for each i = 0, ..., m-1 and $\omega_{i-1} \neq \omega_{i+1}, i = 0, ..., m-2$ (the latter condition always holds of r is a non-symmetric basic graph of a homogeneous coherent configuration).

Proposition 3.4 Let $e \in \text{Rel}(R)$ be a r-normal equivalence relation. Then for each m-arc $(\Delta_0,...,\Delta_m)$, $\Delta_i \in \Omega/e$ of $r^{\Omega/e}$ there exists an m-arc $\omega_0,...,\omega_m$ of r such that $\Delta_i = \omega_i^e, i = 0,...,m$.

Proof. Induction on m. If m=1 then our claim follows directly from the definition. Assume now that m>1. By induction hypothesis there exists an (m-1)-arc $\omega_0,...,\omega_{m-1}$ of r such that $\omega_i^e=\Delta_i, 0\leq i\leq m-1$. By definition of $r^{\Omega/e}$ there exist $\beta_1\in\Delta_{m-1},\beta_2\in\Delta_m$ such that $(\beta_1,\beta_2)\in r$. Since Ω/e

is an equitable partition of Ω , there exists $\omega_m \in \Delta_m$ with $(\omega_{m-1}, \omega_m) \in r$. Since $\Delta_{i-1} \neq \Delta_{i+1}$, $\omega_{i-1} \neq \omega_{i+1}$ implying that $(\omega_0, ..., \omega_m)$ is an m-arc of r.

Proposition 3.5 Let $e \in Rel(R)$ be an equivalence relation. Then

- (i) $(\omega^r)^e \subseteq (\omega^e)^{r^{\Omega/e}}$;
- (ii) If e is r-normal, then $(\omega^r)^e = (\omega^e)^{r^{\Omega/e}}$ and $|r^{\Omega/e}| = \frac{|r|}{|l(r,e)|}$.

Proof. (i) If $\Delta \in (\omega^r)^e$, then $\Delta = \alpha^e$ for some $\alpha \in \omega^r$. Therefore $(\omega, \alpha) \in r$ implying $(\omega^e, \alpha^e) \in r^{\Omega/e}$. Hence $\Delta = \alpha^e \in (\omega^e)^{r^{\Omega/e}}$, as desired.

(ii) Take an arbitrary $\Delta \in (\omega^e)^{r^{\Omega/e}}$. Then $\Delta = \alpha^e$ for some $\alpha \in \Omega$ and $(\omega^e, \alpha^e) \in r^{\Omega/e}$. Therefore there exist $\omega' \in \omega^e, \alpha' \in \alpha^e$ such that $(\omega', \alpha') \in r$. Since e is r-normal, there exists $\alpha'' \in \alpha'^e = \alpha^e$ such that $(\omega, \alpha'') \in r$. Therefore $\Delta = \alpha'^e = \alpha''^e \in (\omega^r)^e$.

The equality $|r^{\Omega/e}| = |r|/l(r,e)$ follows immediately from part (vi) of Proposition 3.1.

4 Proof of the main result.

We recall some standard definitions from permutation group theory. Let $G \leq \operatorname{Sym}(\Omega)$ be a transitive permutation group. The orbits of G in its natural action on Ω^2 will be called 2-orbits [7]. The set of 2-orbits of the permutation group G will be denoted by $2-\operatorname{orb}(G;\Omega)$. It is well known fact that $2-\operatorname{orb}(G;\Omega)$ is a homogeneous coherent configuration on Ω .

To make our notation more transparent we fix an arbitrary G-invariant equivalence relation $e \subseteq \Omega^2$ and set $\overline{\omega} := \omega^e, \overline{\Omega} := \Omega/e$. For each $f \subset \Omega^2$ we set $\overline{f} := \{(\overline{\alpha}, \overline{\beta}) \mid (\alpha, \beta) \in f\}$. If $g \in \operatorname{Sym}(\Omega)$ is a permutation that leaves Ω/e invariant, then $\widehat{g} \in \operatorname{Sym}(\overline{\Omega})$ is a permutation which acts on $\overline{\Omega}$ by the formula: $\Delta^{\widehat{g}} := \Delta^g, \Delta \in \overline{\Omega}$. It follows directly from the definition that $\overline{\omega^g} = \overline{\omega^g}$.

Fix an arbitrary point $\omega \in \Omega$. For each $f \in \text{Rel}(2-\text{orb}(G;\Omega))$ we set $G_{\omega}(f) := \{g \in G \mid (\omega,\omega^g) \in f\}$. For each 2-orbit s of G, the set $G_{\omega}(s)$ is a double coset of G_{ω} . Moreover, the correspondence $s \leftrightarrow G_{\omega}(s), s \in 2-\text{orb}(G;\Omega)$ is a bijection between the 2-orbits of G and the G_{ω} -double cosets of G. This bijection is well-known in the theory of permutation groups, see, for example, [7].

A direct check shows that for each $r, s \in \text{Rel}(2-\text{orb}(G; \Omega))$ the following properties hold:

$$G_{\omega}(r \cup s) = G_{\omega}(r) \cup G_{\omega}(s) \tag{1}$$

$$G_{\omega}(rs) = G_{\omega}(r)G_{\omega}(s) \tag{2}$$

The latter equality shows that $e \in \text{Rel}(2-\text{orb}(G;\Omega))$ is an equivalence relation if and only if $G_{\omega}(e)$ is an overgroup of G_{ω} . As a direct consequence of the definition of being r-normal we obtain the following

Theorem 4.1 Let e be a G-invariant equivalence relation and r be an arbitrary 2-orbit of G. Denote $H := G_{\omega}(e), G_{\omega}gG_{\omega} := G_{\omega}(r)$. Then

- (i) e is r-normal if and only if $G_{\omega}gH = HgG_{\omega}$;
- (ii) e is $2-\operatorname{orb}(G;\Omega)$ -normal if and only if the equality $KxG_{\omega}=G_{\omega}xK$ holds for each $x\in G$.

Let $N \leq \operatorname{Aut}(r)$ be an arbitrary subgroup normalized by G, i.e., $[N,G] \leq N$. Then the equivalence relation $e_N = \{(\alpha,\beta) \mid \alpha \in \beta^N\}$ is G-invariant. We claim that $re_N = e_N r$. Indeed, if $(\alpha,\gamma) \in re_N$ then $(\alpha,\beta) \in r, (\beta,\gamma) \in e_N$ for a suitable $\beta \in \Omega$. Therefore $\gamma = \beta^n$ for some $n \in N$. Since $n \in \operatorname{Aut}(r)$, $(\alpha^n,\beta^n) = (\alpha^n,\gamma) \in r$ which implies $(\alpha,\gamma) \in e_N r$. Thus $re_N \subseteq e_N r$. Analogously, $e_N r \subseteq re_N$. Combining altogether we obtain

$$re_N = e_N r, (3)$$

as claimed. If $N \leq G$, then we have a stronger result

Corollary 4.2 Let $N \subseteq G$. Then e_N is a $2-\operatorname{orb}(G;\Omega)$ -normal equivalence relation of G.

Proof is a direct consequence of (3).

Not every r-normal equivalence relation is induced by a subgroup $N \leq \operatorname{Aut}(r)$ normalized by G. Nevertheless in some cases we can show that an equivalence relation is induced by some G-normalized subgroup of $\operatorname{Aut}(r)$. In order to formulate the result we recall the definition of the thin radical of a coherent configuration [9].

Let $R \subset 2^{\Omega \times \Omega}$ be a homogeneous coherent configuration. A relation $s \in R$ is called thin (see [9]) if |s| = 1, i.e., s is a permutation on Ω . The set of all thin elements of R form a semiregular subgroup of $\operatorname{Sym}(\Omega)$ which is called the thin radical of R and is denoted as $O_{\theta}(R)[9]$. Following [9] we set $C_{O_{\theta}(R)}(r) := \{s \in O_{\theta}(R) \mid sr = rs\}$. It is easy to see that $C_{O_{\theta}(R)}(r)$ is a semiregular subgroup of $\operatorname{Sym}(\Omega)$. Therefore $e_{C_{O_{\theta}(R)}(r)}$ is an equivalence relation on Ω . It follows directly from the definition that $e_{C_{O_{\theta}(R)}(r)}$ is an r-normal equivalence relation.

Proposition 4.3 Let r be a (G,1)-transitive graph and $R:=2-\mathrm{orb}(G;\Omega)$. Then

(i)
$$C_{Aut(r)}(G) = C_{O_{\theta}(R)}(r);$$

- (ii) $e_{C_{O_{\theta}(R)}(r)}$ is an r-normal equivalence relation induced by the subgroup $C_{Aut(r)}(G)$;
- (iii) For each $\omega \in \Omega$, $\mathbf{C}_{\mathsf{Aut}(r)}(G) \cong F/G_{\omega}$, where $F = \{h \in \mathbf{N}_G(G_{\omega}) \mid g^h \in G_{\omega}gG_{\omega}\}$.

Proof. (i) Let $s \in C_{\operatorname{Aut}(r)}(G)$. Then s is G-invariant binary relation, and, therefore, $s \in \operatorname{Rel}(R)$. Since s is of valency one, $s \in R$. Therefore $s \in O_{\theta}(R)$. Together with $s \in \operatorname{Aut}(r)$ we obtain sr = rs which, in turn, implies $s \in C_{O_{\theta}(R)}(r)$.

Vice versa, if $s \in \mathbf{C}_{\mathrm{O}_{\theta}(R)}(r)$ then sr = rs or, equivalently, $s \in \mathrm{Aut}(r)$. Since s is a G-invariant relation, s centralizes G, i.e., $s \in \mathbf{C}_{\mathrm{Aut}(r)}(G)$, as desired.

Part (ii) is a direct consequence of (i) and (3).

(iii) Fix an arbitrary $\omega \in \Omega$. It is well-known that $s \in O_{\theta}(R) \Leftrightarrow G_{\omega}(s) \subseteq N_{G}(G_{\omega})$. So the mapping $s \mapsto G_{\omega}(s), s \in O_{\theta}(R)$ is an isomorphism between $O_{\theta}(R)$ and $N_{G}(G_{\omega})/G_{\omega}$. Now the claim follows directly from the definition of $C_{O_{\theta}(R)}(r)$.

We shall say that the permutation group $(G;\Omega)$ is n-primitive if its 2-orbit configuration is n-primitive.

Proof of Theorem 2.2.

It is evident that \bar{r} is $(\widehat{G}, 1)$ -transitive graph. Since e is r-normal, the valency of \bar{r} is equal k/l(r, e) (Propositon 3.5 (ii)) where $l(r, e) = |\omega^r \cap \omega^e|, \omega \in \Omega$. Thus r is a multicover of \bar{r} . The graph \bar{r} is a directed cycle if and only if $|\bar{r}| = 1$, or, equivalently, l(r, e) = |r|.

Assume now that \bar{r} is not a directed cycle, i.e., l(r,e) < |r|.

(i) Fix an arbitrary $\omega \in \Omega$. The equivalence relation $e \cap (\omega^r)^2$ is G_{ω^r} invariant. Since G_{ω} acts primitively on ω^r , either $e \cap (\omega^r)^2 = (\omega^r)^2$ or $e \cap (\omega^r)^2 = id_{\omega^r}$. In the first case we have l(r,e) = k contrary to the assumption. So we may assume that $e \cap (\omega^r)^2 = id_{\omega^r}$. In this case l(r,e) = 1 and, therefore, the valency of \overline{r} is equal to k,i.e., r is a covering of \overline{r} .

For each $g \in G_{\omega}$ and $\alpha \in \omega^r$, we have $\widehat{g} \in \widehat{G}_{\overline{\omega}}, \overline{\alpha} \in \overline{\omega^r}$. Thus the map $(g, \alpha) \mapsto (\widehat{g}, \overline{\alpha})$ is a morphism between the group actions $(G_{\omega}; \omega^r)$ and $(\widehat{G}_{\overline{\omega}}; \overline{\omega^r})$. If \widehat{g} acts trivially on $\overline{\omega^r}$ then $\alpha^{eg} = \alpha^e$ for every $\alpha^e \in \overline{\omega^r} = \{\beta^e \mid \beta \in \omega^{er}\}$. In particular, $\alpha^{eg} = \alpha^e$ for every $\alpha \in \omega^r$. Since $g \in G_{\omega}$, $\omega^{rg} = \omega^r$ implying $(\alpha^e \cap \omega^r)^g = \alpha^e \cap \omega^r$ for all $\alpha \in \omega^r$. Now combining $\alpha \in \alpha^e \cap \omega^r$ with $|\alpha^e \cap \omega^r| \leq l(r, e) = 1$ we obtain $\alpha^e \cap \omega^r = \{\alpha\}$ which, in turn, implies that for each $\alpha \in \omega^r$, $\alpha^g = \alpha$. Hence g acts trivially on ω^r and the map $g^{\omega^r} \mapsto \widehat{g}^{\overline{\omega^r}}$ is an embedding of $G_{\omega}^{\omega^r}$ into $\widehat{G}_{\overline{\omega}}^{\overline{\omega^r}}$. The image of this embedding is transitive, because by Proposition 3.5 (ii) $\overline{\omega^r} = \overline{\omega^r}$. Since

 $\widehat{G}_{\overline{\omega}}^{\overline{\omega}^{r}}$ is an overgroup of $\widehat{G}_{\overline{\omega}}^{\overline{\omega}^{r}}$ and $\widehat{G}_{\overline{\omega}}^{\overline{\omega}^{r}}$ acts primitively on $\overline{\omega}^{r}$, the group $\widehat{G}_{\overline{\omega}}^{\overline{\omega}^{r}}$ also acts primitively.

(ii) Since r is (G, k)-transitive for $k \geq 2$, r is also G-locally primitive and we may apply the previous part of the Theorem. Let now $(\Delta_0, ..., \Delta_k)$ and $(\Delta'_0, ..., \Delta'_k)$ be two k-arcs of \overline{r} . By Proposition 3.4 there exist k-arcs of r $(\omega_0, ..., \omega_k), (\omega'_0, ..., \omega'_k)$ such that $\Delta_i = \overline{\omega_i}, \Delta'_i = \overline{\omega'_i}$. Now it is easy to see that

 $(\Delta_0',...,\Delta_k')=(\Delta_0,...,\Delta_k)^{\widehat{g}}$

where $g \in G$ is an arbitrary permutation that moves $(\omega'_0,...,\omega'_k)$ into $(\omega_0,...,\omega_k)$.

5 Acknowledgements

The author is very grateful to M.Klin who read the text and proposed some improvements.

References

- [1] Z.Arad, E.Fisman and M.Muzychuk. Generalized table algebras, to appear in Israel J. of Math.
- [2] D.G. Higman. Graphs and permutation groups. Math.Z., v. 95, 1967, pp. 76-86.
- [3] D.G. Higman. Coherent algebras. Linear algebra and its applications, v.93, 1987, pp.209-239.
- [4] I.A.Faradžev, M.H.Klin and M.E.Muzychuk. Cellular rings and automorphism groups of graphs In: Investigations on Algebraic Theory of Combinatorial Objects. Mathematics and Its Applications (Soviet Series), v. 84, I.A. Faradžev, A.A.Ivanov, M.H.Klin, A.J.Woldar(Eds).
- [5] Cheryl E.Praeger. Finite quasitprimitve graphs. In: Surveys in Combinatorics, Lecture Notes of the LMS, v. 241 (1997), pp.65-86.
- [6] C.C.Sims. Finite permutation groups of rank 3. Math. Z., v. 86, 1964, pp. 145-156.
- [7] H.Wielandt. Permutation groups through invariant relations and invariant functions. Lect. Notes., Dept. Math.m Ohio St. Univ, Colimbus, 1969.
- [8] B.Weisfeiler, On Construction and Identification of Graphs, LNM, 1968, v. 558.
- [9] P.-H. Zieschang. An algebraic approach to association schemes. LNM, 1628, 1997