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Abstract

The notion of normal quotient of a vertex-transitive graph was
introduced in [5]. It was shown there that many graph properties
are inherited by normal quotients. The definition of a normal quo-
tient was given in [5] in group-theoretical terms. In this note we
give a combinatorial approximation to this notion which extends the
original definition. We show that many of the properties that were
inherited by group-theoretical normal quotients are also inherited by
combinatorial ones.

1 Introduction

Graph-theoretical approach to the investigation of permutation groups goes
back to the seminal papers of D.G.Higman [3] and C.C.Sims [6]. It exploits
the connection between the properties of a permutation group and its 2-
orbits: the orbits of the diagonal action of the group on the Cartesian square
of the underlying set. The best known example of using this connection
is the graph-theoretical criterion of primitivity of a transitive permutation
group which asserts that a permutation group is primitive if and only if all
non-diagonal 2-orbits of the group are connected (as graphs).

In this paper we consider two different weakenings of primitivity: ”group-
theoretical” and ”combinatorial” ones. Group-theoretical weakening was
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introduced by C.Praeger in [5]. A transitive permutation group is called
quasiprimitive if each normal subgroup of the group is transitive. A finite
graph is called quasiprimitive if it is a 2-orbit of some quasiprimitive group.
The combinatorial analog of a quasiprimitive graph, introduced in this pa-
per, is based on the notion of the normal quotient of a graph which we
define in a purely combinatorial way. Our main result shows that many of
properties of a graph are inherited by its normal quotient. The definition
of a normal quotient is given via a homogeneous coherent configuration.

It turns out that combinatorial quasiprimitivity is stronger than group-
theoretical one but weaker than usual primitivity. Nevertheless, a combina-
torial quasiprimitivity has an important advantage comparing the group-
theoretical one: if r is combinatorially quasiprimitive graph then the auto-
morphism group of r is quasiprimitive. This gives a partial answer on the
Question 7.1(a) formulated in {5].

The paper is organized as follows. Next section contains preliminaries
and formulation of main results. In Section 3 we prove some results about
homogeneous coherent configurations that we need in the rest of the paper.
We think that a part of these results are of independent interest. The last
Section contains the proof of the main result formulated in Section 2.

2 Preliminaries

In this note a graph with a node set  means an arbitrary binary relation
ron Q. If r,8 C 02, then rs will denote the usual product of relations. If
weNandr C N2 thenw” :={f€Q|w,B)er}. EHC 29%9  then
we write w¥ for Upegw®. As usual r,r C Q2 is said to be regular if |"| is
constant for all w € Q. In this case we shall write |r| for |w"|. A permutation
g € Sym(£) will be always treated as a binary relation on (.

A graph (Q,r) is called vertex-transitive if its automorphism group
Aut(r) is transitive on €. Following [5] we shall say that a graph (,7)
is G-transitive, G < Aut(r) if G acts transitively on Q. i G acts transi-
tively on r, then r is said to be (G, 1)-arc transitive. If N 4 G, then the
orbits of N form a G-invariant partition Q/N of Q. The quotient graph
#N = {(wV,wd) | (w1, ws) € r} is called a normal quotient of (Q,r) [5].
It inherits many of the properties of the original graph. If each normal sub-
group of G is transitive, then G and r are called quasiprimitive [5]. However,
it might happen that a (G,1)-arc transitive quasiprimitive graph still has
a "good” quotient. Let us say that a partition P of  is r-normal if the
equivalence relation e corresponding to P satisfies the equality er = re. If
r is a G-transitive graph, then the partition induced by a normal subgroup
of G is always normal (Section 3). The converse is not true, in general.
For example, the symmetric group Szm acting on the set of all m-element
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subsets of {1, 2, ...,2m} is quasiprimitive, but there exists a partition which
is normal with respect to each of Son-transitive graphs.

We shall say that a (G, 1)-arc transitive graph r is (G, n)-primitive if
there is no non-trivial G-invariant r-normal equivalence relation. Since the
partition induced by an intransitive action of a normal subgroup of G is al-
ways an r-normal partition, each (G, n)-primitive graph is G-quasiprimitive.
The most important property of (G, n)-primitive graphs is formulated be-
low. Its proof is so easy that we omit it here.

Proposition 2.1 Let (,r) be a (G,n)-primitive graph. Then (Q,7) is an
(M, n)-primitive graph for each M,G < M < Aut(r).

Thus if r is a G-quasiprimitive graph which is also (G,n)-primitive then r
is M-quasiprimitive for each overgroup M,G < M < Aut(r). It is worth
to mention that in general a G-quasiprimitive graph may be not a M-
quasiprimitive for some G < M < Aut(r) [5].

It turns out that the r-normal partitions are also good enough for taking
quotients of 7. To formulate the corresponding claim we need to remind
some definitions.

Let (€, 7) be a graph and let e C ©? be an equivalence relation on 2.
The quotient graph r/¢ is a graph with the vertex set /e := {w* |w € Q}
and the edge set {(a®, 8°)|(a,B8) € r}. We shall say that r is a multzcover
of r®/¢ if for each edge (a°, ﬂ‘) of /¢ the intersections w™ N 8¢, 7" Na®
are non-empty for each w € a%,7n € B¢. A graph r is said to be a cover of
its quotient /¢ if |w™ N B¢| = " ‘Nat|=1foreachw € af,p € f¢. If r
is symmetric, then these definitions coincides with the definitions of cover
and multicover given in [5].

The result below is an analogue of Theorem 4.1 [5].

Theorem 2.2 Let (2,7) be a (G,1)-transitive connected graph and e be
a G-invariant non-trivial r-normal equivalence relation on Q. Denote by
G < Sym(Q/e) the permutation group induced by the action of G on the
equivalence classes of e; denote by @ € Q/e the equivalence class of o € Q2.

Then the quotient graph 7 := r¥/¢ is (G’ 1)-arc transitive graph of valency
k/l where k is the valency of r and | = |w" Nw®|, and r is a multicover of
ri¥/e. Moreover if /¢ is not a directed full cycle on /e then

(i) If r is G-locally primitive, then T is a cover of r/e and (Go)* i
transitively embedded into (Ga)"’ and ¢ is G-locally primitive.

(ii) Ifr is (G, k)-transitive, 2 < k, then r¥/¢ is (G, k)-transitive and r is
a cover of r¥/¢, je.,l=1.
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Given a (G, 1)-arc transitive graph (f2,r), one can associate a homoge-
neous coherent configuration 2—orb(G; ) by taking the set of all 2-orbits
(orbitals) of (G; ). Since G acts arc transitively on r, r € 2—orb(G; ).

In the next section we study the situation, when r is a basic relation of
a homogeneous coherent configuration ({2, R).

3 Homogeneous coherent configurations.

Let (2, R) be a homogeneous coherent configuration [3]. We write Rel(R)
for the set of all binary relations on 2 which may be represented as a
union of basic relations of (Q,R). For each S C R, we write |S| for the
sum ) . s|s|- For arbitrary ring F, we denote by FQ the F-module of all
F-valued functions on Q. We write a function f € F® as a formal sum
Yoo fww. If A C Q, then A+ =3, & € FQ denotes the characteristic
function of A. For each g € Rel(R), we denote by A(g) its adjacency matrix.
For each pair A,B of (1 x (-matrices, we write (4, B) for the following
expression @y 3, 5)en2 AasBag-

Proposition 3.1 Let e € Rel(R) be an egusvalence relation. Then for each
7 € R there exist I(r,e) € N such that

(i) A(r)A(e) = U(r,e)A(re), A(e)A(r) = I(rt, ) Aler);
(i) Vorwen W™ Nwe #0= W'Nwé| =1(r,e));
(i) i(r,e) Ik
(iv) Irllel = i(r, e)lre] = U(r*, e)lerk;

v)
erellre N erfi(r, e)i(rt, e) = [ePir?;
(v 2
ooy = Ll
I(r,e)l(rt,e)frener|
Proof.

(i) It follows from Proposition 3, page 51,[8] that A(r)A(e) = mA(re)
for a suitable m € R. Since all structure constants of the Bose-Mesner
algebra of R are non-negative integers, m € N. By setting I(r,e) := m we
obtain A(r)A(e) = I(r,e)A(re). Now A(e)A(r) = I(rt,e)A(er) is a direct
consequence of the equality A(rt)A(e) = I(r,e) A(rle).

(ii) Let o', w be arbitrary points that satisfy w'"Nw® # 0. Then |w'™Nw*®|
is equal to the coefcient of E, ,, in the product A(r)A(e*) = A(r)A(e), i.e.,
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|w'™ Nw?| = I(r, e), as desired (here E, g is the matrix unit corresponding
to the pair o, §).

(iii) Let A C © intersect each e-class by one element, ie., A is a
transversal of the partition Q/e. Fix a point w € Q and consider the
set A’ = {6 € A|d* Nw" # 0}. Then w" = Usear(w™ N §°), implying
Irl = || = |A"Ji(r, €).

Part (iv) follows if we apply | | to the both sides of (i).

(v) It follows from Proposition 3, page 51,(8] that A(e)A(r)A(e) =

AA(ere) for a suitable A € N. Hence Mere] = |e]jr{le]-
Since A(r) appears in A(ere) with coefficient 1,

1

A= 2 (A(e)A(r)Ale), A(r) = =

Il
By part (i),
(A(r)A(e), A(e)A(r)) = I(r, e)I(r*,e){A(re), Aler)) = I(r, e)l(r, €)lre Ner],

(Ale)A(r), A(r) Ale))-

implying
_(r,e)l(rt,e)lrener]

Irl
Now part (v) is a direct consequence of this equality.
(vi) According to [9] [r*/¢| = |9|§f-| Now part (v) of our claim implies
the desired result. O

Remark 1. More general version of part (i) was proved in [1] for
generalized table algebras.

Remark 2. In general I(r,e) # I(r, e).

A

Proposition 3.2 Let e € Rel(R) be an equivalence relation Then for each
T € R the following are equivalent:

(i) re=er;

(ii) A(r)A(e) = A(e)A(r);
(iii) Q/e is an eguitable partition with respect to r and rt.
(iv) r is @ multicover of r%/¢.

Proof. (i) = (ii). By Proposition 3.1 A(r)A(e) = I(r,e)A(re), A(e) A(r) =
I(rt,e)A(er) where

_Irllel 0 oy _ Irllel
I(T,e) - |T€| ’l(r 76) - Ierl .
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Since re = er, l(r,e) = I(r*, €), and, consequently, A(r)A(e) = A(e)A(r).

(ii)=> (iii) Since A(e) commutes with A(r), Im(A(e)) is an A(r)-invariant
subspace. But Im(A(e)) = Span{II*)neqse. Thus Span(llt)neq/. is an
A(r)-invariant subspace, which is one of the equivalent definitions of equi-
table partition. Applying ¢ to the both parts of (i) we obtain A(e)A(r*) =
A(rt)A(e). Hence /e is also an rt-equitable partition.

(iii)=> (i) Let (a,7) € er. Then there exists 8 € a® such that (8,7) € r.
So BTN+t # @. Since Q/e is r-equitable and (a,8) € e, a" N y° # B.
Hence there exists 6 € Q such that (o, 8) € r and (,7) € e which implies
(a,7) € re. Thus er C re.

Since Q/e is rt-equitable, er* C rte. Applying ! to the both sides of the
inclusion we obtain re C er, and, therefore er = re.

The equivalence (i)<>(iv) follows directly from the definition of a mul-
ticover. O

As a direct consequence we obtain the following

Proposition 3.3 Let e € Rel(R) be an equivalence relation. Then e is
R-normal if and only if Q/e is an R-eguitable partition of 2.

In what follows we call an equivalence relation e € Rel(R) r-normal, r €
R if re = er. There are two trivial r-normal equivalence relations: idp and
Q2. We shall say that r is (R, n)-primitive if idg, 2 are the only r-normal
equivalence relations. If an equivalence relation e € Rel(R) is r-normal
for every r € R, then e is called R-normal (see [9]). The homogeneous
coherent configuration (£, R) will be called n-primitive, if idg, 2? are the
only normal equivalence relations in Rel(R).

Since connected components of a basic graph r € R always form an
r,rt-equitable partition of {2, each (R,n)-primitive basic graph is always
connected. In order to formulate next proposition we remind that an m-
arc of graph r C Q2 is an (m + 1)-tuple (wo, w1, -..,wm) of points of 2 such
that (w;,wi41) € r for each § =0,...,m~1 and wi—1 # Wit1,4=0,...,m—2
(the latter condition always holds of r is a non-symmetric basic graph of a
homogeneous coherent configuration).

Proposition 3.4 Let e € Rel(R) be a r-normal equivalence relation. Then
for each m-arc (Ao, ...,Am), A; € Qe of r*/¢ there exists an m-arc wy, ..., wm
of r such that A; =wf,i=0,...,m.

Proof. Induction on m. If m = 1 then our claim follows directly from the
definition. Assume now that m > 1. By induction hypothesis there exists an
(m—1)-arc wy, ...,wm—1 of r such that wf = A;,0 < i < m—1. By definition
of r®/¢ there exist f; € Am—1,02 € Ay, such that (8;,82) € r. Since /e
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is an equitable partition of (2, there exists wp, € A,; with (Wp—1,wn) € .
Since A;_; # Aip1, wi—1 # wiy1 implying that (wp, ...,wy,) is an m-arc of
T O

Proposition 3.5 Let e € Rel(R) be an equivalence relation. Then

0/4

() @ c W)

(ii) Ife is r-normal, then (w™)* = (W°)™™'" and |r%/¢| = L.

Proof. (i) f A € (w")¢, then A = a® for some a € w". Therefore
(w, @) € r implying (w*,af) € r¥/¢. Hence A = a® € (w®)™" ", as desired.

(ii) Take an arbitrary A € (w‘)'n’“. Then A = af for some a €
and (w®,a®) € r%/¢. Therefore there exist w' € w®, o/ € af such that
(w',a') € r. Since e is r-normal, there exists o’ € o/® = a® such that
(w,a’") € r. Therefore A = o’ = "¢ € (W")°.

The equality |r%/¢| = |r|/I(r,e) follows immediately from part (vi) of
Proposition 3.1. O

4 Proof of the main result.

We recall some standard definitions from permutation group theory. Let
G < Sym(R) be a transitive permutation group. The orbits of G in its
natural action on 2 will be called 2-orbits [7]. The set of 2-orbits of the
permutation group G will be denoted by 2—orb(G; Q). It is well known fact
that 2—orb(G; ) is a homogeneous coherent configuration on .

To make our notation more transparent we fix an arbitrary G-invariant
equivalence relation e C Q2 and set @ := w®,Q := Q/e. For each f C 02 we
set f == {(@ B)| (e, ﬂ) €flLKge Sym(ﬂ) is a permutation that leaves
/e invariant, then § € Sym(ﬂ) is a permutation which acts on © by the
formula: A7 := A9, A € Q. It follows directly from the definition that
wI =f.

Fix an arbitrary point w € Q. For each f € Rel(2—orb(G;Q)) we set
Gu(f) = {9 € G|(w,w?) € f}. For each 2-orbit s of G, the set G, (s)
is a double coset of G,,. Moreover, the correspondence s ++ G,(s),s €
2-orb(G; Q) is a bijection between the 2-orbits of G and the G,-double
cosets of G. This bijection is well-known in the theory of permutation
groups, see, for example, [7].

A direct check shows that for each r, 38 € Rel(2—orb(G; 2)) the following
properties hold:

Gu(rUs) =G, (r)UG,(s) 1)

Gu(rs) = Gu(r)Gu(s) )
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The latter equality shows that ¢ € Rel(2—orb(G;€)) is an equivalence
relation if and only if G, (€) is an overgroup of G,,. As a direct consequence
of the definition of being r-normal we obtain the following

Theorem 4.1 Let e be a G-invariant equivalence relation and r be an ar-
bitrary 2-orbit of G. Denote H := G, (e),GugGw := Gu(r). Then

(i) e is r-normal if and only if G,gH = HgG,,;

(i) e is 2—orb(G;Q)-normal if and only if the equdlity K2G, = G, zK
holds for each z € G.

Let N < Aut(r) be an arbitrary subgroup normalized by G, i.e., [N,G] <
N. Then the equivalence relation ey = {(a, 8) | @ € AV} is G-invariant. We
claim that rey = enr. Indeed, if (a,7) € ren then (o, 8) € 7, (8,7) Een
for a suitable B € Q. Therefore v = 8" for some n € N. Since n € Aut(r),
(o™, B") = (a",4) € r which implies (a,7) € exr. Thus rey C enr.
Analogously, enr C rey. Combining altogether we obtain

TEN =enT, @)
as claimed. If N < G, then we have a stronger result

Corollary 4.2 Let N < G. Then ey is a 2—orb(G; )-normal equivalence
relation of G.

Proof is a direct consequence of (3).

Not every r-normal equivalence relation is induced by a subgroup N <
Aut(r) normalized by G. Nevertheless in some cases we can show that an
equivalence relation is induced by some G-normalized subgroup of Aut(r).
In order to formulate the result we recall the definition of the thin radical
of a coherent configuration [9].

Let R C 2%%9 be a homogeneous coherent configuration. A relation
8 € R is called thin (see [9]) if |s] = 1, i.e., 8 i8 a permutation on . The
set of all thin elements of R form a semiregular subgroup of Sym(f2) which
is called the thin radical of R and is denoted as Oy (R)[9]. Following [9] we
set Co,(r)(r) := {8 € Og(R) | sr = rs}. It is easy to see that Co,(r)(r) is
a semiregular subgroup of Sym(Q). Therefore ec,,, () i8 an equivalence
relation on Q. It follows direclty from the definition that ec,, 4, (r) i8 an
r-normal equivalence relation.

Proposition 4.3 Letr be a (G, 1)-transitive graph and R := 2—orb(G; Q).
Then

(1) Cau(n(G) = Coym)(r);
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(ii) €Co,n)(r) 19 an r-normal equivalence relation induced by the subgroup
Cau(r)(G);

(iii) For each w € Q, Cau(r)(G) 2 F/G,, where F = {h € Ne(Gu)|gh €
G.9Gu}.

Proof. (i) Let 5 € Cau(r)(G). Then s is G-invariant binary relation,
and, therefore, s € Rel(R). Since s is of valency one, 8 € R. Therefore
8 € Op(R). Together with s € Aut(r) we obtain sr = rs which, in turn,
implies s € COa(R) (r).

Vice versa, if s € Co,(r)(r) then sr = rs or, equivalently, s € Aut(r).
Since s is a G-invariant relation, s centralizes G, ie., 8 € Can(r)(G), as
desired.

Part (ii) is a direct consequence of (i) and (3).

(ii) Fix an arbitrary w € Q. It is well-known that s € Oy(R) &
Gu(8) C Ng(G.). So the mapping s ~ G.(8),8 € Oy(R) is an isomor-
phism between Oy(R) and Ng(G,)/G.. Now the claim follows directly
from the definition of Cou(r)(r)- a

We shall say that the permutation group (G; Q) is n-primitive if its
2-orbit configuration is n-primitive.

Proof of Theorem 2.2

It is evident that ¥ is (G, 1)-transitive graph. Since e is r-normal, the
valency of ¥ is equal k/I(r,e) (Propositon 3.5 (ii)) where I(r,e) = jw™N
w®|,w € Q. Thus r is a multicover of 7. The graph ¥ is a directed cycle if
and only if [r] = 1, or, equivalently, I(r, e) = |}

Assume now that 7 is not a directed cycle, ie, l(r,e) <]

(i) Fix an arbitrary w € Q. The equivalence relation e N (w")? is G-
invariant. Since G, acts primitively on w", either e N w™)? = (W")? or
eN (w")? = id,~. In the first case we have I(r,e) = k contrary to the
assumption. So we may assume that eN(w”)? = id,,-. In this case ! (re)=1
and, therefore, the valency of 7 is equal to kjie,r is a covering of .

For each g € G, and a € w", we have § € G, @ € @". Thus the
map (g, @) — (g, @) is a morphism between the group actions (G, ;w") and
(@a;u‘f). K g acts trivially on @" then a®¥ = of for every o € @ =
{6¢|8 € w*r}. In particular, a®? = af for every a € w”. Since g € G,
W™ = w" implying (@®* Nw")? = a® Nw" for all a € w". Now combining
a € a®* Nw" with [a®* Nw"| < I(r,e) = 1 we obtain a® Nw" = {a} which, in
turn, implies that for each & € w™, a? = a. Hence g acts trivially on w™ and
the map g*" + 7 is an embedding of G¥" into GZ. The image of this
embedding is transitive, because by Proposition 3.5 (i) o™ = @. Since
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GZ ig an overgroup of Go and G acts primitively on @, the group Gz
also acts primitively.

(ii) Since r is (G, k)-transitive for k > 2, r is also G-locally primitive
and we may apply the previous part of the Theorem. Let now (Ao, ..., Ax)
and (A, ..., A) be two k-arcs of 7. By Proposition 3.4 there exist k-arcs
Of £ (W0, oy W), (Wh, - wy) SUCh that A; =, A} = w}. Now it is easy to
see that _

(Aa, aeey 'k) = (Ao, aeny Ak)g
where ¢ € G is an arbitrary permutation that moves (wf,...,w}) into
(0)0, ey wk)'
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