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Abstract

We investigate those classes K of relational structures closed under
unions that are defined by excluding a fixed class of finite structures.
We characterize such classes and show they contain an infinite {amily
of pairwise non-embeddable members. Ne.c. structures are defined by
certain extension conditions. We construct countable universal structures
in X satisfving only finitely many of the ne.c. extension conditions.

1 Introduction

In this article we investigate classes of combinatorial structures defined by ex-
cluding certain finite structures (or constrained classes) which satisfy the ad-
ditional condition that they are closed under unions. Ve characterize these
classes via graph-theoretic properties of their constraints (see Proposition 16).
and present various constructions possible in such classes (see Sections 4 and
5). N-existentially closed or ne.c. structures are structures satis{fying certain
extension conditions (see Definition 24). Ne.c. graphs are precisely those graphs
satisfying a certain adjacency property which has been actively stuclied by vari-
ous authors (see [1], [3]. [7]). In Section 6 we show that in constrained classes K
closed under unions, for each n > 1 there are countable structures in A that are
ne.c. but not re.c. for some r > n. which embed all countable structures in A’.
We emphasize that the advantage of our method is that all of the results stated
above apply simultaneously in many combinatorial classes such as the classes of
graphs. K,-free graphs. and k-uniform hypergraphs. for & > 3.
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2 Relational Structures

[n this section we introduce the terminology needed to discuss relational struc-

tures. The reader who desires further information on relational structures is
directed to [8].

Definition 1 . A signature s a sel of symbols [ = {R; : i € 1} along
with a function ar : L - M - {0}.

2. An L-structure A is « pair consisting of a nonemply sct dom(A). the
domain of A, and an operation R — R* defined on all R € L so that i
ar(R) = n then R* C dom(A)". RA is the interpretation of It in A.

3. The order of an L-structure A is the cardinality of its domam.

Remark 2 I. We abuse notation and let -\ stand for both a structure and
its domaiu. Furthermore, we suppress mention of the operation R — R4,

2. Given a structure A, @ € A is a finite (ordered) tuple of length o > 1.
The length of @ is written |@|.  Given a finite subset S of . let @ be

an enumeration of S (without repetitions). We will abuse notation and
identify S with a.

Example 3 Let L = {£}, with ar(E) = 2.
A (simple) graph G is an L-structure with EC icreflexive and symuetric,
Anorder P is an L -structure with EP reflexive. anti-symnietric. and transitive.

Example 4 Let L = {R}, ar(R) = k. for some & > 3.
A k-uniform hypergraph ff is an L-structure with R/ interpreted as all
permutations of a set of k-element subsets of .

Definition 5 Let A. B be L-structures for a fived signature |,.
[. 4 homomorphism f from A to B is « map satisfying
@ € R* implies f(@) € RE. (1)

2. f s an embedding if [ is injective and the “implies™ in (1) s replaced by
an “tf and only of . [ is an isomorphism if it is a surjective ¢ mbedding.
We write that A and B are somorphic as A= B

3.5 s a substructure of a structure A if S C A and the melusion map
S < A v an embedding. The substructure relation s written S < b we
wrde S < VL ff S< Vand S # A

4. Lt S C A Then the induced substructure of A on S i symbols v | S,

ts the structure with domain S and relations RS = RAO(S™). for R € 1,
weth ar( ) = n.
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Il L is a signature, and K is a class of L-structures, we always assume that
K is closed under isomorphism. The reason for this restriction is that we are
interested ouly in the isomorphism types of structures.

Definition 6 Let L be a signature.

1. Let K(L) be the class of all L-structurcs.

2. Given K. C K(L). 4 is a K-structure 1of A € K.

3. Given K. C K(L), let Ky, be the class of finite structures in K.

4. Gwen a cardinal A > 0, let K\ be the class of K-structures of order A.
Definition 7 Let A, B € K(L).

L. A= B if there is some embedding from A to B.

2 A~BifdA—< Band B A.

Remark 8 The relation —C K (L) xA'(L) is a pre-order: namely, it is a reflexive
and transitive binary relation. ~ is an equivalence relation; the ~-equivalence
classes of K(L)i, are isomorphism classes of finite K{L)-structures. We will
identify K(L)sin with the isomorphism classes of A(L)gin. With this identifica-
tion, K(L)sin equipped with <& becomes an order.

We will be mainly interested in classes of structures defined by excluding
certain finite L-structures, the so-called constrained classes. The main property
of a constrained class X is that the induced substructures of 4 € A are again
in A Further, we will assume that I is finite. The key effect of the latter
assumption is that for each n € [! — {0}. &', is finite (in fact, |K,| < 277,
where m = |L]. and a is the maximum arity of a symbol of L as the reader can
check).

Definition 9 Let C C K(L)gin, and let K C K(L). Define
K(=C)={Bek: (" B, for cach C' € C}.
K(=C) is called a constrained class with constraints C.

Remark 10 The name “constrained class™ originates from [6]. Given a class
K (=€) we can always assume that C is an anticham: that is, the members of €
are pairwise non-embeddable. If ¢ is an antichain then each M € C is mmnimal:
that is. if ¥ < Al then NV € K ().

Example 11 The class of graphs has as its contraints the looped vertex and
the directed edge. The class of oriented graphs has the looped vertex and the
undirected edge as its constraints. The class of tournaments has as its constraints
those of the class of oriented graphs ax well as an additional constraint. consisting
of two isolated vertices. The class of bipartite graphs has as its constraints those
of the class of graphs and the odd cyeles. The elass of orders has constraints as
pictured in Figure 1.
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Figure 1: Order constraints.

2.1 Unions of structures

In this subsection, we develop machinery to work with unions of structures.

Definition 12 Let A, B be L-structures, so that A and B agree. thal s,
A[ANB=B[4ANB

if ANB #£ 0. The union of A and B, AU B, 1s the L-structurc with domamn
AU B. and with relations R*YB = RAURPB, for R€ L. We also call AU B the
free amalgam of A and B over AN B.

Remark 13 {. Let 4,B,C be L-structures so that ' < L and (" < B. By
taking isomorphic copies we can assume that AN B = (" In this way. it
makes sense to discuss the free amalgam of A and B over (.

2 Let K C A(L). If B.C € K agree, it does not necessarily follow that
BUC € K. For example, let X' be the class of orders. and let 13 and (7 be
two-element chains that agree over the least element of I3 and the greatest
element of (". Then B U C fails to be transitive.

3. Unions of several structures are defined in a similar way as in Definition
12. We therefore omit the details.

We will make frequent use of the following observation about unions that we
call “freeness™.
Freeness: If L and B agree over AN B # §, then in G(AU B). there 15 no edge
between a vertex of A — AN B and a vertex of B — AN 3.

A crucial tool we use is the notion of the graph of a structure.

Definition 14 Let A be an L-structure. Define the graph of A denoted by
G(A). to be the graph with vertices A, and edges {(x.y) 1 x.y € A so thal & £y
and there exists RE€ L and @ C A so that £,y € a and a € R},

Example 15 1. I Aitsell is a graph. then G(A) = A If Vs a directed
graph, then (7(A4) results by forming the symmetric closure of the directed
edges of .

200 A is an order. then G(A) is the comparability graph of A: o £y il
r<yory <o,
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3 A characterization of constrained classes closed
under unions

Constrained classes closed under unions are intimately linked to complete graphs
via the following theorem which characterizes such classes.

Proposition 16 Let X be a constrained L-class. with K = K(=~{M; : i€ I}) so
that the M; are minimal (see Remark 10). Then the following are equivalent.

1. K is closed under untons.
2. For each i € I, G(AM;) is complete.

Coustrained classes of graphs closed under unions include the class of all
graphs, where the minimal constraints have graphs Ky and K» (see Examnple
11}, and for each a > 3, the classes of N,-free graphs, where the minimal
constraints are the minimal constraints of graphs and K,,. Constrained classes
of directed graphs closed under unions include the class of all oriented graphs:
the minimal constraints have graphs Ay and Ay (see Example 11). A complete
oriented graph is precisely a tournament. Hence, the 2% many Henson classes
of digraphs, defined by excluding a countable set of pairwise non-embeddable
tournaments (see [9]) are all closed under unions.

The class of orders is not closed under unions. since in Example 11 above,
there is a minimal constraint of order 3 whose graph is the path with two edges,
Ps. Similarly, the class of tournaments is not closed under unions, since in Ex-
ample 11, K5 is the graph of one of the minimal constraints.

Proor oF ProrosiTION 16. (1 = 2)

We first show that for each i € [. (M) is connected.

Fix 7 € I. If G(AL;) is not connected. then (7{(A;) = AwB. Then M; = (Af; |
A)w(M; | B). However, M; is minimalso Al; [ 4 and M; | B are in A'. This is
a contradiction as K is closed under disjoint unions.

Fix i € I so that G(M) = G(M;) is not complete. Let &,y € M so that 2 is
not adjacent to y in G(Af;) with & and y distinct.

Define A= M [ M—{x,y}. B=M|M-{y}.and C =M [ M - {2}

Then B and C agree: as BN (' = A, it is enough to check that for each
Re L, RBIA = RCIA Byt this is immediate as 3.(" < A,

But then Af = BUC. Since & is not adjacent 1o y in (/(M) this is in turn
equivalent to @ € REVC,

Finally, as G/(Af) is connected, A # #: & and y are not adjacent and so
there must be some path connecting r to y. lence, we may realize M as a free
amalgam of proper substructures 1. /3. and (. all of which are in A" by the
minimality of M. This is a contradiction. as A is closed under union.

(2=1)

If K is not closed under unions, then theee are 13,7 € K so that some minimal
constraint M; of K’ embeds in BU (.

Since B, ¢ € K, AL,N B and M0 are nonempty. Deline Mg = M, [ M NB
and Mo =3, T MO A=8B0C#01et My = M | MO (in this case
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note that Mp and M¢ agree with A ,4). We claim that Mg U M¢ = M;. We use
the fact that AM; < BUC and that for R € L, RBYC = RBURY. For R€ L.
a€eRM ifaisfrom M;NnBand @€ RM or éis from M; NC and G € RV,
In turn, this is equivalent to @ € R*# or a € RM< which itself is equivalent to
(“ E RA'IBU-'"C'

Hence, we can realize M; as the union of Mg and M. But then in G(A/;)
there is no edge from some eclement of Mg — A4 to any element of M — My,
contradicting that G(Af;) is complete. O

4 Antichains in classes closed under unions

Definition 17 Let K be a constrained class of L-structures.
1. K has edges if there is some A € K so that G(A) has edges.

2. If K has edges, suppose A € K is such that G(A) has edges. Assume
that {ay,....an} is a multiset of elements from A so that {a,.... a,}
contains at least two distinct elements and there is some R € L so that
@ =(a,....an) € RY. Then A | {ay.....an} € K is called an edge.
The length of 4 | {ay,....a,} is the number of distinct elements in
{ar,....an}.

3. A class C of K-structures is an antichain if distinct members of C are
pairwise non-embeddable.

The class of chordless cycles form an antichain in the class of graphs. [ our
next. proposition, we generalize this fact to classes closed under unions that have
edges.

Proposition 18 Let K be « constrained class closed under unions thal has
edges. Then Ky;, contains a countably infinite antichain.

ProofF. Fix A an edge, and let ¢. b be distinct elements of . Define a set of
finite L-structures {C{A) : n > 4 and n even} as follows. Fix an even integer
n > 1. List n copies of A as A;,....: A,. By taking isomorphic copies we may
assume that for 1 < i< j<n 4iNdg; #0ifand only if j = 7+ 1. and for
1<i<n~-1

. _ | {a} iliisodd,
A Aigy = { {b} else.

Define Pa(1) to be the free amalgam of A, and Ay over Ay | {a}. Assuine
P, (1) has been defined for n > 2, so that the domain of P,(A) is .L,u---U A,
Define P, 41(A) to be the free amalgam of £,(A) and A, 4y over P, (1) | A, 0
Angr- Then Py(A) € Ky for each n > L.

Let B = Py(A). and assume the copies of 4 forming B are listed as 1}, ..
Let (' = P, _.(). and assume the copies of A forming (' are listed as 3. . . 13, .
By taking isomorphic copies assume that

BOC = (4N BHU (AN Byes),
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where 4, N By = {b}, 42N B, _» = {b}. Define Cu(4) to be the free amalgam of
B and C' over BN C. Then (', (4) € Ayin (note that if A’ is the class of graphs
with 4 = Ry, C,(A4) = C,, the chordless n-cycle).

Claim: {C,(A):n >4 and n even} is an antichain.

To see this fix m and n even positive integers > 4. so that m < n. It is
enough to show that (', () does not embed in Cu(A).

Assume otherwise. List the copies of A in Col(d) as Ay, ..., . and the
copies of A in C'y(A) as B,..... By. Ap must embed as some B; by freeness:
without loss of generality, we niay assume 4, embeds as B). Proceeding induct-
ively, assume A; embeds as B, for cach | < i < Jj. Again by freeness, Aj4) must
embed as B;_, or B;,,. Hence, Aj+1 must embed as Bj4,.

Now, fix £ € A,, — Ay in particular, r is adjacent (in G(C(A)) to some
element of A;. But then the image of & in Ca(4), as an element of B,,. is not
adjacent (in G(C, (1)) to any element of B,. by freeness and choice of m and
n. This is a contradiction. 0

5 Further constructions in classes closed under
union

If A 15 closed under unions another consequence is that we may “delete edges”
from A-structures and remain in A,

Definition 19 Let 4 € A'(L). with |A| > 2. Let €.y € o Define A_py fo b
the L-structure with domain A and for R€ L.

RA-v = {a:a € R and {x.y} ¢ a).

Lemma 20 Let X' C K(L) be a constrained class closed under unions. and let
A€K. Then forall x,ye A. Ay €KX

PROOF. Let B= A A-{y},C=A[A-{x}. Then B and C agree over
Al A—{r,y}. Fucther, BUC = A_.y, as BUC coutains all of the relations of
A except those involving r. y. a

A further consequence of being closed under unions is that. under certain
restrictions on A, the class of graphs of A-structures contains all triangle free-
graphs.

Definition 21 Let K C A'(L). Define
GIN) = {G(A) - A e N},
Definition 22 Let A C A'(1.).

Lo A€EKN s a2edge of A 1s a Livo-element K -stiucture with graph ..
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2. K has a 2-edge if there s some 2-edge A € K.
Let C be the class of all triangle-frec graphs.

Lemma 23 Let K be a constrained class closed under wons that has a 2-edge
A and assume that |K || = 1. Then Crin C G(K).

PROOF. We proceed by induction: the induction hypothesis is that €, C
G(K), forn > 1.

C, = {K)} can be realized as the graph of a one-clement substructure of A.
Ca = {K-_:, K.}, T2 can be realized as the disjoint union of a structure in K
realizing K| with itsell; A2 can be realized by A itsell.

Let B € Cng1- Then B is a l-element extension of a C,-structure B’, which,
by induction. is realized as the graph of a Al-structure (. Let a € B-B'.Bis
determined by the vertices X that a is adjacent to in £3'. Note that if .\ # #, then
X is independent: an edge in .X will result in a triangle in B. Let |[X[=m > L
Let A = {z,y}. Using closure under union in A* we can form a A-structure Sy
with domain XU{z},so that G(Sx) is the rooted tree with m-leaves as in Figure
2.

¢ ¢ o0 o

X

Figure 2: The structure Sy.

Let 4;,....A, be n copies of 4. Let Sx (1) = .1;. Assume Sx(k) € N has
been defined for some | < k < n. Assume, by taking isomorphic copies, that
G(Sx(k)) is a rooted tree with root & and that

Sx(k) O Ay = {2}
Define

Sx(k+1) Sx(k)U Aoy
Define
Sx(n).

As there is ouly one isomorphism type of one-clement structures in AL S
and (' agree; hence, we can fori the free amalgam of Sy and (7 over Sy [ X
= ("] X. Then

Sx

G(Sxu(") = B.

188



a

6 Ne.c. structures
Definition 24 Let K be a constrained class of L-structures. Fiz n > 1.

[. Let A,B,C €KX with A < B and A < (. ( extends A in B if there s
an embedding f of C' into B so that f s the identity on .

o

AEN isne.c.

{a) A embeds each isomorphism type of one element structurc m A

(b) f A< Band A< C with]A|=n,|Cl=n4+1, then CC estends A i
B.

3. A eN s strongly ne.c. if A s ne.c. but there 1s some r > n so that -
is not re.c..

Ne.c. structures have been primarily studied in the class of finite graphs,
where it is known that almost all finite graphs are ne.c. for a fixed n (this
follows from the 0-1 law for graphs proved in [2]). Caccetta et al 3] refer to
such graphs as having property P(n): for any two sets A and B with ANB =
and |A U B| = n there is a vertex u ¢ AU B that is joined to every vertex of
A and not joined to any vertex of B. Very few constructive examples of ne.c.
graphs are known. especially for 1 > 3, the exception being large Paley grapls
(see Theorem 3.1 of [1]).

Definition 25 A € A is universal if A embeds cach countable structure in K.

Remark 26 For K a constrained class of L-structures closed under unions,
there is a unique (up to isomorphism) countable A € K that is ne.c. for all
n > 1. A is universal and is sometimes called the Fraissé limit of X (see [4]
for more on Fraissé limits) or an existentially closed structure in K. The Fraissé
limit of the class of graphs is known as the infinite random graph (see [5] for a
survey of results on the random graph).

In our next theorem we show that in constrained classes K closed under
union. there exist ne.c. structures that are universal but not isomorphic to the
Fraissé limit of A,

Theorem 27 Let K C A(L) be « constrained class closed under unions that
has edges. Then for cach n > L. there is a strongly ne.c. universal structure m

KN:\'
PROOF oF THEOREM 27. By hypothesis, we can choose an edge .\ € A (see

Definition 17).
Fix a € A.
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Define
lao=4[eeXK.

Inductively define
(n+1)a=(n)aWl,.

As K is closed under unions, (n), € A’, for all n > 1.
Note that (1), is an n-element structure so that

(;((")(t) = m

For each n > | we define A, as the union of a clhain of finite A-structures
Mk, k> 0 (and hence, M,, € Ky, as K is constrained).
Let
M® = (n+ ).

Assume that for £ > 0, M* € K yin with MY a substructure of MX.

Define MX*! as follows. List S < MK so that MPNS £ ¢ and |b| < n. as
S1,.. .S list S < ME sothat MINS =@ and [S] < k+1, as Setle-er Su.

For each 1 < p < », list the |aomorplmm types of extensions of S, 10 a
lC,.,.-structure of order <n+lasT,.. .. Tj (there are only finitely many as L
is finite). For each r+41 < ¢ < u, list t.he 1somorplu>m types of extensions of S,
to a Ky;,-structure of order <k +2as Ty'..... T

For 1 < a < u, form MF , as follows. [f 1 < p < »r. freely amalgamate
Ty,....T; and \I,, over S, to obtain ’ll‘,, € Npin. Ifr+1 < g < u, freely
amalgamate T1',..., T}’ and AT¥ over S, to obtain M¥ 4 €EKgin.

Freely amalgamat.e Mk, . ... Y over ME to obtain (ME+Y) € Kyp.

Form M}*' € Ky, by taking the disjoint union of (M¥*+1)! with all iso-
morphism types of Ky 4 -structures (there are only finitely many).

Define
My = | ).

k>0

Then M, € K and by construction. M, is ne.c. (every one-element extension
of a K,,-structure that embeds in A, is realized in M,). M, | M, - v\[, is ke.c.
for all & > 1 (each finite extension of a substructure of M, | Al, — M2 is realized
in M, [ My, — M2); by Remark 26, M,, | M, — Al is universal, and hence, Al,
is universal.

We now form an extension (' € Ay, of MY that is not realized in Af,,.

Let Ay..... 4,41 be n+ | copies of 1.

Let ¢’ € K'jin be the free amalgamof A,...... Togrover A A= {a}.

It can be arranged that C" > M?. See Figure 3. Observe that each vertex of
C — M) is adjacent with each vertex of M in (;((').

We show that C is not realized in M, by showing that €' is not realized in
M} for all k > 0. C is not realized in MY as |('] > |MY]. Assume (' is not
realized in M¥, for a fixed k > 0.

n:

(1) C is not realized  (M¥+1) — Ak
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Figure 3: The extension C of M?.

To see this. we must check two cases.
Case 1: (' is realized as an extension T of S < M¥ so that M®N S # §.

[n this case |S| < n and so by freeness each vertex of T in G(A,) is adjacent
to at most n of the vertices of M2, which is contrary to the choice of (.

Case 2: (" is realized as an extension T of § < M¥ so that M°N S = .

In this case, by freeness. each vertex of T in G(M,) is adjacent to none of
the vertices of MY,

(2) ' is not realized in MF+1 — (afk+1y

(2) follows as no element of MA*+! — (A75+') is adjacent. (in the graph of
ME+1) to an element of M0

(1) and (2) together show that C' is not realized in Af,, so that M, is not
(lAl+n = lec (as [C]=|A| = L+ n+ 1 = |A| + n). a

The results of Theorem 27 are in stark contrast to some other known results
on ne.c. structures for constrained classes not closed under union. In particular,
it was shown in [10] that every de.c. order is ne.c. for all n > 1. It is easy lo
show that every 2e.c. linear order is dense and without endpoints, from which
it follows that every countable 2e.c. linear order is ne.c., for all n > 2.
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