## $S_p$ -Sets with Multiplier p

Bernt Lindström

Department of Mathematics
Royal Institute of Technology
S-100 44 Stockholm
Sweden

## Dedicated to Hans-Olov Zetterström on his 65th Birthday

ABSTRACT. An  $S_h$ -set (mod m) is a set S of integers such that the sums  $a_1 + a_2 + \cdots + a_h$  of elements  $a_1 \leq a_2 \leq \cdots \leq a_h$  from S are distinct (mod m). A multiplier  $\mu$  of S is an integer such that  $\mu S \equiv S \pmod{m}$ .

We observe that  $\mu \geq h$  is necessary for a multiplier  $\mu > 1$  and prove that equality is possible at least when h = p is a prime (Theorem).

We observe that  $\mu \geq h$  is necessary when  $\mu > 1$  is multiplier of a  $S_h$ -set S.

For, assume that  $\mu < h$  and  $a \in S$ , hence  $\mu a, \mu^2 a \in S$ . Then we have

$$\mu a + \dots + \mu a(h \text{ terms}) = a + \dots + a(\mu \text{ terms}) + \mu a + \dots$$
  
+  $\mu a(h - \mu - 1 \text{ terms}) + \mu^2 a$ 

and S is not an  $S_h$ -set.

I will prove that the equality  $\mu = h$  is possible (Theorem 1).

Consider the equation  $X^q = X + 1$  over GF(p),  $q = p^k$ . We find by induction over  $v \ge 1$  for any root X

$$X^{q^{v}} = X + v. (1)$$

When v = p we have  $X^{q^p} = X$  and X belongs to  $GF(q^p)$ . Let  $\theta$  be a primitive element in this field and define

$$S(q) = \{a: 1 \le a < q^p - 1, \theta^{aq} = \theta^a + 1\}$$
 (2)

(i.e.,  $\theta^a$ ,  $a \in S(q)$ , are the roots of  $X^q - X - 1$ ).

Observe that  $a \in S(q)$  implies  $pa \in S(q) \pmod{q^p-1}$ , i.e., p is multiplier of S(q), since  $\theta^{aqp} = \theta^{ap} + 1$ .

Theorem 1. S(q) is a  $S_p$ -set  $\pmod{q^p-1}$  of size q with multiplier p.

Proof: It remains to prove that S(q) is an  $S_p$ -set. Let  $a_1,\ldots,a_p\in S(q)$  and write  $X_i=\theta^{a_i}$   $(i=1,\ldots,p)$ . I will prove that the product  $Y_p=X_1\ldots X_p=\theta^{a_1+\cdots+a_p}$  determines  $\{X_1,\ldots,X_p\}$  uniquely. Write

$$\prod_{i=1}^{p} (X - X_i) = X^p - Y_1 X^{p-1} + \dots - Y_p, \tag{3}$$

i.e.,  $Y_1, \ldots, Y_p$  are the basic symmetric functions of  $X_1, \ldots, X_p$ . We have then, by (1) and (3), for  $v \ge 1$ 

$$Y_p^{q^v} = \prod_{i=1}^p X_i^{q^v} = \prod_{i=1}^p (X_i + v) = v^p + Y_1 v^{p-1} + \dots + Y_p.$$

Hence, for v = 1, 2, ..., p - 1,

$$Y_1 v^{p-1} + Y_2 v^{p-2} + \dots + Y_{p-1} v = Y_p^{q^v} - Y_p - v^p.$$
 (4)

This is a linear system of equations in  $Y_1, \ldots, Y_{p-1}$  the determinant (almost a "Vandermonde") of which is  $\pm (p-1)!(p-2)!\ldots !\neq 0$  in GF(p). It follows that  $Y_1, Y_2, \ldots, Y_{p-1}$  are uniquely determined by  $Y_p = X_1X_2 \ldots X_p$ . We conclude that  $a_1 + \cdots + a_p$  determines  $\{a_1, a_2, \ldots, a_p\}$  (mod  $q^p - 1$ ), which was to be proved.

## References

- [1] R.C. Bose and S. Chowla, Theorems in the additive theory of numbers, Comment. Math. Helv. 37 (1962-63), 141-147.
- [2] B. Lindström, A translate of Bose-Chowla B<sub>2</sub>-sets, Studia Scient. Math. Hungarica (to appear).
- [3] A.M. Odlyzko and W.D. Smith, Nonabelian sets with distinct k-sums, Discrete Math. 146 (1995), 169-177.