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In this paper, we obtain critical sets for the general dihedral group, but we are not able to de-
cide whether they are minimal. We also show the existence of a weakly completable critical
set in the latin square based on the dihedral group of order six. We believe this to be the
smallest group based square to have such a set.

Introduction

A latin square of order n is an nxn square consisting of elements chosen from a
set of size n, such that no element appears twice in any one row or column. Since
this property is satisfied by the multiplication table of any group, we can form a
latin square for any group.

We describe elements of a latin square by means of triples (i,j,k). The notation
means that element k occurs in row £, column j.

A latin subsquare is a subset of the triples of a latin square which themselves
form a latin square.

A partial latin square is a latin square with some triples left out.

A uniquely completable (UC) set is a set of triples which is a subset of the triples
of only one latin square.
A critical set is a UC set which has the property that no proper subset of it is UC.

A minimal critical set for a particular latin square is a critical set which contains
the least possible number of triples for that square.

When attempting to complete a square, we say that a triple e=(r,c,s) is forced in
the set S if

either (1) Vit # s5,3p such that (p,c,7) € S or (r, p.t)ES

or (2) Vt+#c,3p suchthat (p,z,5) € Sor (r.t,p)e s

or  (3) Ve#r,3psuchthat (t,p,s)eSor (t,c,p)e S

A UC set C is called strong if we can define a sequence of sets of triples

C= F1 <:F2 Cvvrrnrenn c Fk = L, such that each triple e in Fi+l _Fi is forced
inFi.

A strong UC set is super-strong if each triple in this sequence is forced only by
virtue of property (1) in the above definition of forcing.
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Note that the authors of [1] have used the terms semi-strong and strong in place
of strong and super-strong as defined above. However, for consistency with pre-
vious papers we retain our earlier terminology.

A UC set which is not strong is weak.
In particular, a critical set may be weak, strong or super-strong.

A partial latin square which has m filled squares is said to be of size m. If the tri-
ples that make up the square are denoted (r;, ¢i, 5), 1<i<m, then the set of
pairs (r;, ¢;) determines the shape of the square.

Two partial latin squares P; and P; of the same size and shape are mutually bal-
anced if the entries of the cells of each row (and column) of P; are the same as
those in the corresponding row (and column) of P; and they are disjoint if
PNP=d.

A critical partial latin square (CPLS) for a latin square L is a partial latin square
P of L which has a mutually balanced and disjoint partner.

An intercalate is a latin subsquare consisting of four elements.

To prove that a set S of triples is critical, we must prove that it is UC and that no
proper subset of it is UC.

To prove that no proper subset is UC, it is enough to prove that
S —{t} is not UC Vt € §, since any proper subset of S must be a subset of one of
these sets. The easiest way to show that a set T of triples is not UC is to exhibit a
CPLS P such that PN T =@ . Intercalates are often the easiest CPLSs to find.

Many latin squares are constructed from groups by using the multiplication table
for the group. For the group Z,, Nelder [9] found two UC sets, which he conjec-
tured to be critical. The larger set, which he conjectured to be a maximal critical

set for Zy, is described later. The smaller is of size ‘_n‘ /4_| We shall denote it by

Q. An example for n=6 is shown in Figure 1. Nelder conjectured that Q is a
minimal critical set for Z,. For n even, Curran and van Rees (4] showed it to be
critical. Cooper, Donovan and Seberry [3] showed it to be minimal for n even,
and proved criticality for n odd. It is not known whether  is minimal for n odd.
However, Q is in fact super-strong, and hence strong, and it has been proved in

[1] that any strong critical set has size at least l_n2 /4J, so § is a minimal strong
set. This does not rule out the existence of a smaller critical set which is weak.

However, one of the present authors has conjectured that no weak critical sets
exist for latin squares based on the cyclic group (see [6]).

Minimal critical sets have been found for all latin squares of order <5 (see [3]).
A critical set of size 20 has been found for the Quaternion Group (see [2]), and a
UC set of size 25 has been found for Z; X Zz X Z, (for the details see [6] and [8]),
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but so far as the authors are aware, no results valid for all orders, other than those
for the cyclic group mentioned above, have hitherto been published.

In this paper, we obtain critical sets for the general dihedral group, but we are not
able to decide whether they are minimal. We also obtain a weak critical set for
the latin square based on Djs. It is known that weak critical sets do not exist in
latin squares of order 4 or less (see [7D) and so, in view of the conjecture about
weak critical sets for cyclic groups mentioned above, we believe this to be the
smallest group based square for which such a weak critical set exists. However,
for a particular latin square of order 5 which is not isotopic to a group square, a
weak critical set has been found (see [2]).
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Figure 1
The Dihedral Group

The dihedral group D, is defined by (a,b:a" =eb’=e,ab= ba""). We can re-

label the elements as integers from O to 2n-1, and obtain a latin square from the
group table. The latin square derived from the group D, will also be known as
D,.

From a preliminary investigation, we determined several critical sets for D3. Two
of these are illustrated in Figure 2 and 4. The set (of 13 elements) shown in Fig-
ure 2 is interesting because it is a weak critical set (we shall prove this statement
later in the paper). As we remarked in the Introduction, we conjecture that Ds is
the smallest group-based latin square in which weakly completable critical sets
exist.
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Figure 2

Remark: We are indebted to the referee for pointing out that a slightly medified
version of Figure 2 can be constructed which provides a weak critical set of D,
with one less element. With the referee’s permission, we exhibit this set in Fig-
ure 3.
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We managed to find a set which is critical for all values of n, based on the set
shown in Figure 4. Although the set shown in Figure 4 does not generalise to
higher orders in itself, a slightly modified version (which has 12 elements for the
case of D3 and which we illustrate in Figure 5 for the case of Ds) is uniquely
completable for all values of n as we shall prove in Theorem 1 below. It is also
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critical (see Theorem 2 below) but we have been unable to determine whether it
is a minimal critical set.
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Figure §
@0,i): 1<ign-1
G, j, i+j-n): 2<ignl, ni+l<j<n-1
@, j+n, j-i+n): 0<igsn2, +l1<j<n-l
(i+n, j, i+j): 1£ign2, nisjs<n-l
(2n-1, 0, 2n-1)
2n-1,1,n)

(i+n, j+n, jimodn): 0<i<n2, O0<j<i
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Theorem 1

The set C listed above, of which Figure 5 is an example, is uniquely completable
for all values of n.

Proof

There must be a 0 somewhere in column 0. It cannot be in the bottom row, be-
cause this position is already filled. It cannot be anywhere else in the bottom
half, because these rows already contain 0’s. It must therefore be in row 0, be-
cause all other positions are filled.

We now use induction to fill the main diagonal of the top-right hand quarter of
the square with n’s.

Row 0 must contain an n, which cannot be in the first half of the row because the
first column is now filled and the other columns contain n’s. It cannot be any-
where in the second half except column n, because the positions are filled, so it
must be in column n. Now assume that it is possible to insert the #’s up to and
including row r-1. There must be an n somewhere in row r. It cannot be any-
where in the first half of the row, because the first column is filled and all the
other columns already contain n’s. From the induction assumption, all columns
from n to n+r-1 already contain n’s. All the columns from n+r+1 to 2n-1 are al-
ready filled, so column n+r must contain the 2. This completes the induction ar-
gument.

All the blank spaces left in the top-right hand quarter cannot contain any of the
elements from O to n-1, because these are elsewhere in the corresponding rows or
columns. It is therefore easy to complete the top right hand quarter square. We
can then easily complete each of the other quarters.

Lemma 1

If a latin square L has a latin subsquare S, then if SN Cis not UC in S, C will
notbe UCin L.

Proof

Any CPLS found in the small square will be valid as a CPLS in the larger square.
Theorem 2

The set C (of which Figure 5 is an example) is critical for all values of n.

Proof

We have already shown C to be UC in Theorem 1. We must therefore prove that
no proper subset of C is UC.

It suffices to prove that Vz € C,C—{t}is not UC. To prove this, we find CPLSs
P VteCsuchthat PNC={t}.
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We can divide D, into quarters, and each quarter will be a latin subsquare of D,.
Let us call the quarters ), Sz, S3 and S, with “1” referring to the top-left quarter,
2" referring to the top-right quarter, “3” referring to the bottom-left quarter, and
“4” referring to the bottom-right quarter. Let us denote CN S, by C,.

Nelder conjectured in [9] that for the latin square which represents the cyclic
group Z,, the set M consisting of the upper left triangle entries bounded by, but
not including, the main right to left diagonal, is critical (this is the conjectured
maximal critical set referred to earlier). Donovan and Cooper have shown in [5]
that this set is critical by giving a method for generating CPLSs for every ele-
ment of the set.

The individual sets S), S, S3 and S, are isomorphic to Cayley tables of the cyclic
group, so we can make use of the CPLSs given by Donovan and Cooper if they
are suitably transformed.

For h#3, we can use the following mappings to transform Z, onto S,. These
mappings also transform M into C,.

H (i’j'(i"' j) modn) —

Pt

(n-1-i, (n-f) mod n, (-i-j-1) mod n)

2 (i, 2n-14j, n+ (-1-I-)) mod n)

3  (2n-1-i, n-1-j, n-+(-2-i-j) mod n)

4  (n+ (-2-i) mod n, n+j, (i+j+2) mod n)

In order to show that C, (h=1,2,3,4) is part of a critical set for D,, we have to
produce, for each triple of C,, a CPLS which intersects C, in that triple and in no
other triple of C, (or C).

Since, for h#3, 3 a mapping of Z, onto S, which maps M onto C,, the images in §,
of the CPLS’s which show that M is critical in Z, may be used to show that C, is
critical in S,

For h=3, 3 a mapping of Z, onto S, which maps those cells of M which are not in
the first row of Z, onto those cells of C; which are not in the last row of ;. Thus
the CPLS’s which cover those cells of M which are not in the first row of Z, are
transformed to CPLS’s which cover the cells of C, which are not in the last row
of S;. Also, a CPLS can intersect M in only one place. So, since only one cell of
the first row of Z, does not belong to M and since a CPLS must have either zero
or at least two cells in any particular row of Z,, none of the transformed CPLS’s
has any entry in the last row of C,. (An example of a CPLS obtained from Dono-
van and Cooper’s paper and then transformed in the way described is given in
Figure 6 (for the case n=5). The CPLS is shown in bold and the set C; is shown
in italics.)
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It remains to provide a CPLS in D, which would be uncovered if the cell
(2n-1,0,2n-1) of C; were omitted and also one which would be uncovered if the
cell (2n-1,1,n) of C3 were omitted. In the first case, the required CPLS is that
consisting of all the cells of S, whose entries are 2n-1 and 2n-2. In the second
case, the required CPLS is the intercalate of D, whose cells are (0,1,1), (O,n,n),
(2n-1,1,n) and (2n-1,n,1).

This completes the proof that C is a critical set for D,.
Weak Critical Sets

With regard to our second claim, it is easy to see that the set shown in Figure 2,
which we will denote by W, is weak because when we consider F;=W, we see
that there are no forced triples. It remains to show that it is UC. Note first that
the cell (3,0) can be filled with 1 or 3. Let us first try to complete W by defining
F, = F,u(3,0,1). We find that

F, = F, u{(04)%, (LL)S, (33,3)°, (34,0)° }
F=F,u{(034)°, 230", (444)°, 54.2)°, (5500}
F{ = F,U{(055%, (120)°, (1L54)°, (212)°, (4,10)%, (50,5° }

The superscripts after each element refer to the way in which each element is
forced. ‘S’ indicates that the given symbol is the only possibility for this
row/column combination, ‘R’ indicates that the given row is the only possibility
for this column/symbol combination, and ‘C’ indicates that the given column is
the only possibility for this row/symbol combination.

After constructing F;, we have the situation shown in Figure 6. It is impossible

to construct F, because cell (0,1) (marked with an ‘x’) cannot be filled. We
therefore define F, = F;\U(3,0,3). We find that the square can then be filled
uniquely by forcing.
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To show that W is critical, we list the CPLSs for each element:
(0,0,0) {(0,0,0), (0,5,5), (5,0,5), (5.5,0)}
13,5 {(0.3,3), (0,5,5), (1,3,5), (1,54), (2,3,4), (2,5,3)}

(14,3) {(1,2,0), (1.4,3), (4,2,3), (4,4,0)}

(2,2,1) {(0.1,1), (0,2,2), (1,0,1), (1,1,2), (2,0,2), (2,2,1)}

(2.4.5) {(2,1,0), (24.5), (4,1,5), (4,4,0)}

3.1,4) {(2,1,0), (2,3.4), (3,1,4), (3,3,0)}

3.2,5) {(0.2,2), (0,3,3), (0.4.4), (0.5,5), (1,1,2), (1,2,0), (2,0,2), (2,1,0),
(2.34), (2,5,3), 3,0,3), (3.2,5), (4,0,4), (4,2,3), (4,4,0), (5,0,5),
(5:4.2), 5,5,0)}

3.5,2) {(2,0,2), (2,5.3), (3,0,3), (3,5,2)}

43,2 {(2,0,2), (2,34), (4,0,4), (4,3,2)}

4,5,1) {(1,0,1), (1,54), (4,0,4), (4,5,1)}

(5.1,3) {(2,1,0), 2,5,3), (5,1,3), (5,5,0)}

(5.2,4) {(1,2,0), (1,5.4), (5,2,4), (5,5,0)}

5.3.1) {(0.1,1), (0,3,3), (0,4,4), (0,5.,5), (1,0,1), (1,1,2), (2,0,2), (2,1,0),
(2,3.4), 2.5,3), 3,3,0), (3:4,1), (4,04), (4,1,5), (4,4,0), (5.0,5),
(5,3.1), (5.5,0)}

This completes our proof that a weak critical set for D; exists.

(Note: The authors would like to thank the referee for some valuable sugges-
tions.)
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