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1. Introduction

A Bhaskar Rao design (BRD) is the incidence matrix of a BIBD(v, b, 1,
k, A) when the one’s are assigned a plus or minus sign in such a way that the
rows are orthogonal under the standard inner product. We consider designs with
an assignment of plus/minus signs which yield a constant inner product c, but ¢
is not necessarily zero. Such matrices were introduced by Dey and Midha
[1976], who referred to them as GBM’s or Generalized Balanced Matrices, but, to
be more consistent with present terminology, we choose to call them c-BRD’s.
In Hurd and Sarvate [1999] it was shown that the necessary conditions were
sufficient for the existence of 1-BRD(v, 3, A). Here we first solve the case for
¢ = —1. The results are then extended to all c = -1.

Originally 0-BRD’s were introduced in [1] and [2]. Such matrices and
their generalizations have been studied by numerous authors, e.g., see [3], [4],
[51, [9], [11], [12], [13] and the references therein.

As usual, we do not distinguish between the incidence matrix of a

BIBD and the BIBD. The incidence matrix of a BIBD(v, k, A) with no minus
signs is a A-BRD. Recall that all BIBD’s satisfy (1) vr = bk and (2) A(v - 1) =
rkk - 1).
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2. New Necessary Conditions.

In [8] it was shown that:
Lemma 1: (A) For every c-BRD(3, 3, A), ¢ = A (mod 4); this extends the
well-known condition that ¢ = A (mod 2) for every c-BRD.

(B) For every 1-BRD(v, 3, 3), v =1 (mod 4).

(C) For k odd, every c-BRD satisfies b(k - 1) + cW(v - 1) =0 (mod 8).

The proof of (C) established that, if s; is the ith column sum of the c-
BRD, then
b

Y s = vr+cv(v- 1)

i=1

But this implies a new condition, namely, that

Theorem 2: (A) For every c-BRD, vr + cv(v - 1) 20.
(B) Fork=3,¢c=-1, 2b=vv-1) (mod8).

We now apply these ideas to the case ¢ = -1 seeking a condition
analogous to (B). Suppose A =3. Ask=3,and as AM(v- 1) =r(k - 1), we have r
= 3( v - 1)/2. But from vr = bk, we see b= vr/k = v(v - 1)/2. From Lemma
1(C), and as ¢ = -1, we have, for some t, 8t=2b - v(v - 1) = 0. But this is no
restriction at all. Thus, for all odd v, a (-1)-BRD(v, 3, 3) should exist! This is in
striking contrast to the ¢ = 1 case.

We next explore the main result of this section, a rather important
hidden connection between the parameters ¢ and A.

Theorem 3. Suppose v(v — 1) # 0 (mod 12). Then, for any c-BRD(v, 3, A):

(A)Ifc=2sand A =2t, thens = t(mod 2).

(B) Suppose x =1 or5.If c=2s + 1> 0 and A = 6t + X, then
s=tmod2).fc=-2s-1<0andA=6t+x, thens # t(mod 2).

(C) Suppose A=6t+3.Ifc=25s+1>0,thens = t(mod2).Ifc=
-2s-1<0, then t = s (mod 2). In particular, if ¢ = -1, i.e., s = 0, then t must
be even.

Proof: Ask =3, we get 6b = Av(v - 1). Since by hypothesis, v(v - 1) is not 0
mod 12, it follows that v(v - 1) = 2n for some necessarily odd n. Now from
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Lemma 1(C),

2b + cv(v - 1) = 0 (mod 8)
= Av(v — 1)/3 + cv(v - 1) = 0 (mod 8)

= 2nA + 6nc = 0 (mod 8)

= A + 3¢ = 0 (mod 4), as n is odd.

If c=2s and A = 2t, the last congruence reduces to t + s = 0 (mod 2).
This proves (A).

Now suppose ¢ =-2s - 1 <0 and A = 6t + x. Then

A+3c=6t+x—-6s—3=2t—-s— 1) =0(mod4)

=t-5-1=0 (mod 2).
But this means exactly one of s and t must be odd and the other even. If ¢ = 2s +
1> 0, the conditions reduce to t + s = 0 (mod 2). Thus, s = t (mod 2). This
proves (B).

We prove half of part (C), the other half being similar. Suppose A = 6t
+3andc=-2s-1. FromA + 3c = 0(mod 4) we get

6t + 3 + 3(-2s -1) = 0 (mod 4)

= 6(t - s) =0 (mod 4)

=2(t-s)=0 (mod 4)

=t-5s=0 (mod 2)
[ |

Corollary. Suppose v(v - 1) # 0(mod 12). Then for any c-BRD(v, 3, A),
c = A (mod 4).

Lemma 4: [8] Suppose there exists a BIBD(v, k°, A) and a c-BRD(k’, k, Hn.

Then there exists a cA-BRD(v, k, Ap).
[

Table 1 below is used explicitely throughout the rest of the paper. Parts

A-D are taken from [10] and the rest from [12]. The examples in Tables 2 and
3 will be referred to later.,
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Necessary and Sufficient Conditions for
A-fold Triple Systems and 0-BRD’s

A v
A. Omodo6 allv#2
B. 1,5 mod6 v=1,3 mod 6
C. 2,4 mod6 v=0,1 mod3
D. 3 mod6 allodd v
E. 0-BRD(v, 3, 2) exist if and only if
v(v - 1) =0 (mod 12).
F. 0-BRD(v, 3, 4) exist if and only if
v(v - 1) =0 (mod 3).
G. 0-BRD(v, 3, 6) exist if and only if
v(v - 1) =0 (mod 4).
H. 0-BRD(v, 3, 2t) exists if and only if
2tv(v - 1) =0 (mod 24).
Table 1
2-BRD(3, 3, 6) 1-BRD(5, 3, 3)
11111} |i]1]lo]loj-1]1]of|1]1]0
111 |-1]-1] [-1f1]1]o]olo]l1i0]1]1
11 l-1]-11 1] |ol-1[1]1]0o]|1]0]1]0]]1
olol-1]1]1|1]|1]0of1]0
Table 2 1]1o0lol-4l110f 111011
Table 3




Section 3. The Cases ¢ = 2 and ¢ = -1,

Theorem 5. 2-BRD(v, 3, 6) exist for all v > 3.

Proof: From Table 2, we have a 2-BRD(3, 3, 6). We construct a 2-BRD(4, 3,
6) by juxtaposition of 0-BRD(4, 3, 2) and two copies of 2-BRD(4, 3, 2). These
exist by Table 1. A 2-BRD(S, 3, 6) is formed from two copies of 1-BRD(5, 3,
3), from Table 3. Juxtapose a 0-BRD(6, 3, 4) and a 2-BRD(6, 3, 2) to make a 2-
BRD(6, 3, 6). When v = 8, in Table 4 we have a signing for 2-BRD(8, 3, 6).
Thus, we have constructed a 2-BRD(v, 3, 6) for v=3, 4, 5, 6, and 8. The
theorem now follows by Lemma 4 above and the Hanani’s Lemma 5.3 [7,
P-289] which states for every integer v 2 3, v € B(K3, 1) holds, where K3 =

{3.4,5,6,8).
»

Theorem 5 stands in contrast to the case for 0-BRD(v, 3, 6) many of
which do not exist (Table 1).

Theorem 6: A (-1)-BRD(v, 3, 3) exists for all odd v.

Proof: From [10, p.49], let (Q, °) be an idempotent commutative
semigroup of order v, for v odd. Then
{{a,b,acb}la< b € Q}
forms a BIBD(v, 3, 3), (or actually a 3-BRD(v, 3, 3)).We sign acb with -1 in
the incidence matrix. This forms a (-1)-BRD(v, 3, 3) since all pairs (a, b) with
a<b occur only once as the first two entries in a block.
|

Theorem 7. If A=3 (mod 6), then the necessary conditions are sufficient for
(-1)-BRD(v, 3, A) to exist.

Proof: First suppose v(v - 1) = 0 (mod 12). Then certainly v(v - 1) =0 (mod
4). Hence a 0-BRD(v, 3, 6) exists (Table 1). But a (-1)-BRD(v, 3, 3) exists by
Theorem 6. By juxtaposition of the t-copies of the first matrix with the second,
we get a (-1)-BRD(v, 3, 6t + 3). Now suppose v(v - 1) 2 0 (mod 12). By
Theorem 3(C), t must be even. Hence, A = 12y + 3 for some y. But a 0-BRD(v,
3, 12) exists. Hence, we can juxtapose y-copies of 0-BRD(v, 3, 12) with a (-1)-
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BRD(v, 3, 3) to make a (-1)-BRD(v, 3, 6t + 3).
]

Theorem 8. If A =1, 5(mod 6), then the necessary conditions are sufficient
for (-1)-BRD(v, 3, A) to exist.
Proof: Suppose A =S5 (mod 6). Now by Theorem 3(B), since s is even, t must
be odd. So A = 6t + 5 =6(2y + 1) + 5 = 12y + 11 for some y. By Table 1, v is
ncessarily 1 or 3 mod 6. But in either case, a 0-BRD(v, 3, 4) exists. We
construct a (-1)-BRD(v, 3, 12y + 11) by juxtaposing y copies of 0-BRD(y, 3,
12), two copies of 0-BRD(v, 3, 4), and one copy of (-1)-BRD(v, 3, 3). When A
=1 (mod 6), the conditions are the same and the construction is the same except
we use only one copy of 0-BRD(v, 3, 4).

|

Theorems 7 and 8 establish:

Theorem 9. The necessary conditions are sufficient for the existence of (-1)-
BRD(v, 3, A).

4. The Cases ¢ = 3 and ¢ = §.

We now construct the family 3-BRD(v, 3, 6t + 3). First suppose that
v(v - 1) =0 (mod 12). Then by Table 1, we may combine t-copies of 0-BRD(v,
3, 6) with one 3-BRD(v, 3, 3). Now suppose v(v - 1) # 0 (mod 12). Ass =1,
by Theorem 3(C), t is even. Hence 6t + 3 = 12y + 3 for some y. Now we take
one copy of 3-BRD(v, 3, 3) and y-copies of 0-BRD(v, 3, 12), and, by adjoining
them, get a 3-BRD(v, 3, 6t + 3).

In similar fashion we construct the family 5-BRD(v, 3, 6t + 3). Again,
suppose that v(v - 1) = 0 (mod 12). Using Table 1, we combine t-copies of 0-
BRD(v, 3, 6), one 3-BRD(v, 3, 3), and one 2-BRD(v, 3, 2). Now suppose v(v -
1) # 0 (mod 12). We must note that s = 2, and so t = 2y + 1 for some y; thus,
6t + 3 = 12y + 9. Take one copy of 3-BRD(v, 3, 3), one copy of 2-BRD(v, 3,
6), and y-copies of 0-BRD-(v, 3, 12). Together this gives 5-BRD(v, 3, 6t + 3).
We have proved:

Theorem 10. The necessary conditions are sufficient for the existence of 5-

BRD(v, 3, 6t + 3) and 3-BRD(v, 3, 6t + 3).
a
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BRD(v, 3, 2) .

Proof: We now construct a 3-BRD for A = 6t + 1 and 6t + 5. It is again
necessary to consider two cases. First suppose that v(v - 1) = 0 (mod 12). Use
one (-1)-BRD(v, 3, 3), one 3-BRD(v, 3, 3), one 1-BRD(v, 3, 1) and (t - D-
copies of 0-(BRD(v, 3, 6). These exist by Table 1. Together we have a 3-
BRD(v, 3, 6t + 1). For 6t + 5, use one copy of 0-BRD(v, 3, 2), one 3-BRD(v,
3, 3), and a 0-BRD(v, 3, 6t). Now suppose V(v - 1) # 0 (mod 12). For this case,
we note s = 1. By Theorem 3, t is odd. S0 6t + 1 = 12y + 7 for some y. We use
one 0-BRD(v, 3, 4), one 3-BRD(v, 3, 3), and y-copies of 0-BRD(v, 3, 12). For

A =6t + 5, we add one more 0-BRD(v, 3, 4).
. [ ]

Theorem 12. The necessary conditions are sufficient for the existence of 5-
BRD(v, 3, A).

Proof: Following Theorem 10, we only need to construct the remaining 5-
BRD’s for A = 6t + 1, 6t + 5. First suppose that v(v - 1) = 0 (mod 12).
Juxtapose one copy of 0-BRD(v, 3, 6t), one copy of 3-BRD(v, 3, 3), and a 2-
BRD(v, 3, 2). This constructs a 5-BRD(v, 3, 6t + 5). Now juxtapose one copy
of 0-BRD(v, 3, 2), one 0-BRD(v, 3, 6(t-1)), and one 5-BRD(v, 3, 5). This builds
a 5-BRD(v, 3, 6t + 1). When v(v - 1) # 0 (mod 12), by Theorem 3, t is even
since s is even. Thus 6t + 1 = 12y + 1 for some y. For 12y + 1, we juxtapose
(y-1)-copies of 0-BRD(v, 3, 12), two copies of 0-BRD(v, 3, 4), one copy of 1-
BRD(v, 3, 1), and a 4-BRD(v, 3, 4). When A = 6t + § = 12y + 5, we use y-
copies of 0-BRD(v, 3, 12) and one copy of 5-BRD(y, 3, 5). =

Section 4. Main Result
This section is devoted to proving the following theorem.

Theorem 13. The necessary conditions are Sufficient for the existence of all c-
BRD(v,3,A) where ¢ >-1.

Proof: The cases ¢ = -1 (Theorem 9) and ¢ = 0 [10] are done. we only need to
consider positive c. We divide the argument into two cases.

Caes I: Assume v(v— 1) = 0 (mod 12) . If A = 2t + 1 is odd, then necessarily
¢=2s + 1 for some s (Lemma 1(A)). Note A = 2(t - s) + 2s + 1. To form a c-
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¢ =2s + 1 for some s (Lemma 1(A)). Note A = 2(t - 5) + 2s + 1. To form a c-
BRD(v 3, A), we need only juxtapose (t-s)-copies of a 0-BRD(v, 3,2)and a
(2s+1)-BRD(v, 3, 2s+1). The former exists from the Case 1 hypothesis and by
Table 1(E), and the latter exists, from Table 1(B), since the necessarily odd v
satisfies v = 1, 3 (mod 6) with the Case 1 hypothesis. If A = 2t, we form a 2s-
BRD(v, 3, 2t) by combining s-copies of 2-BRD(v, 3, 2) and (t-s)-copies of 0-
BRD(v, 3, 2).

Case 2: Suppose v(v — 1) # 0 (mod 12). For even A and c, we refer the reader
to Table 5. Each case there provides a 2s-BRD(v, 3, 2t) when the necessary
conditions are satisfied. These conditions include v(v — 1) # 0 (mod 12), Table
1, Theorem 3 and its corollary, s and t have the same parity, and necessary
conditions for BIBD. Note that, in reading Table 5, *x means use x-copies. The
array uses the Corollary to Theorem 3, namely thatc = A (mod 4). When A is
odd, see Table 6. The same comments apply here as for Table 5.
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Table 4:

2-BRD(8, 3, 6)
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A c=12x c=12x+4 c=12x+8

12-BRD(v,3,12)*x 2-BRD(v,3,6)¥2 (12x+6)-BRD(v,3,12x+6)

12y 0-BRD(v,3,12)*(y-x) 12-BRD(v,3,12)*x 0-BRD(v,3,12)*(y-x-1)

0-BRD(v,3,12)*(y-x-1) 2-BRD(v,3,6)

12-BRD(v,3,12)*x (12x+4)-BRD(v,3,12x+4) |(12x+4)-BRD(v,3,12x-+4)

12y +4 |0-BRD(v,3,12)*(y-x) 0-BRD(v,3,12)*(y-x) 2-BRD(v,3,6)*2
0-BRD(v,3,4) 0-BRD(v,3,12)*(y-x-1)
12-BRD(v,3,12)*x (12x+4)-BRD(v,3,12x+4) |(12x+8)-BRD(v,3,12x+8)

12y + 8 |0-BRD(v,3,12)*(y-x) 0-BRD(v,3,4) 0-BRD(v,3,12)*(y-x)
0-BRD(v,3,4)*2 0-BRD(v,3,12)*(y-x)

A c=12x+2 c=12x+6 c=12x+10

12y +2 [(12x+2)-BRD(v,3,12x+2) |2-BRD(v,3,6)*2 (12x+10)-BRD(v,3,12x+10)

0-BRD(v,3,12)*(y-x) (12x+2)-BRD(v,3,12x+2)  [0-BRD(v,3,12)*(y-x-1)
0-BRD(v.3,12)*(y-x-1) 0-BRD(v,3,4)

12-BRD(v,3,12)*x (12x+6)-BRD(v,3,12x+6) |(12x+6)-BRD(v,3,12x+6)

12y + 6 |2-BRD(v,3,6) 0-BRD(v,3,12)*(y-x) 2-BRD(v,3,6)*2
0-BRD(v,3,12)*(y-x) 0-BRD(v,3,12)*(y-x-1)
(12x42)-BRD(v,3,12x+2) |(12x+6)-BRD(v,3,12x+6) |(12x+10)-BRD(v,3,12x+10)

12y + 10 |0-BRD(v,3,4) 0-BRD(v,3,12)*(y-x) 0-BRD(v,3,12)*(y-x)
0-BRD(v,3,12)*(y-x) 0-BRD(v,3,4)

Table 5: 2s-BRD(v, 3, 2t)
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A c=12x+1 c=12x+5 c=12x+9
12y +1 |(12x+1)-BRD(v,3,12x+1) (12x+5)-BRDv, 3, 12x+5) [(12x+9)-BRD(v,3,12x+9)
0-BRD(v,3,12)*(y-x) 0-BRD(v,3,4)*(3y-3x-1)  |0-BRD(v,3 H*(3y-3x-2)
(12x+1)-BRD(v,3,12x+1) |(12x+5)-BRD(v,3,12x+5) (12x+9)-BRD(v,3,12+9)
12y + 5 |0-BRD(v,3,12)*(y-x) 0-BRD(v,3,12)*(y-x) 0-BRD(v,3,12)*(y-x-1)
0-BRD(v,34) 0-BRD(v,3,4)*2
(12x+3)-BRD(v,3,12x+3) |(12x+6)-BRD(v,3,12x+6) (12x+9)-BRD(v,3,12x+9)
12y +9 |0-BRD(v,3,12)*(y-x) 0-BRD(v,3,12)*(y-x) 0-BRD(v,3,12)*(y-x)
(-1)-BRD(v,3,3)*2 (-1)-BRD(v,3,3)
A c=12x+3 c=12x+7 c=12x+11
(12x+3)-BRD(v,3,12x+3) |(12x+9)-BRD(v,3,12x+9) (12x+9)-BRD(v,3,12x+9)
12y +3 |0-BRD(v,3,12)*(y-x) 0-BRD(v,3,12)*(y-x-1) 0-BRD(v,3,12)*(y-x-1)
(-1)-BRD(v,3,3)*2 2-BRD(v,3,6)
(12x+3)-BRD(v,3,12+3) |(12x+7)-BRD(v,3,12x+7) [(12x+11)-BRD(v,3,12x+11)
12y +7 |0-BRD(v,3,4) 0-BRD(v,3,12)*(y-x) 0-BRD(v,3,12)*(y-x-1)
0-BRD(v,3,12)*(y-x) 0-BRD(v,3,4)*2
(12x+3)-BRD(v,3,12x+3) |(12x+7)-BRD(v,3,12x+7) |(12x+] 1)-BRD{(v,3,12x+11)
12y + 11 {0-BRD(v,3,4)*2 0-BRD(v,3,12)*(y-x) 0-BRD(v,3,12)*(y-x)
0-BRD(v,3,12)*(y-x) 0-BRD(v,34)

Table 6: (2s+1)-BRD(v, 3, 2t+1)
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