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Abstract

An extended Mendelsohn triple system of the order v with a
idempotent element (EMTS(v, a)) is a collection of cyclically ordered
triples of the type [z, v, 2], [z, z, 9] or [z, z, z] chosen from a v-set, such
that every ordered pair (not necessarily distinct) belongs to only one
triple and there are a triples of the type {z,z,z}. If such a de-
sign with parameters v and a exist, then they will have by,a blocks,
where by.o = (v® + 2a)/3. A necessary and sufficient condition for
the existence of EMTS(v,0) and EMTS(v,1) are v = 0 (mod 3) and
v # 0 (mod 3), respectively. In this paper, we have constructed two
EMTS(v,0)’s such that the number of common triples is in the set
{0,1,2,...,by,0 — 3,by,0}, for v =0 (mod 3). Secondly, we have con-
structed two EMTS(v,1)’s such that the number of common triples
is in the set {0,1,2,...,bv1 — 2,bu,1}, for v # 0 (mod 3).

1 Introduction

A Mendelsohn triple system of the order v, MTS(v), is a pair (V, B),
where V is a v-set and B is a collection of cyclically ordered triples of
distinct elements of V, such that every ordered pair of distinct elements of
V is contained in only one member of B. This concept was introduced in
[9] by N.S. Mendelsohn, who proved that a MTS(v) exists if and only if
v=0or 1 (mod 3), v # 6. In [1] F.E. Bennett introduced the concept of a
system, similar to an MTS, in which a triple may have repeated elements.
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An extended Mendelsohn triple system of the order v is a pair (V, B),
where V is a v-set and B is a collection of cyclically ordered triples of ele-
ments of V, where each triple may have repeated elements and will be called
a block, such that every ordered pair of elements of V, not necessarily dis-
tinct, is contained in only one block of B. It has been well established that
an extended Mendelsohn triple system is co-extensive with the variety of
quasigroup satisfying the identity z(yz) = y. (It is called a semi-symmetric
quasigroup). There are three types of blocks: [z, z,z], [z, z,y)], [z,y, 2] and
we call them directed triangle, lollipop and idempotent, respectively. Ob-
serve that [z, z, z] contains only the pair (z, z); [z, z,y] = [z, ¥, ] = [y, 7, 2]
contains the pairs (z, z), (z,v), (v, z); and [z,y, 2] = [y, 2, 2] = |2, z,y] con-
tains (z,¥), (v,2), (2,z). An extended Mendelsohn triple system of order
v which has a idempotents will be denoted by EMTS(v,a). We define
EMTS(v,a) as the class of all extended Mendelsohn triple systems on v
element and having e idempotents. If (V, B) is an extended Mendelsohn
triple system with parameters v and a, we say B is an EMTS(v, a) and write
B € EMTS(v,a). We say EMTS(v,a) exists if there exists an extended
Mendelsohn triple system with parameters v and a. For B € EMTS(v,a),
| B} = by,a = (v? + 2a)/3.

In (1] it was shown that the necessary and sufficient conditions for the
existence of an EMTS(v, a), with 0 < a < v, are:

(i) if v =0 (mod 3), then a =0 (mod 3);
(ii) if v # 0 (mod 3), then a =1 (mod 3);
(iii) if v =6, then a < 3.

Recently, some papers investigated the possible number of common
blocks with two generalized triple systems with the same parameters, based
on the same v-set. G. Lo Faro (7] considered this problem for extended
triple systems without idempotent; W. -C. Huang [5, 6] for extended triple
systems and C. M. Fu, Y. H. Gwo and F. C. Wu (2] for semi-symmetric
latin squares.

In this paper, we have considered the intersection problems for the class
EMTS (v,0) and EMTS(v,1). Let J[v,a] be the set of non-negative
integers k such that there is a pair of EMTS(v, a) with k common blocks,
let Ifv,a] = {0,1,2,...,by,0 — ka, by}, where k, =2 if a = 1 and k, = 3 if
a=0.

Main Theorem J[v,0] = I[v,0], for v = 0(mod 3), and J{v,1] = I[v, 1],
for v # O(mod 3) .

Let A and B be two sets of integers and & a positive integer. We define
A+B={a+blac AbeB},k+A={k}+A,andkA={k-a|a€ A}.
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For convenience, we denote the k-triple (vy,v2,...,v¢) by {[v1,v1,v2],
[v2,v2,v3), ..., [Vk=1, Vk=1, Vx|, [Vk, Vk, Vk]} Where v; # v; for all i # j. And
(v1,v2,...,vk,v1) = {[v1,v1,v2], [v2,v2,v3], .. ., [Vk—1, Vk—1, V&), [Vk, VR, 1]}
From this notation, we have the following lemma which makes it easy to
construct another system such that it has small different blocks in the orig-
inal system.

Lemma 1.1 Let (V,B) be an EMTS(v,a) and {vy,vy,...,v) C B. Then
by, — {k—1} € J|v,a), if v1 = vk; and by o — i € J[v,0a], 1 =2,3,...,k, if
U1 95 V-

Proof. For v; = v, we can replace the blocks (vq,vs,..., ) by (vk, vk—1,

.+, 1 ). Thus, by — {k — 1} € J[v,a]. For v; # v, we can replace the
blocks (vk—i, Uk—i+1, - --,Vk} bY (Vk,Vk—1,...,Vk—i), for i =1,2,... k- 1.
Thus, by, — j € J[v,q], for j =2,3,...,k.

2  Auxiliary constructions of EMTS

As usual, K, is the complete graph on v vertices. An 7-cycle is an
elementary cycle of length r and is denoted by the sequence of its vertices
(zy,x2,...,2zr). In [3], if v is even then K, can be decomposed into v — 1
1-factors and if v is odd then K, can be decomposed into (v — 1)/2 edge-
disjoint spanning cycles. In each case, we can construct directed triangles
as follows:

Method 1. Let F' be a 1-factor of K, on V and a be any vertex not in
V. T(F,a) = {[a,z,9),[a,¥,2] | {z,y} € F}.

Mathod 2. Let C = (¢1,¢2,....¢y) be a spanning cycle of K, on V
and a and b be any two different vertices not in V. 7(C,a,b) = {[a, 1, ¢z},
[a, c2, C3]7 sy [a’ Cy, cl]7 [bv Cy, cv—l}y [ba Cy—1, CU—Z]a ceey [b: C1, cu]}

In order to count the number of common blocks of the two extended

Mendelsohn triple systems, we need some special embedding constructions.
Let (V4, By) be an METS(v, a), where Vi = {a1,a2,...,a,}.

(1) v to 2v, v even
Let F = {F; |i{=1,2,...,v — 1} be a 1-factorization of K, on V; =
{z1, 2, ...,zv}. Let V=ViUVaand B = BUTUL, where T =

W{T(F;,a:) |i=1,2,...,v—1} and L = {a,zz | = € V2}. Then (V,B) is
an EMTS(2v, a).
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(2) v to 2v, v odd

Let C = {C;i | i = 1,2,...,(v — 1)/2} be the edge-disjoint spanning
cycles of K, on Vo = {z1, Z2, ..., %o }. Let V=VUW, and B = BjUuTUL,
where T = U{T(Ci,azi_l,az,-) | 1= 1,2,...,('0 t 1)/2} and L = {avzw l
z € Va}. Then (V, B) is an EMTS(2v, a).

(3) v to 2v + 3, v even

Let C = {C:i | i = 1,2,...,v/2 + 1} be the edge-disjoint spanning
cycles of K,43 on V2 = {z1, Z2, ..., To43}. Let V = V1 U Vo and B =
B;UTU L, where T = U{T(C;,azi-1,a2:) | i = 1,2,...,v/2} and L =
(i,2 Tig, - - - » Tiy g, Tiy) fOr the last spanning cycle Cyj241 = (Tiys Tigy - -+
z;,,5). Then (V,B) is an EMTS(2v + 3, a).

Let F = {F: | 4 = 1,2,...,2v — 1} be a 1-factorization of Kj, on
N =1{1,2,...,2v}. If F,,F, € F, the notation F - F} (7] will denote the
following set of blocks: (1,Zi,, Tig, - - -, Tis 1) U (Tjy, Tjy, Tjgy - - - yTj, s Tjy) U

o U {Zpys Tpy Tpgs - -+ 1 Tpes Tpy ) U (TqrsTqz>Tqas- - » Tqm» Tqy) Where Tj, =
min(N \ {1,Ziy, Tigy-- - Tip })s - s Tqy = min(N \ {1, Zi,, Tigy - - -+ Tipr Tjys
Tiys Tigs-- -1 Tigr ++-1Zt1s Ttgr Ttgs---r Tt }); Fa = {(1ziy, TigTigs - -+ Tip_,
Tiy Tjy 85y LjaLigs «+ o1 ja_1Zjsr+ 2 Tp1Tpar TpaTpas - - - yTpe_1Tp.s Tq1Tqz»

TgsTgar- -+ > Taqme1Lam } AN Fp = {Zi3Tig, TiyTis, - -2 Ti, 1, T Tias TjaTisy - -+
Zj.Tjys -y TpaTp3s TpaTpsy -+ 1 Tp. Tpys TgaLqas LaaTasr - -1 Tam Tay S+

(4) v to 2v+ 3, v odd

Let F = {F; | i = 1,2,...,v + 2} be a l-factorization of Ky,3 on
Vo = {z1, T2, ... . Tv43}. Let V=WV UVz and B = B, UTU L, where
T =U{T(F;,a:)|i=12,...,v} and L = Fy41 - Fy2. Then (V,B) is an
EMTS(2v + 3, a).

3 For the Class of EMTS(v,0)

The spectrum of EMTS(v,0) is v = O(mod 3). Since the smallest
possible mutually balanced subsets of an EMTS(v, 0) are (z,y, 2, z) (which
can be changed to (z, z,¥, z)), it follows that J[v,0] C I[v,0].

Lemma 3.1 If J[v,0] = I[v,0] and v is an integer > 9 then J(2v,0] =
I{2v,0].
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Proof. By using constructions 1 and 2, we can embed an EMTS(v,0)
in an EMTS(2v,0). By replacing an EMTS(v,0) and interchanging any
two vertices of V' corresponding to different 1-factors or spanning cycles to
form different directed triangles or lollipops, we obtain J[2v,0] 2 J[v,0] +
{0,9,20,...,(v — 2)v,4%}. If v > 9 and J[v,0] = I[v,0] then J[2v,0] 2
I2v,0]. Therefore J[2v,0] = I[2v,0].

Lemma 3.2 If J[v,0] = Iv,0] and v is an integer > 6 then J[2v+3,0) =
I2v + 3,0].

Proof. By using constructions 3 and 4, we can embed an EMTS(v,0) in
an EMTS(2v + 3,0). By replacing an EMTS(v,0) and interchanging any
two vertices of V' corresponding to different 1-factors or spanning cycles
to form different directed triangles or lollipops, we obtain J[2v + 3,0] 2
J,0] + {0,v + 3,2(v + 3),...,(v - 2)(v + 3),v(v + 3)}. fv > 9 and
J[v,0] = I[v,0] then J[2v + 3,0] 2 I[2v + 3,0]. Therefore J[2v + 3,0] =
I2v+ 3,0].

Lemma 3.3 J[v,0] = I[v,0], forv=3, 6, 9, 12.

Proof. There are precisely two EMTS(3,0): {[1,1,2], [2,2,3], [3,3,1]} and
{[1,1,3], [3,3,2], [2,2,1]}. So, we have J[3,0] = {0,3} = I[3,0).

For v = 6, using a similiar argment to Lemma 3.1, we obtain {0, 3, 6,9,
12} C J[6,0]. Let Ty = {[1,1,2], {2,2,6], 3,3,1], [4,4,1], [5,5,1], [6,6,1],
(2,3,5], [2,4,3], [2,5,4], 3,4, 6], 3,6,5], [4,5,6]} and T> = {[1,1,2), [3,3,1],
(4,4,1], [6,6,2], [1,5,6], [1,6,5], [3,4,3], [3,6,4]} U A, where 4 = {[2,2,3],
[2,4,5], [2,5,4], [5,5,3}. Now, N; comes from T, by removing the blocks
A and replacing them with {[2,2,4], [2,3,85), [2,5,3], [5,5,4]}. Then, |T>N
N,| = 8. Using the isomorphic designs obtained from 7 by permuting
elements in Table 1, we have J[6,0] = I[6,0].

Table 1
Intersection Size | Intersection Size
T, N (123)(56)Ty 1 Ty N (23)(45)Th 5
T N(12)(456)T 2 Ty N (456)T 7
T N(23)Th 4

For v = 9, using a similiar argment to Lemma 3.2, we obtain {0,3,6,9,
12,15,18,21,24,27} C .J[9,0]. Let 71 = {[1,1,2], [2,2,3], 3,3, 1}. [4,4,8],
8,8,5], [5,5,6], {6,6,7], [7,7,9], [9,9,4], [1,4,5], [2,5,4], {1,6,9], [1,9,6],
[1,7,8), [1,8,7], [2,4,6], [2,6,4], [2,5,7], [2,7,5], [2,8,9], [2,9,8], [3,4,7],
3.7.4], 3,5,9], (3,9,5], [3,6,8], [3,8,6}. To = {[1,1,2], 2,2,3], [3,3.1],
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5,4, [7.7,8], [8,8,9), [9,9,7], [1,4,7}, [1,7,4], [1,5,9),
6, [2,4,9], [2,9,4], [2,5,8], [2,8,5], [2,6,7], [2,7,6],
1, [3,7,5], 3,69, 3,9,6)). T = {[1,1,2], [2,2.3]
]  [7.7,2), [8,8,3], (9,9, 4], [1,3,7], [1,4,8],
1, 12,4,6), [2,5,8], [2,6,9], [2,8,4], [2,9,5], [3,5,7],
13,6,5], [3,9,6], [4,7,6], [5,6,8], [5,9,7, 6,7,8], [7,9,8]}. Tx = {[1,1,2],
: 6, 3], [8,8,4], 9,9,4], [1,3,6],

4 7, [2,7,4

1,9,5], 1

)

6, 8,
2 T 2.7.4], 2,8,9) [2.9,8),
[3 5 9] (3,8,5], 3,9,6], [4,6,5), [4,7,6}, [5,6,9], [5,8,7], [6,7.8]}. T5 =
{1,1,2}, [2,2,3], [s 4], [4,4,5), [5,5,6), [6,6,7), [7,7, 1], [8,8,1], [9,9, 1],
1,3, o], (1,4,6], [1,5,3], [1,6,4], [2,4,7], [2,5,8] 2,6,9], [2,7,4], 2,8,6],
2,9,5], [3,6,8], [3,7, 9], [3,8,7]. [3.9,6), [4.8.9], [4,9.8], [5,7,8], [5.9.7]}.
Now, N; comes from Ty with {[1,4,5], [1 5,4], (1,6,9], 1,7,8], [1,8,7],
(1,9,6], [5,5,6), {6,6,7], [8,8,5)], [9,9,4]} replaced by {[1,4,9]. [1 5,8], [1,6,
71, (1,7,6), [1,8,5], [1,9,4], [5,5,4], [6,6,5], (8,8,7], [9,9,6]}. N2 comes from
T, with {[3,4,8], [3,6,9], [3,8,4], (3,9,6], [4,4,6], [7,7.8], [8,8,9], [9,9,7]}
replaced by {[3,4, 6], [3,6,4), [3,8,9), 3,9,8], [4,4,8], (7,7,9], [8,8,7], [9,9,
6)}. By (1,2,3,1) C T},(1,2,3,4,1) C Ty, (1.2,3,4,5,1) C T3, (4,8,5,6,7
,9,4) € T, and (1,2,3,4,5,6,7,1) C T3, we have 20, 21, 22, 23, 24 € .J[9,0).
From NN | =17, |T20N2| = 19 and Table 2, we have J[9,0} = I[9,0].

]
r s b
b

Table 2
Intersection Size Intersection Size
Ty N (34)(678)Ty 1 T: N (6798)T1 10
71 N (34)(789)T1 2 N (67)(89)T; 11
T, N (56)(79)T 4 | T1N(23)(6798)T7 | 13
T3 N(6789)T 5 TN (24)(35)T1 14
T1 N(57)(689)T 7 | 1N (45)(6798)T1 | 16
TN (789)T 8

For v = 12, using a similiar argment to Lemma 3.1, we obtain J[12,0} 2
I112,0)\ {34,35}. T, = BUCUDU{|1,6,10], [1,10,6], [1,7,11], [1,11,7],
1,8,12], [1,12,8], [2,5,10], [2,10,5), [2,8,11], [2,11,8], [3,8,10)], [3,10,8],
(4,7,10], [4,10,7], [4,8,9], 4,9,8], [1,1,9], [5,5,9], [9,9,1], [6,6,5], [7,7,6],
[8,8,6], [5,7.8] [5,8,7], [10,10,9}, (11,11, 10], [12,12,10), [9, 11,12}, [9, 12,
11]}, where B = {[2,6,12], [2,12,6], [2,7,9], [2,9,7], [3,6,9], 3,9,6], [3,7,
12], [3,12,7]}, C = {[3,5, 11), [3,11, 5], (4,5, 12], [4,12, 5], [4, 6, 11, [4, 11, 6]}
and D = {[2,2,1], [3,3,2], [4,4,2], [1,3,4], [1,4,3]} Now, N; comes from
T1 by removing the blocks BUC and replacing them with {[2,6,9], [2,9, 6],
2,7,12], [2.12,7), [3,5.12], [3,12,5], [3,6,11], [3,11,6], [3,7,9], [3,9,7],
[4,5,11], {4,11,5], [4,6,12], [4,12,6]}. N2 comes from T; by removing the
blocks B U D and replacing them with {[2,6,9], [2,9,6], (2,7,12], [2,12,7],
(3,6,12], [3,12,6], {3,7,9], (3,9,7], [3,3,1], [2,2,3], 4,4, 3], [1,2,4], [1,4,2]}.
Then |T3 N N;! = 34 and |T) N N2| = 35. Thus, J[12,0] = I{12,0].
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Combining the above Lemmas 3.1, 3.2 and 3.3, we obtained the following
results:

Theorem 3.4 J[v,0] = I[v,0], for v= 0(mod 3).

4 For the Class of EMTS(v,1)

The spectrum of EMTS(v,1) is v # O(mod 3). Since the smallest
possible mutually balanced subsets of an EMTS(v, 1) are (z,y) (which can
be changed to (y, z)), it follows that J[v,1] C I[v,1].

By using a similar proof to Lemmas 3.1 and 3.2 and replacing EMTS(n,
0), I[n,0] and J{v,0] by EMTS(n,1), I[n,1] and Jfv, 1], respectively, for
each n = v,2v, 2v + 3, we have

Lemma 4.1 If J[v,1] = I[v,1] and v is an integer > 7 then J[2v,1] =
I[2v,1].

Lemma 4.2 If J[v,1] = I[v,1] and v is an integer > 5 then J[2v +3,1] =
I2v + 3,1].

Hoffman and Lindner [4] proved that there exist two MTS(v) intersect-
ing in r triples if and only if r € S, = {0,1,2,...,v(v — 1)/3 - 6,v(v —
1)/3 — 4,v(v - 1)/3}, for v = 0,1 (mod 3), v # 6. If v # 0 (mod 3) and
v # 7, there exist two MTS(v — 1), say (V, B;) and (V, B,), intersecting in
7 triples, where r € S,_; and V = {1,2,3,...,v—1}. Let V* =V U {»},
N ={2,2,9],[3,3,7],...,[v — 1,v — 1,9}, [v,9,1],[1,1,1]}, B} = ByUN
and B3 = B UN. Then (V*, B}) and (V*, B}) are EMTS(v, 1) and they
have r + v common triples. So,

v+ Sya1 = {v,v+ 1,...,0,1 — G,bv,l _4;bv,l} - J[’U, 1]. (1)
By (2,v,1) C By, we have by,; — 2,by,1 — 3 € J[v,1]. Thus we have
{'U, v+ 1: reey b‘v,l - 6) b‘u.l - 4: bv,l - 3) bv,l - 2’ bu.l} g J[’U, 1] (2)
, for v # 0 (mod 3) and v # 7.
Lemma 4.3 J(v,1] = I|v, 1], for v =.4, 5, 17 8,10, 11.
Proof. Forv =4,let Ty = {(3,3,2],[2,2,1),(1,1,1], 4,4,2], [1, 3,4, 1, 4, 3]}.
Now, N; comes from T; with {[3,3,2],[4,4,2],[1,3,4],[1,4,3]} replaced by
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(13,3,1),[4,4,1,(2,3,4),(2,4,3]}. 3,2 € J}4,1] follow by (3,2,1) C T.
From |T1 N N]l = 2, IT] N (23)T1| =1 and |T1 N (12)T1| =0, we have
J[4.1) = I[4,1).

For v = 5, let T; = {[2,2, 1], [3,3,1], [5,5,1], [1,1,4], [4,4,4], [2,3,5],
2,4,3], [2,5,4], [3,4,5]}. and let Ny comes from Ty with {[4,2,5], (4,5,3],
[4,3,2], [2,2,1], {3,3,1], [5,5,1]} replaced by {[1,2,5), [1,5,3], (1,3, 5],
2,2,4], [3,3,4], [5,5,4]}. 5,6,7 € J[5,1] follow by the equation (2). By
ITyiNNY| = 4, ITiN(12)(45)Th| = 0, [T1N(12)(345)Th| = 1 and |TiN(45)Th| =
2 ,we have J[5,1] = I[5,1).

Forv=7let Tt = {[1,1,1], 2,2.1], (3,3.2], [4,4,2], [5,5,2], [6,6,3],
[777?4]’ [13'7]* [1)4a3]’ [1!536]: [17674]7 [1'7-5]* [29677]? [2771615 [3~45]'
(3.5,7), (4,6, 5]} and T» = {[1,1,1], (2,2, 7], [7,7.4], [4,4,3], [3,3,6], [6,6,5],
5.5.2], [1,2,3], [1,3,2), [1,4,5], [1,5,4], [1,6,7], [1,7,6], [2,4,6], [2,6,4],
3.5.7), [3.7.5]}. By (2,7,4,3,6,5,2) C Tz and (6,3,2,1) C T3, we have
11, 13, 14, 15 € J[7,1]. From Table 3, we obtain J(7,1] = I[7, 1).

Table 3
Intersection Size Intersection Size
Ty N{12)(45)(67)T1 | O Ty N (567)T1 6
Ty N (23)(67)Th 1 T, N (56)Ty 7
T, N (2357 T 2 Ty N (345)T) 8
T1 N(46)(57)T1 3 Ty N (69)Ty 9
N (467)T1 4 N (35476)T1 10
T) N (4567)Th 5 | TynN(345)(67)Th | 12

Using a similar argument to Lemma 4.1 and 4.2, for v = 8, 10 or 11,
we obtain J8, 1] = I[8, 1]\ {13, 15}, J[10,1) = 7[10,1]\ {23} and J[11,1) =
I[11,1)\ {5,12, 19, 26, 33}. From equation (2), we have 13,15 € J[8,1],23 €
J[10,1] and 12,19, 26,33 € J[11,1]. For the remaining data 5 in the case of
v=11, let Ty = {[1,1,5], [1,2,7), [1,3,4], [1,4,3], [1,6,9], [1,7,2], [1,8, 11],
(1,9,6], [1,11,8), [2,2,11), 2,3,6], (2,4, 10], [2,5,9), [2,6,3], [2,9,5], 2,10,4],
3,3,8], [3,5,10], [3,7,9], [3,9,7], [3,10,5], [4,4,7), [4,5,8], [4,8,5], [4,9,11],
[4.11,9], [5,5,6], [5,7,11], [5, 11, 7], (6, 6,4], 6,7, 8}, [6,8,7], [6, 10,11}, 6, 11,
10}, (7,7, 10}, [8,8,2], [8,9,10], 8,10,9], [9,9,9], (10,10,1], [11,11,3]}. We
can obtain |T1N (6,7)(8,10) (9,11)T3| = 5. Thus J[i,1] = I[,1], for
1=2§,10,11.

Combining the above Lemmas 4.1, 4.2 and 4.3, we obtained the following
results:

Theorem 4.4 J[v,1) = I[v,1], for v # 0(mod 3).
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5 Conclusions.

From Theorems 3.4 and 4.4, we obtained the following results:

Main Theorem J[v,0] = I[v,0], for v = O(mod 3), and J[v,1] = I{v,1],
for v # 0(mod 3) .
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