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Abstract
A plane graph is an embedding of a planar graph

into the sphere which may have multiple edges and
loops. A face of a plane graph is said to be a pseudo
triangle if either the boundary of it has three dis-
tinct edges or the boundary of it consists of a loop
and a pendant edge. A plane pseudo triangulation
is a connected plane graph of which each face is
a pseudo triangle. If a plane pseudo triangulation
has neither a multiple edge nor a loop, then it is
a plane triangulation. As a generalization of the
diagonal flip of a plane triangulation, the diagonal
flip of a plane pseudo triangulation is naturally de-
fined. In this paper we show that any two plane
pseudo triangulations of order n can be transformed
into each other, up to ambient isotopy, by at most
14n — 64 diagonal flips if n > 7. We also show that
for a positive integer n > 5, there are two plane
pseudo triangulations with n vertices such that at
least 4n — 15 diagonal flips are needed to transform
into each other.

1. Introduction
In this paper we consider finite and planar graphs which
are not necessary simple, i.e., which may have mutiple edges
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and loops. Let G be a graph. Let V(G) and E(G) denote the
vertex set and the edge set of G, respectively. An edge other
than a loop is called a link of G. For a vertex x of G, we denote
the set of links incident to x and the set of loops incident to
x by Link(z;G) and Loop(z; G), respectively. The sum of the
number of links and 2 times of the number of loops incident to
x is called the degree of z, and is denoted by degg(z). Namely,
degc () = |Link(z; G)| + 2|Loop(z; G)|. A graph is said to be
regular if each vertex of it has the same degree. A link is called
a pendant edge if one end vertex of it has degree 1. A loop
incident to z is somtimes simply called an z-loop.

A plane graph is an embedding of a planar graph into the
sphere. From now on, we consider plane graphs. Let G be a
connected plane graph. When a face has a bridge in its bound-
ary, then the bridge is counted twice in its boundary. A face
of G is called a pseudo triangle if the number of edges in its
boundary is 3. We observe that the boundary of a pseudo tri-
angle consists of either 3 distinct edges or a loop and a pendant
cdge.

A connected plane graph is said to be a plane pseudo
triangulation if each face of it is a pseudo triangle. We note
that each plane pseudo triangulation has at least 3 vertices
and if a plane pseudo triangulation is simple, then it is a tri-
angulation on the sphere. Also, we observe that each plane
pseudo triangulation has no bridges other than pendant edges.
There are 2 plane pseudo triangulations of order 3 and 6 plane
pseudo triangulations of order 4. ( Fig. 1)

We can define a diagonal flip on a plane pseudo triangu-
lation as follows; it is a natural generalization of a flip on a
triangulation. Let G be a plane pseudo triangulation and e be
an edge of G which is not pendant. Then e is contained in the
boundaries of two faces, say F; and F.
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Assume F; is bounded by the edges a, b, and e and F, is
bounded by the edges c, d, and e. Then G — e has a face F
bounded by the 4 edges a,b,c, and d. We assume that the 4
edges a, b, ¢, and d are located in this order in the boundary

of F. In this situation, we define a local operation on G called
a diagonal flip around e as follows.

A @
B @

Fig-1
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(1) Remove the edge e from G.

(2) Add a new edge € so that the resulting graph has
two new pseudo triangles the boundaries of which consist of
{a,d,e’'} and {b,c, €'}, respectively. Fig. 2 ilustrates an exam-
ple of a diagonal flip.

5 G

Fig.-2
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The new edge € is called the successor of e, and e is said to
be the predecessor of €'. We also say that e and e’ correspond
to each other by a diagonal flip. Note that we do not apply
this operation around a pendant edge.

For triangulations on the sphere, the following problem was
studied.

Problem For any given two triangulations G and G’ on
the sphere of the same order n, find a finite sequence of diag-
onal flips which transforms G into G’ up to ambient isotopy.

If an algorithm for this problem produces sequences of
diagonal flips of length O(f(n)), then we say that it is an
O(f(n)) algorithm. The following result has been known for
many years.

Theorem A(Wagner[2]) Any two triangulations on
the sphere of the same order can be transformed into each
other, up to ambient isotopy, by a finite sequence of diagonal
flips.

From the proof of Theorem A, one can derive an O(n?)
algorithm for the problem. Recently one of the authors proved
the following result and gave an O(n) algorithm for the prob-
lem. : ’

Theorem B (Komuro[l]) Any two triangulations on
the sphere of the same order n can be transformed into each
other, up to ambient isotopy, by at most 8n — 54 diagonal flips
if n > 13 and by at most 8n — 48 diagonal flips if n > 7.

The purpose of this paper is to give an answer to the prob-
lem for plane pseudo triangulations. Our main results are the
following two Theorens.
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Theorem 1 Any two plane pseudo triangulations of the
same order n can be transformed into each other, up to ambient
isotopy, by at most 14n — 64 diagonal flips if n > 7.

Theorem 2 For any integer n > 4, there are plane
pseudo triangulations G and G’ of order n such that at least
max{4n — 15, 3n — 8} diagonal flips are needed to transform G

into G'.

Before closing this section, we introduce a family of plane
triangle graphs called flowers which plays an important role in
the proof of our Theorems.

A plane pseudo triangulation is said to be a flower if it
has a vertex x such that each vertex other than x has degree
1. The vertex z is called the center of the flower.

There is a flower of order 3 whose edge set consists of a
loop and 2 pendant edges. And there is a flower of order 4
whose edge set consists of 3 loops and 3 pendant edges(See
Fig.1.). Note that we can construct all flowers inductively as
follows. Let G be a flower of order n and let  be the center
of it. At first, remove a vertex other than z from G and next,
into the face of the removed vertex, add two z-loops each of
which contains a pendant edge in it. Then the resulting graph
is a flower of order n + 1.

2. Proof of Theorem 1

In this section we prove Theorem 1. Before giving the
proof, we need to introduce some notation. We denote the
open neighbourhood of z by Ng(z). Note that Ng(x) does
not include z. Let G be a connected plane graph and let F' be
a face of G. We denote the boundary of F' by 0F. We write
V(F) and E(F) for V(9F) and E(OF), respectively. A face F
whose boundary consists of a loop and a pendant edge is called
a reduced triangle. We classify pseudo triangles according to

229



the number of vertices of their boundaries as follows. We call a
pseudo triangle F' a 3-triangle, a 2-triangle, and a 1-triangle if
|V(F)| =3, |V(F)| =2, and |V(F)| = 1, respectively. By this
definition, a reduced triangle is a 2-triangle. We denote the
type of a face F' by type(F). We observe that a 3-triangle is
bounded by 3 links, a 2-triangle other than a reduced triangle
is bounded by 2 links and 1 loop, and a 1-triangle is bounded
by 3 loops. Note that there is no pseudo triangle bounded by
1 link and 2 loops. In Fig.3, each face F; is an i-triangle.

Fig.3

Let e be an edge of G which is in the boundary of two
distinct faces, say Fy and F,. Then e is said to be a (type(Fy),
type(Fy))-edge. Moreover, if e is a link, then e is called a
(type(F1),type(F2))-link and if e is a loop, then e is called a
(type(F1),type(F3))-loop.

Again let e be an edge of G which is in the boundary of two
distinct faces F; and F;. Let F be the face of G — e bounded
by 4 edges arising from F, and F,. We consider the subgraph
of G whose vertex set is V(F) and whose edge set is E(F). If
this subgraph is regular, then e is said to be regular. If an edge
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e is not regular, then e is said to be irregular. If e is a (1,1)-
loop, then V(F) consists of the only one vertex. Hence each
(1,1)-loop is regular. On the other hand, we observe that each
(3,2)-link, each (2,2)-loop, and each (2,1)-loop are irregular.
There may be regular (3,3)-links and irregular (3,3)-links in a
pseudo triangulation. Also, there may be regular (2,2)-links
and irregular (2,2)-links. Since a 3-triangle has no loops in its
boundary, and a 1-triangle has no links in its boundary, we
observe that there can be the following 8 possible edge types,
a regular (3,3)-link, an irregular (3,3)-link, an irregular (3,2)-
link, a regular (2,2)-link, an irregular (2,2)-link, an irregular
(2,2)-loop, an irregular (2,1)-loop, and a regular (1,1)-loop.
Figure 4 ilustrates the 8 edge types.

00993

Fig.4

In Fig.4, e; is a regular (3,3)-link, e, is an irregular (3,3)-
link, e3 is an irregular (3,2)-link, e4 is a regular (2,2)-link, es
is an irregular (2,2)-link, eg is an irregular (2,2)-loop, ey is an
irregular (2,1)-loop, and eg is a regular (1,1)-loop.

If there is no ambiguity, we omit the words "regular” and
"irregular”. For example, we simply write a (3,2)-link for an
irregular (3,2)-link since there is no regular (3,2)-link. We do
not consider the edge type of a pendant edge in this paper.

The following Lemma follows from an easy observation.
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Lemma 1 (1) The successor of a regular edge has the
same type as its predecessor.

(2) The successor of an irregular (3,2)-link is also an irreg-
ular (3,2)-link.

(3) An irregular (3,3)-link and a (2,2)-loop correspond to
each other by a diagonal flip.

(4) An irregular (3,2)-link and a (2,1)-loop correspond to
cach other by a diagonal flip.

]

Let G be a plane pseudo triangulation. We denote the
number of loops in G by 4(G). Also, we denote the number
of 1-triangles in G by t(G). Note that, if £(G) = 0, then
t(G) = 0. For a pair of distinct vertices z,y € V(G), we
denote the number of edges between x and y in G by u(zy; G).
An edge e is called a multiple edge if 4(V(e); G) > 2. Let

WG = > (ulzy;G)-1),

u(zy;GY>1

Clearly G has no multiple edges if and only if 4(G) = 0. Now
we introduce an invariant £(G) of a plane pseudo triangulation
G as follows:

£(G) = u(G) +£(G) + H(G).

We note that G is a triangulation if and only if £(G) = 0. The
invariant £(G) plays a key role in this section. It is important
to investigate the effect of the application of a diagonal flip to
the invariants of a plane pseudo triangulation.

Lemma 2 Let G be a plane pseudo triangulation and
let e be an edge of G and let G’ be the graph obtained from
G by the diagonal flip around e. We write p, ¢, ¢, and & for
w(G), ¢G), t(G), and &(G), respectively. We also write p/, ¢/,
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t', and € for u(G'), L(G’), t(G"), and §(G"), respectively. Then
we get the following table.

typeofe | W/ —p | € —L | t' -t | & &
6)) reg. (3,3)-link x 0 0 ¥
(2) | irreg. (3,3)-link 0 +1 0 +1
3) 3,2)-link 0 0 0 0
4 reg. 2,2;-link 0 0 0 0
5% irreg. (2,2)-link -1 +1 +1 +1
(6) (2,2)-loop 0 -1 0 -1
(M (2,1)-loop +1 -1 -1 -1
(8) (1,1)-loop 0 0 0 0

* means 0 or 1.

Proof: Let f be the successor of e.

(1) Assume e is a regular (3,3)-link. Suppose that e is a
multiple edge in G. Write V(e) = {z,y} and V(f) = {u,v}.
Since u(V(e); G) > 2, there is a link e’ between z and y other
than e. Then we observe that u and v are separated by the
2-cycle e U ¢’ in G; this implies that there is no edge between
u and v in G. Hence we have

0 if wuw(V(e);G)=nV(f)G)=1
W-p=q 1 if p(V(e)G)=1 and p(V(f);G’)>2
-1 if w(V(e);G)=2 and p(V(f);G')=1

Since f is also a regular (3,3)-link, ¢/ —£=¢ —t = 0.

(2),(6) Assume that e is an irregular (3,3)-link. In this
case, f is a (2,2)-loop. We observe that u(V(e);G) = 1 and
this implies that ' — u = 0. Since e is a link and f is a loop,
¢ — ¢ = 1. The two new faces are both 2-triangles. Hence
t'—t=0.

(3) Assume that e is a (3,2)-link. Then f is also a (3,2)-
link. We observe that u(V(e);G) = p(V(f);G’) > 2; this
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implies that p’ — p = 0. Since both e and f are links, £/ — £ =
' —t=0.

(4) Assume that e is a regular (2,2)-link. Then f is also a
regular (2,2)-link. We observe that u(V(e); G) = u(V(f); G')
> 3; this implies that p' — u = 0. Since both e and f are links,
O —l=t-t=0.

(5),(7) Assume that e is an irregular (2,2)-link. Then f
is a (2,1)-loop. In this case we observe that u(V(e);G) > 3.
This, together with the fact that f is a loop, implies that
¢ —p = —1. Since e is a link and f is a loop, ¢/ — £ = 1. Since
eis a (2,2) type and f is a (2,1) type, t' —t = 1.

(8) Assumeeisa (1,1)-loop. In this case, f is also a (1,1)-
loop and no invariant changes. Hence p/—p = ¢/—¢ =t/ —t = 0.

Now the proof of Lemma 2 is completed. .

Lemma 3. Let G be a plane pseudo triangulation of
order n. Then at least £(G) diagonal flips are needed to trans-
form G into a triangulation on the sphere.

Conversely, any connected plane pseudo triangulation G of
order n can be transformed into a triangulation on the sphere
by £(G) diagonal flips.

Proof: Let G be a plane pseudo triangulation of order
n. By Lemma 2, we know that each diagonal flip decreases the
invariant £(G) by at most 1. The first statement follows from
this, together with the fact that a plane pseudo triangulation
G is a trinagulation if and only if £(G) = 0.

Next we prove the second statement. Let G be a plane
pseudo triangulation with £(G) > 0. Let e be one of a multiple
(3,3)-link, a (2,2)-loop, and a (2,1)-loop. Then, by Lemma 2,
a diagonal flip around e decreases £(G) by 1. Hence it suffices
to show that G has one of a multiple (3,3)-link, a (2,2)-loop,
and a (2,1)-loop.
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First, assume that G has a 1-triangle. We consider an inner
1-triangle. Then it must be adjacent to a 2-triangle along a
(2,1)-loop. So we may assume that G has no 1-triangle. In
this situation, a loop of G must be a (2,2)-loop. If G has no
loop, then since £(G) > 0, G has a multiple (3,3)-link.

Now the second statement is established and the proof of
Lemma 3 is completed. 1

Lemma 4 Let G be a connected plane pseudo triangu-
lation of order n. Then

£(G) < 3n-8.

Moreover, there is a plane pseudo triangulation for which the
equality holds.
Proof:  Since £(G) = u(G) + £(G) + t(G), it suffices to
prove the following two inequalities.
(1) u(G)+eG)<2n-5
(2) #G)<n-3

Since G is connected

> INg@@)>2n-2.

zeV(G)
Hence
2u(G)= Y (ILink(z;G)| - |Ng(z)|)
TeV(Q)
< Y dego()-20C)~ Y |Na(o)
zeV(G) eV (G)

< (6n —12) ~ 26(G) — (2n — 2).

So we get inequality (1).
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Next we show that inequality (2) holds. We remove all links
from G. Then we remove isolated vertices from the resulting
graph. We write the resulting graph as G. We denote the
number of 1-triangles in G by t(é). Then, since each 1-triangle
in G still remains a 1-triangle in G, the inequality ¢(G) < t(G)
holds. Let T be the dual graph of G. Then we observe that
T is a tree. Since the number of faces of G is not greater
than that of G, we get |V(T)| < 2n — 4. Let V;(T) denote
the set of vertices of T" whose degree is 7. Then, since a 1-
triangle of G is corresponds to a vertex of T whose degree
is 3, the inequality #(G) < |V3(T')| holds. Now we prove the
inequality |V3(T)| < |Vi(T")| — 2 for any tree T other than K,
by mathmatical induction on |V (T')|. The fact that K> has two
leaves establishes the initial step. So we consider the induction
step. Let z be a leaf of T and let y be the neighbourhood of z.
Remove z from T and denote the resulting tree by 7. In the
case that degr(y) # 3, we observe that |Va(T")| > |V3(T')| and
[Vi(T")] < [Vi(T)|- In the case that degr(y) = 3, we observe
that [Va(T")| = |Va(T)| — 1 and |Vi(T")| = |Wi(T)| — 1. Now
the induction step is proved. Hence

VA(T)] < ()] -2 < V(D] - V(D) - 2
V()] < 5(V(T)| =) Sn =3
Finally, we get
tHG) < HG) < |Vs(T)| < n—-3.

which is the desired inequality (2).

To complete the proof of this Lemma, we show that for
each flower G of order n, the equality £(G) = 3n — 8 holds.
Since G has no multiple edges, u(G) = 0. We observe that G
has n — 1 links each of which is pendant and also G has the
same number of reduced triangles. This fact, together with the
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equality E(G) = 3n — 6, implies that G has 2n — 5 loops, i.e.,
¢(G) = 2n—5. Since the number of triangles of G is 2n —4 and
since each triangle, other than a reduced one, is a 1-triangle,
we have t(G) = (2n — 4) — (n — 1) = n — 3. Finally, we get the
desired equality

&(G) = u(G) +£(G) + ¢(G) = 3n - 8,
and the proof of Lemma 4 is completed. '
Combining Lemma 3 and Lemma 4, we get Corollary 4.1.

Corollary 4.1 Any plane pseudo triangulation of order
n can be transformed into a triangulation on the sphere by at
most 3n — 8 diagonal flips. ]

This Corollary 4.1, together with Theorem B, proves The-
orem 1.

3. Proof of Theorem 2

Let G be a flower of order n with center z. Let H be a
triangulation on the sphere of order n whose maximum degree
is 6. We show that at least max{4n — 15, 3n — 8} diagonal flips
are needed to transform G into H. Let G = Gy, G1,- -+, G =
H be a sequence of plane pseudo triangulations from G to
H such that G; is obtained from G;_; by a diagonal flip for
1 < i < m. Choose such a sequence so that m is minimum. If
n < 7, then Lemma 3 assures us that m > 3n —8 = maxz{4n —
15,3n — 8}. Hence we may assume that n > 8, and we show
m > 4n — 15. Let e; € E(G;) be the edge such that G;1, is
obtained from G; by a diagonal flip around e;. We denote the
set of these edges by Y, namely, Y = {eg,e1,---,em—1}. We
denote the successor of e; by fiy1. Write Z = {f1, f2, -+, fm}-
Even if V(e;) = V(f;) and e; and f; are the same edge, we
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regard them as different. Hence, neither Y nor Z is a multiset.
and Z N E(G) = ¢. We denote the set of z-loops in Y by L.
Furthermore, we write

L={e;€L|e;isa(2,1)loopof G; }
and _ N
Z={fi€Z|ei_1€L}.

Lemma 5.
m > |L| + |Link(z; G)| + | Z] - 6.

Proof: By Lemma 2, we observe that each link f; € Z is inci-
dent to z. Hence, since degy () < 6, |(Link(z; G)UZ) - Y| <
6. This inequality, together with the fact that Link(z;G),
Z, and L are mutually disjoint, implies the desired inequality.
]

By Lemma 3, we have {(Giy+1) > t(G;) — 1. Moreover,
t(Git1) = t(G;) — 1 if and only if e; is a (2,1)-loop. This fact,
together with the fact that H has no 1-triangles, implies the in-
equality ¢(G) < |L| = |Z|. Since H has no loops, Loop(z; G) C
L. Recall that |Loop(z; G)| = 2n — 5, |Link(z; G)| = n — 1,
and ¢{(G) = n — 3. Hence by Lemma 5,

m > |L| + |Link(z; G)| + | Z| — 6
> |Loop(z; G)| + |Link(z; G)| + {G) ~ 6
=2n-5)+Mmn-1)+(n-3)-6
=4n — 15.

Now Theorem 2 is proved. '
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