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Abstract. Quackenbush {5] has studied the properties of squags or * Steiner quasigroups”, that is
a corresponding algebra of Steiner triple systems. He has proved that if a finite squag (P;.)

contains two disjoint subsquags ( P;;.)and (P:;.) withcardinality |P,) |= |P; | =1/3 |P |,

then the complement P; = P— (P; UP,) is also a subsquag and the three subsquags P;, P; and P;
are normal.Quackenbush then asks for an example of a finite squag of cardinality 3n with a
subsquag of cardinality n, but not normal. In this paper, we construct an example of a squag of
cardinality 3n with a subsquag of cardinality n, but it is not normal; for any positive integer n 27
andn=1or3(mod 6).

Introduction:
A squag or “ Steiner quasigroup “ is a groupoid J'= (S; . ) satisfying the
identities:
X. X=X , X.y=y.Xx , X.(x.y)=y.

A Steiner triple system is a pair (P; B ), where P is a set of points and B is a
set of 3-clement subsets of P called blocks such that for distinct points p; , p;
€ P, there is a unique block b € B such that {p; , p, } = b. There is a one to one
correspondence between the squags and the Steiner triple systems [ 1 ] [5]. We
will denote the corresponding squag of the Steiner triple system (P ; B ) by
(P; . ), where

x.y=z < {X,Y,z} € B; forany two distinct elements xandy € P [5].

The Steiner triple system (P ;B ) is denoted by STS( n), if the cardinality
of Pisequalton. Itis well known that a necessary and sufficient condition for
the existence of an STS(n)is n=1or3(mod6)[4 ).

A normal subsquag P = (P, . ) of a squag S = S; .)isdefinedasa
congruence class of a congruence of S. Quackenbush [ 5 ] has proved that if P,
= (Py; . )and P>= (P;; . ) are two subsquags of a finite squag S such that P, ~
P, =0 and|S|=3|P |= 3|P,|, then P, for i =1,2,3 are normal subsquags ,
where Ps = (P; ; . ) and P; =S—- (P, UP,). And then Quackenbush in [5]
asked for an example of a finite squag S =(S; . ) with a subsquag P=(P;.)
such that | S | = 3| P|, but P is not normal in S. In fact, there is a one to one
correspondence between the subsquags of the squag (P ; . ) and the subSTSs or
“subspaces” of the corresponding Steiner triple system ( P ; B ) [ 2 ].
Accordingly, the problem can be translated as follows:

Find a finite STS(3n) = ( P, B ) having a subspace STS(n)= (P;; B; ) and
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the system (P -P;; B — B, ) has no more disjoint subspaces of cardinality n .
Construction of non-normal subsquags

Let P, fori =1, 2 be the corresponding squags of the Steiner triple
systems P; = (P;; B;) and P, = (P2; B,) respectivily, then the direct product of
the two Steiner triple systems P; x P; is defined by the corresponding Steiner
triple system of the direct product of the two squagsP, x P[2]. Let P, =(Py;
B;) be a Steiner triple system of cardinality n, andlet P, ={ a; ,az, ... ,a, }.
We consider the direct product P; x C;, where C; is the 3- element STS(3) on
the set {1 ,2 ,3 }. The direct product P; x C; = ( P; B) is formed by the usual
tripling of (P); B,). The projections Py x {i }; fori=1,2,3 are three disjoint
subSTS( n )s of the Steiner triple system STS(3n)=(P; B).

Without loss of generality, we can assume that { a, b, c }isablockinB, ,
then we have the following subset of blocks of B:

R={{@2), (1), (a3)}{@ 2),(,2),(c 2)}{@3), 0, 3),(3)}
{(c, 2),(c, 1), (c, 3)}%{(@ 1), ®, 3), (c, 2)},{(b, 2), (a, 1), (c, 3)},
{(c, 1), (b, 2), (3 3)},{(b, 3), (c, 1), (2, 2)}},

defined on the subset A c P, where
A={(a 1), @ 2), @ 3), (b 2), (b, 3), , 1), (c, 2), c, 3)}-
We consider the following set of blocks defined on the same set A:

H={{(@, 1), (3 3), (b, 3)}, {2, 1), (@,2), (b, 2)},{(b, 3), (¢, 3), (¢, D)},
{ 1), 2), ®2)} {@ D), (c3)(2)}{(1),2),@a3);
{(, 3), (¢, 2), (@ 2)}, {(b, 2), & 3), (c, 3)}}-

If a 2-clement set {x,y} c Aliesinatriplet € R, thenthereisatriplet' €
H containing { x,y } and | R | =| H|. Using the replacement property on the
direct product P; x C;, then we get the Steiner triple system STS (3n) = (P; B
), where B := (B —R)UH [2][4]. In fact, the subSTS formed by the direct
product of { a,b,c}and{l, 2,3} is replaced with an isomorphic copy on the
same set but having the set of blocks H instead of the set of blocks R. In the
same time, the Steiner triple system ( P ; B ) still contains P; as a subSTS(n).

To prove that the corresponding squag P, of P is not a normal subsquag of
the corresponding squag P of (P;B), assume that P, is normal in P .Then
the set x.P;, for each x € P, forms a subsquag of P . Then we deduce that P,
is not normal, if the set x . P, is not a subsquag of P for some selected element
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x € P. This means that it is enough to show that there is a translation set of the
subSTS P; which is not a subSTS of (P; B).

Choose d € Py — {a, b, c}, then the set of triples containing the element (d, 2)
in the system (P, B) is the same as in the system (P; B ). This means that the
translation of the subSTS P by the element (d, 2) is the set {@,3)|aeh}.
The triple {(a, 1),(a,3),(b,3)} isablock in B. Therefore, the set { (a;, 3 ) |
3; € P, }isnot a subSTS since the block containing ( a, 3 ) and (b, 3 ) does not
lie entirely inside {(a;, 3)| a; € P, }. Hence, the corresponding subsquag P, is not
a normal subsquag of the corresponding squag P of P,B).
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Abstract

We reprove an important case of a recent topological result on im-
proved Bonferroni inequalities due to Naiman and Wynn in a purely
combinatorial manner. Our statement and proof involves the combina-
torial concept of non-evasiveness instead of the topological concept of
contractibility. In contradistinction to the proof of Naiman and Wynn,
our proof does not require knowledge of simplicial homology theory.

1 Introduction

Bonferroni inequalities (also known as inclusion-exclusion inequalities) are
an important tool in probability theory, reliability theory and statistics. For
any finite collection of sets, any measure 4 on the algebra generated by these
sets and any n € N, the traditional Bonferroni inequalities state that

p ( U A.,) > Yy (-0 (ﬂA.-) (n even),

veV 1€P*(V) iel
HHi<n
u(UA.,) < Y (=it (ﬂA) (n odd),
veV I€“1"'<(Vl el

where P*(V) is the set of non-empty subsets of V.
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Recently, Naiman and Wynn (8] established a wide ranging generaliza-
tion and improvement of these inequalities. Their main result involves the
topological concept of contractibility, and in their proof a key role is played
by the simplicial homology groups of an abstract simplicial complex.

In this paper, we consider a special but still important case of the
main result of Naiman and Wynn [8], which is obtained by replacing the
topological notion of contractibility by the combinatorial concept of non-
evasiveness, which was introduced by Kahn, Saks and Sturtevant [6] in the
context of graph complexity questions, and which was further investigated
by Kurzweil [7] in the study of order complexes of finite groups. For this spe-
cial but important case, we present a new and purely combinatorial proof,
which, in contradistinction to the original proof of Naiman and Wynn [8] for
the general case, does not require knowledge of simplicial homology theory.
We finally deduce some recent results from this special case that already
proved useful in the context of network reliability analysis.

2 Preliminaries

We need some definitions and facts from combinatorial topology. For a
detailed exposition, we recommend the textbook of Harzheim [5}.

An abstract simplicial complez § is a set of non-empty subsets of some
finite set such that 7 € 8 and @ # J C I imply J € 8. The elements of §
resp. Vert(8) := |J,cs I are the faces resp. vertices of 8. The dimension of a
face I of § is one less than its cardinality and denoted by dim I. The Euler
characteristic of S is defined by

x(8) = Y (-1

Ies

With any abstract simplicial complex 8 and any & € NU{0} we associate its
k-skeleton 8%, that is, the abstract simplicial complex consisting of all faces
of § whose dimension is less than or equal to k. A geometric realization of
an abstract simplicial complex § is any topological space homeomorphic to

U{S ke

Ie$ \iel

eachtiZOandZt,-=l},
iel

where {e, },ev is the standard basis of the vector space RY and V = Vert(8).
Recall that two topological spaces X and Y are homeomorphic if there is
a bijective mapping ¢ : X -+ Y such that both ¢ and its inverse ¢! are
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continuous. A topological space X is contractible if there is a continuous
mapping @ : X x [0,1] = X such that &(z,0) = z for any z € X and
®(z,1) = zo for any = € X and some fixed o € X. Since contractibility is
known to be a homeomorphism invariant, we may call an abstract simpli-
cial complex contractible if it has a contractible geometric realization. For
instance, the abstract simplicial complex P*(V) consisting of all non-empty
subsets of some finite set V is contractible.

3 Improvements via contractibility
The main result of Naiman and Wynn [8] is the following:

Theorem 3.1 (Naiman-Wynn) Let {A,},cv be a finite family of sets
and § C P*(V) an abstract simplicial complez such that

weﬂA,-}

i€l

S(w) = {IGS

is contractible for any w € | J,cy Av. Then, for any n € N and any measure
1 on the algebra generated by { A, }vev, the following inequalities hold:

u ( U A,,) > ) (=)t ( nA,-) (n even),

& ) r
s(Ua) < > (4] 0o
veV Jes iel

Remark. For § = P*(V), Theorem 3.1 specializes to the traditional Bon-
ferroni inequalities. By Theorem 5 of Naiman and Wynn [8], the bounds
provided by Theorem 3.1 are at least as sharp as the traditional ones, al-
though less computational effort is required to compute them.

4 Improvements via non-evasiveness

Following Kahn, Saks and Sturtevant [6], by induction on the number of
vertices we now define which abstract simplicial complexes are non-evasive:

1. Any abstract simplicial complex having only one vertex is non-evasive.
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2. If 8 is an abstract simplicial complex such that both

S\v:={l|TeSv¢ I} and
8/v:= {I\{v}| I €8 vel,l#{v}}

are non-evasive for some vertex v of 8, then § is non-evasive, too.

Note that both §\v and 8/v are abstract simplicial complexes having fewer
vertices than 8. Therefore, the class of non-evasive complexes is well defined.

Example 4.1 A (ree is a non-empty abstract simplicial complex T whose
faces are of dimension 0 or 1 and which is cycle-free in the usual graph-
theoretic sense. By induction on the number of vertices it follows that trees
are non-evasive: Any tree having only one vertex is non-evasive by means of
Property 1 in the definition of non-evasiveness. Now, let 7 be a tree having
more than one vertex, and let v be a leave of J. Then, T\v and T/v are
again trees, and by the induction hypothesis, they both are non-evasive. By
this and Property 2, 7 is non-evasive as well.

Example 4.2 A cone is an abstract simplicial complex € having a vertex
a which is contained in every maximal face of €. We then refer to a as an
apez of € and to € as a cone with apez a. For instance, P*(V) is a cone with
apex v for any v € V. By induction on the number of vertices we prove that
cones are non-evasive: Any cone having only one vertex is non-evasive by
means of Property 1. Now, let € be a cone having more than one vertex,
and let a be an apex of €. Then, for any v # a, C\v and €/v are cones
with apex a, and by the induction hypothesis, they both are non-evasive.
Therefore, by Property 2, € is non-evasive as well.

Example 4.3 The complex 8 = {{a}, {b},{c}, {a,b},{a,c}, {b,c}} (a tri-
angle without its interior) is easily seen to be not non-evasive.

Kahn, Saks and Sturtevant (6] proved that non-evasiveness entrains con-
tractibility. Thus, the following theorem is a specialization of Theorem 3.1.

Theorem 4.4 Let {Ay}yev be a finite family of sets and S C P*(V) an
abstract simplicial complez such that

weﬂAi}

wel

S(w) = {res
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is non-evasive for any w € |J, ey Av- Then, for any n € N and any measure
p on the algebra generated by {Ay}vev, the following inequalities hold:

B ( U A.,> 2 ) (it ( ﬂA,-) (n even),
vev i:lessn i€l

p ( U Au) < ) =niity ( ﬂAf) (n odd).
veV "l‘ESS,‘ iel

In the following, a new and combinatorial proof of Theorem 4.4 is pre-
sented, which does not make use of results from simplicial homology theory:

Proof. The proof is based on the recurrence

(1) x(8) = 1+x(8\v) — x(8/v) (v € Vert(s)),

which follows by distincting the cases v € I and v ¢ I, and the identities
(2 $5\v = (S\v)*, 8*/v = (8/v)*! (k>0).

By induction on the number of vertices in 8§ we show that for any n € N,

(3) x(8"!) <1 (neven),
(4) x(8"") 21 (nodd).
If $ has exactly one vertex, then x(8"!) = 1 for any n € N, and in this
case, the statement is clear. Now, assume that 8 has more than one vertex.
Choose v € Vert(8) such that both S\v and 8/v are non-evasive. Let n

be even (the case where n is odd is treated in a similar way). From the
recurrence (1), the identities (2) and the induction hypothesis we obtain

X@E"") = L+ x((B\Ww)"™) —x((8/v)*?) < 1+1-1 = 1,

thus proving (3) and (4). Now, from (3) and (4) we conclude that

lY,evar 2 z (- I 4 (n even),
iin

IUL'EV Ay S Z (_l)lll—l lﬂie, A; (n Odd)'
18
H1<n
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By integrating these inequalities with respect to u, the proof is finished. O

As a consequence of Theorem 4.4, we now deduce the main result of (1],
which includes the main results of [2], [3] and [9] as special cases. For appli-
cations to network reliability analysis, the reader is referred to (3] and [4].

Theorem 4.5 Let { Ay }vev be a finite collection of sets, and let X C P*(V)
be a union-closed set system such that ;e x Az C Uygx Av for any X € X.
Then, for any measure p on the algebra generated by { Ay }vev,

(Ua)z 3 comiu(a) e

vev 1€ 3(V.X) tel
11<n
w(Ua) < & o (4] o
veEV ’Elljl(g'x) i€l

where in both cases n € N and
IV, X) == TeP(V)IT2XVX eX}.

Proof. Assume that the inequalities of Theorem 4.4 do not hold for § =
J(V,X). Then, for some w € {J,ey 4v, HV,X)(w) is not non-evasive and
hence not a cone in view of Example 4.2. From this, it follows that XNP*(V,,)
is a covering of V,,, where V,, := {v € V|w € A,}. From this and the union-
closedness of X we conclude that V,, € X and consequently,

we A S U 4.

veV, v¢ Vo

Thus, w € A, for some v ¢ V,,, which contradicts the definition of V,,. O
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