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Abstract
A graph G is called super-edge-magic if there exists a bijec-
tion f from V(G) U E(G) to {1,2,...,|V(G)| + |E(G)|} such that
f(u) + f(v) + f(uv) = C is a constant for any uv € E(G) and
f(V(@)) = {1,2,...,|V(G)|}. In this paper, we show that the gen-
eralized Petersen graph P(n,k) is super-edge-magic if n > 3 is odd
and k = 2.

1 Statement of the Main Result

Let G be a simple undirected graph, and let V(G) and E(G) denote the
vertex set and the edge set of G, respectively. A bijection f from V(G) U
E(G) to {1,2,...,|V(G)|+|E(G)|} is called an edge-magic labeling of G if
there exists a constant C (called the magic number of f) such that f(u) +
f(v) + f(uv) = C for any edge uv € E(G) (Fig.1). An edge-magic labeling
f of G is called a super-edge-magic labeling if f(V(G)) = {1,2,...,|V(G)|}
and f(E(G)) = {IV(G)] + LIV(G)| +2,...,|V(G)| + |E(G)|} (Fig.2). We
say that G is edge-magic (resp. super-edge-magic) if there exists an edge-
magic (resp. super-edge-magic) labeling of G.
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Fig.1: edge-magic labeling of Cj Fig. 2: super-edge-magic labeling of Cs
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In [3], Kotzig and Rosa introduced the notion of edge-magic labelings
(in (3], edge-magic labelings are called magic valuations). They proved that
complete bipartite graphs, cycles and caterpillars are edge-magic, and that
the complete graph K, is edge-magic if and only if n = 1,2,3,5 or 6. They
also conjectured that trees are edge-magic (this conjecture remains open).
In (1], Enomoto, Llado, Nakamigawa and Ringel introduced the notion of
super-edge-magic labelings. They proved that the cycle C, is super-edge-
magic if and only if n is odd, that the complete bipartite graph K, . is
super-edge-magicif and only if m = 1 or n = 1, and that the complete graph
K, is super-edge-magic if and only if » = 1,2 or 3. They also conjectured
that trees are super-edge-magic (this conjecture also remains open). In
addition, they proved that if n = 0 (mod 4), then the wheel graph W,, of
order n is not edge-magic (in [2], it is proved that if n Z 0 (mod 4), then
W, is edge-magic).

Let n, k be integers such that n > 3, 1 < k < n and n # 2k. For such
n, k, the generalized Petersen graph P(n,k) is defined by V(P(n,k)) =
{u;,v;10 < j < n— 1} and E(P(n,k)) = {uju;41,9vj4x,u;0; |0 < j <
n — 1} (subscripts are to be read modulo n). By definition, P(n,k) is a
3-regular graph which has 2n vertices and 3n edges.

In [4], Tsuchiya and Yokomura constructed a super-edge-magic labeling
of P(n,k) in the case where n is odd and k = 1 (more generally, they
constructed such a labeling for P,, x C2;—1). In this paper, we consider the
case where n is odd and k& = 2, and prove the following theorem:

Theorem Letn > 3 be an odd integer. Then P(n,2) is super-edge-magic.

Note that P(n,k;) = P(n,k;) if ky + k2 = n or k1k2 = =1 (mod n). Thus
the theorem implies that for an odd integer n, P(n, k) is also super-edge-
magic in the case where k=n—-2ork= 1 (n£1).

We conclude this section with comments on super-edge-magic labelings
of regular graphs. In [1], Enomoto et al. proved the following lemma:

Lemma 1 ([1;LemmaZ2.1)) If G is super-edge-magic, then |E(G)| <
2IV(G)| - 3.

In passing, we note that the condition |E(G)| < 2|V(G)| — 3 in Lemmal
is not a sufficient condition for G to be super-edge-magic; for example, an
even cycle Cz, has 2n vertices and 2n edges, so C», satisfies |E(Cap)| <
2|V(C2s)| — 3, but C3, is not super-edge-magic ([1; Theorem 2.2]). Now it
follows from Lemma 1 that if an 7-regular graph is super-edge-magic, then
r < 3. Since the generalized Petersen graphs P(n,k) form an important
class of 3-regular graphs, it is therefore desirable that one should determine
which of the P(n, k) are super-edge-magic, and our theorem can be regarded
as an initial step toward this end.
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We also prove the following lemma:

Lemma 2 Let r be an odd integer. Let n be an integer, and let G be an
r-regular graph such that [V(G)| =n. (i) If n = 4 (mod 8), then G is not
edge-magic. (ii) If » = 0 (mod 4), then G is not super-edge-magic.

Proof. Suppose that there exists an edge-magic labeling f of G with magic
number C. Since |E(G)| = 3n, [V(G)| + |E(G)| = n + Lrn. Hence

3mC= ¥ {fw)+ £() + )
uvEE(G)
nt+trn
= Y i+(r-1) )Y f(v)
i=1 veV(G)
= St smmtgmi)+e-1) Y f@). ()

veV(G)

If n = 4 (mod 8), then both $rnC and (r — 1) 3 f(v) are even, but
veV(G)

3(n+ Frn)(n + Lrn + 1) is odd, which is a contradiction. Suppose now
that f is a super-edge-magic labeling of G and n = 0 (mod 4), and write

n=4m (m 21). Then Y f(v)= Y j= %n(n+1), and hence by (%),
vEV(G) j=1

2rmC = (r + 2)m(2(r + 2)m + 1) + 2(r — 1)m(dm + 1).
Consequently,
2rC =(r+2)2(r +2)m + 1) + 2(r — 1)(4m + 1).

But both 2rC and 2(r — 1)(4m + 1) are even, and (r + 2)(2(r + 2)m + 1) is
odd, which is a contradiction. 0

It follows from Lemma2 that if n is even, then P(n, k) is not super-edge-
magic.

2 Proof of Theorem

We give a constructive proof of the theorem. Since n > 3 is odd, we can
writen = 2m—1 (m > 2). Thus |V (P(n, 2))|+|E(P(n,2))| = 5n = 10m—5.
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For labelings of u; and u;u;41 (0 < j < 2m — 2), define

flug) = 1+ 0<j<m-1),
flugjy1) = m+1+] 0<j<m-2),
Flugjuzjpr) = 10m—-6-2j (0<j<m-2),
f(u2j+1'll2j+2) = 10m-7-2j (0<j<m-2),
f(uzm-2u0) = 10m —5.

Then

{f(uj)l()SjS2m—2}={1a2i"' ,2m—1},
{f(ujuj1)|0<j<2m—2} ={8m—3,8m—2,... ,10m — 5}.

For labelings of v;, vjvj+2 and u;v; (0 < j < 2m — 2), we consider two
cases.

Case 1 m =0 (mod 2)
Writem = 21 (I > 1). Thusn = 4l—1, |V (P(n,2))|+|E(P(n,2))| = 20/ -5.
Define

flugj) = 61—-1—3 (0<j<i-1),
f(vajy1) = Sl—1-—7j 0<ji<t-1),
flvgje2) = 81-2-j5 (0<j<i-1),
flugjzs) = T-2-3 (0<j<i-2),
Flvgjvajez) = 81—-1+2j (0<j<i-1),
f(vaj2vajea) = 81425 (0<j<1-2),
Fflvgjprvaes) = 100-1+25 (0<j<Il- 2),
f('U4j+3'U4j+5) = 10l + 2j (0 <3< - 2),
f(v4¢_3vo) = 121-3,
f(wa—2m1) = 100-2,
flugjvgg) = 161—-4—j5 (0<j<i-1),
f(ugjrvai41) = 181—-4-j3 (0<j<i- 1),
Flugjezvajpa) = 14l-4-j7 (0<ji<i-1),
flugjpavajes) = 131-4-3j (0<ji<I- 2).

Case 2 m =1 (mod 2)
Write m = 21+ 1 (I > 1). Thus n = 4l + 1, |[V(P(n,2))| + |E(P(n,2))| =
20 + 5. Define

flve;) = 6l+2—j5 (0<j<),
flvgjy) = T+2-j5 (0<j<i-1),
Flugjee) = 8l+2—-35 (0<j<i-1),
flvajea) = Bl+1-j (0<j<i-1),

256



f(v4jv4j+2) = 8l+3+ 2] (0 < ] <l- 1),
Fvaje2vaiia) = 81+4+25 (0<j<1-1),
F(vgjp1vg543) = 100+4+25 (0<j<i-1),
f(v4j+3v4,-+5) = 1014+5+2j (0 <j<l- 2),

flog—1vo) = 120+3,
flugv) = 101+ 3,
flugjug;) = 161+4-35 (055 <),
flugjyavaje) = 131+3-3 (0<;<I-1),
fugjravajpe) = 1Ml+3-5 (0<5j<1-1),
flugjpavajys) = 151+3-7 (0<j<i-1).

Then in both cases,

{f(v;)I0<j<2m -2} ={2m,2m + 1,... ,4m — 2},
{f(vjvj42)|0<j<2m -2} ={4m - 1,4m - 2,... ,6m — 3},
{f(uv)|]0<j<2m -2} ={6m-2,6m —1,...,8m —4}.

Consequently, f is a super-edge-magic labeling of P(n,2) with magic num-
ber 11m — 4.0
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