Generalised Ramsey Numbers with
respect to Classes of Graphs

E. J. Cockayne} O. Favaron! P. J. P. Grobler}
C. M. Mynhardt! and J. Puech!

Abstract

Let My, ..., H: be classes of graphs. The class Ramsey number
R(Hi,...,H:) is the smallest integer n such that for each t-edge
colouring (G1, ..., Gt) of Ka, there is at least one i € {1,...,t} such
that G; contains a subgraph H; € H;. We take t = 2 and deter-
mine R(G},Gy,) for all 2 <! < m and R(GF,G2,) for all 3 < I < m,
where g;'- consists of all edge-minimal graphs of order j and minimum
degree .

1 Introduction

Let H,, ..., H; be graphs. The generalised Ramsey number R(Hy,...,H;) is
the smallest integer n such that for each t-edge colouring (G, ...,G;) of
K, the graph H; is a subgraph of G; for at least one i € {1,....,t}. If
Gi = K, for each i, then R(Hj, ..., H;) = r(sy, ..., s;), the classical Ramsey
number. Generalised Ramsey numbers have been studied extensively for
many years and an excellent survey of small values of generalised Ramsey
numbers and a long list of references are given in [13].

Instead of graphs Hy, ..., H;, we consider classes of graphs and define
the corresponding class Ramsey numbers. This takes the generalisation of
Ramsey numbers for graphs one step further.

Let Hy, ..., H; be classes of graphs. The class Ramsey number R(Hy,...,
Hy) is the smallest integer n such that for each t-edge colouring (Gh, ..., Gy)
of K,, there is at least one i € {1,...,t} such that G; contains a subgraph
H; € H;. Note that if H; contains a graph H; of order pifori=1,..,t then
R(H,...,H:) < r(p1,...,ps), for if G; contains a complete subgraph K,
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then G; also contains H;. This also proves the existence of R(H1, ..., Hs)
for all nonempty H;.
For ¢ > 0 and p > 1, define

Q§={G’:|V(G)|=p, 6(G)=qand6(G—e)<qforalleeE(G)}.

Then G¢ # 0 if and only if p > ¢ For example, G3 = {Kp} , G consists of
the edge-minimal graphs of order p and minimum degree one, Qg consists of
the edge-minimal graphs of order p and minimum degree two and g;;-l =

{Kp}. Hence
RGBT, s G = 1(p1, s 1)

We consider the case ¢t = 2 and determine the Ramsey numbers R(G},
Gl)yforall 2 <!l < mand R(G?,62) for all 3 < I < m. We consider
2-edge colourings (R, B) of K, in the colours red (R) and blue (B). Hence
R(G},G1,) is the smallest integer n such that in any 2-edge colouring (R, B)
of K, the spanning subgraph R of K, contains 2 subgraph of order !
and minimum degree one, or the spanning subgraph B of K, contains a
subgraph of order m and minimum degree one. Similarly, R(G?,G2,) is
the smallest integer 7 such that in any 2-edge colouring (R,B) of K, R
contains a subgraph of order ! and minimum degree two, or B contains a
subgraph of order m and minimum degree two.

We use Turén’s Theorem [14] on the maximum number of edges in 2
triangle—free graph.

Theorem 1 The mazimum size of a triangle—free graph G of order n is
|n?/4], and if G has size ezactly |n%/4|, then G = K\n/2),in/21-

2 Known values of R(G},GJ)
As mentioned above, G3 = {K,} and G~! = {Kp}, hence

R(G?,6%) = R(G . Gm ) =r(l,m)

and a recent list of known classical Ramsey numbers is given in [13].
Further, G} = {K3 — e} and various small Ramsey numbers of the form
R(K3 — e, H) are given in Table II of [13]. Similarly, G3 = {C,} and

R(G3,G3) = R(K3,Cy)=T7 (1],
R(G2,G3) = R(Cs,Cs)=6 [3].

Since G2 = {Ws}, where W5 is the wheel on five vertices (K5 with two
independent edges removed), we also have )
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R(G3,G3)
R(G3,G3)

R(K4,W5) =17 [10],
R(Ws, Ws) =15 [9, 11].

il

The bounds
27 < R(G2,G2) = R(Ks, Ws) < 29

were also obtained in [11)].

3 The Ramsey numbers R(G},GL)

We give a short proof of the elementary result R(G},Gl) = m for all
2 <1 <m. We begin by observing that if G is a graph of order p, then G
has a spanning subgraph with minimum degree one if and only if G has no
isolated vertices, and if G has a universal vertex (a vertex adjacent to all
other vertices of G), then G has a subgraph H with § (H) = 1 and order ¢
for each g € {2,...,p}.

Proposition 2 If2 <! < m, then R(G},GL) =m.

Proof. The edge colouring (K1, Km—1) shows that R(G},GL) > m—1.
Consider any edge colouring (R, B) of K,,. Suppose B does not have a
spanning subgraph with minimum degree one. Then as observed above, B
has an isolated vertex, hence R has a universal vertex and therefore, since
! < m, a subgraph of order ! and minimum degree one. W

4 The Ramsey numbers R(G?Z G2)

In most of this section we simplify the notation G2 to G,. We deter-
mine R(G3,Gs) separately, and then find formulas for R(Gs,Gm), m > 6,

We denote the open and closed neighbourhoods of a vertex v of a graph
G by N (v) and N [v] respectively, that is, N(v) = {u € V(G) : uv €
E(G)} and N [v] = N (v) U {v}. For a vertex subset X of G, the subgraph
of G induced by X is denoted by (X). When considering an edge colouring
(R, B) of K, we sometimes write (X)y or {X)p to emphasize the colour
class containing the subgraph (X). We denote the neighbours of v in R (B,
respectively) by R, (B,) and write degp v for |R,|, degg v for |B,|. Note
that {v}, R, and B, form a partition of V (K,,).

For any I, m and n, an edge colouring of K, such that R does not
contain a subgraph in G; and B does not contain a subgraph in G,, is said
to be an (I,m) colouring of K,. We now consider the sets G3 = { K3} and
Gm, where m > 5 and begin with two lemmas.
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Lemma 8 Form=5andn>9, orm> 6 andn > m+2, and any (3, m)
colouring (R, B) of Kn, |By| < m — 2 for every vertez v.

Proof. Suppose to the contrary that deggv > m — 1 for some vertex v
and let Xo = {u € B, : u is not isolated in (B,)z}. We first prove that
|Xo| < m—2. If | Xo| =m —1, then § ((Xo U {v})p) > 2 and |Xo U {v}| =
m. Hence {XoU {v}) has a spanning subgraph H € G, a contradiction.
If | Xo| > m and each vertex in X is adjacent to an endvertex of (Xo) 5,
then (Xo)p = pK> for some p. Then m > 6 and (Xo) g has at least three
components, so that obviously (Xo)g has a K3, a contradiction. Thus
there exists zg € Xo which is not adjacent to an endvertex and hence
X1 = Xo — {zo} satisfies | X1| < |Xo| and 6 ((X1)g) = 1. Continuing we
obtain a set X = X, for some k with [ X} =m—1and § ((X)g) > 1. Again
(X U {v}) has an m-vertex spanning subgraph with minimum degree two,
contradicting the fact that (R, B) is a (3,m) colouring of K.

Hence |Xo| < m — 2 and there exists an isolated vertex u in (By)p.
Let S = B, — {u} and note that |S| > m — 2 and each edge from u to S
is red. Thus to avoid triangles in R, (S)p is complete, hence S = X, i.e.
(S) B = Km_2 and

deggv=m—1. (1)

Sincen > m+2,q=|Ry > 2andif m =5 then ¢ > 4. Since R is
trianglefree, (Ry)p = Ky, i.e. (Ry)p = K,. Moreover, there is at most
one blue edge from any vertex r € R, to S, for otherwise (SU {r,v})p has
a spanning subgraph with minimum degree two. Thus there are red edges
from any vertex in R, to S, and to avoid red triangles, ru is blue for any
r € R,. Hence if m = 5 it follows that deggu > |R, U {v}| > 5. But
this contradicts (1), which holds for any vertex x with deggz > m — 1.
Therefore m > 6 and so for any two vertices 7,8 € R, and any Y C S
with |[Y] = m—3, ({r,s,u} UY) g has minimum degree at least two and so
contains a spanning subgraph H € Gy, a contradiction. B

Lemma 4 For any m > 6 and any (3,m) colouring (R,B) of K;n+2,
degp v = 4 for some vertexr v.

Proof. Suppose A(B) < 3. Then 6§ (R) > m — 2 and so R has at least
3 (m? — 4) edges. But
m?—4 _ (m+ 2)®
2 4

for all m > 6. Hence by Turdn’s Theorem (Theorem 1) R contains a Kj, a
contradiction. If m = 6, then

m?—4 (m +2)?
2 4
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and thus R = Ky 4, i.e. B = 2K, and B has 2K3 as subgraph, a contra-
diction. B

It is now easy to determine R(Gs,Gs), that is, the smallest integer n
such that for every edge colouring (R, B) of K,,, R has a triangle or B has
a subgraph of order five with minimum degree (at least) two.

Proposition 5 R(Gs,Gs) =9.

Proof. To see that R(Gs3,Gs) > 8, let (R, B) be the edge colouring of K3
with R = Ky 4 and B 2 2K,. Then R is triangle-free and any subgraph H
of B with five vertices has a component with at most two vertices, hence
6(H)<1.

Now suppose there exists an edge colouring (R, B) of Ky such that R
is triangle—free and B does not contain a 5~vertex subgraph with minimum
degree two. By Lemma 3, A (B) < 3 so that § (R) > 5. Hence R has at
least 23 edges and it follows from Turdn’s Theorem (Theorem 1) that R
contains a triangle, a contradiction. The result follows. W

We next consider the general case R(G3, Gm), where m > 6.
Theorem 6 For any m > 6, R(G3,Gm) =m + 2.

Proof. The edge colouring (R, B) with R = Kom-1and B2 Ko UK,,_;
is a (3, m) colouring of K.

Suppose that (R, B) is a (3, m) colouring of K m+2 and consider a vertex
v with degg v = A (B). By Lemmas 3 and 4, 4 <p=deggv<m—2and
hence ¢ = |R,| = m +1—p > 3. To avoid triangles in R, (Rv)g = K,.
If (B,) g contains an isolated vertex u and S = B, — {u}, then (to avoid
red triangles with ) (S)g = K,—1. Since p > 4, (SUR,) p is an m—vertex
graph with minimum degree at least two and hence contains a graph in G,,,
a contradiction.

Therefore 6 ((By)) 2 1. If Kz is a component of {B,) pand T =
(Bv)g — Ka, then {{v} UTUR,) g contains Kp_; U Kpy1—p and thus a
graph in G, as subgraph, a contradiction. If X5 is not a component of
(Bu)g, then B, also contains two vertices u and w such that 8((By —
{u,w})B) > 1 and we obtain a contradiction as before. W

Thus we see that R (G3, Gs) = 8 while R(G3,Gs) = 9 and so R (Gs, Gm)
is not monotone. As indicated in Section 2, R(G4,G4) = R(C4,Cy4) = 6.
We generalise this result to show that R (Gm,Gm) =m+2 for all m > 4.

Lemma 7 For m > 5 and any (m,m) colouring (R, B) of K42, R and
B have at least three vertices of degree at most three.

Proof. We prove the result for R; the result for B follows by symmetry.
Let V(R) = {v1,...,Umy2} with degpv; < degpvj if i < j. Define U =

283



V (R) — {v1,v2} and Ry = (U)p. By hypothesis §(R;) < 1 and so if v
is a vertex of R; of minimum degree, then degpur < 3. But degpv; <
degp ve < degg vk and the result follows. u

Lemma 8 If (R, B) is an (m,m) colouring of Kmy2, then in R and in B,
|N [u] UN [v]| > 5 for any two vertices u and v.

Proof. Suppose to the contrary that (say) in R, |[N[u] UN [v]] £ 4 and
let U be any subset of V (R) — (N [u] U N [v]) with U] = m — 2. Then
(U U {u,v}) p contains Ka,m—2 as spanning subgraph, a contradiction. W

Theorem 9 For any m > 5, R(Gm,Gm) =m+2.

Proof. Consider the edge colouring (R, B) of K41 where R consists of
K1 together with two pendant edges. Then both R and B have at most
m — 1 vertices of degree two or more. Thus R(Gm,Gm) > m + 1.
Suppose (R, B) is an (m,m) colouring of Km42. Let V(R) = {v1,-
Ums2} With degpv; < degpv; if i < j. Define
Wi = {v;:degpv; =deggu},
k max {i:v; € W1} and

Wo = {vi:degpv;=degpuks1}-

If |[W1| > 2, then if possible let v and v be adjacent vertices in W1; otherwise
let u and v be any vertices in W. If Wil =1,letu=n and if possible
let v € W» be adjacent to u; otherwise let v € W5 be arbitrary. By Lemma
7, degpu < degpv < 3. Let N (u) = Np(u) and N (v) = Ngr (v). We first
prove a lemma.

Lemma 9.1 N (u)NN (v) #0.

Proof. Suppose to the contrary that N (u)NN (v) = @ and consider Ry, =
(V (R) — {u,v})g- By hypothesis § (Ruy) < 1. Let w be a vertex of Ry,
with degp, w = 8(Ruw)- Hw ¢ N (u) U N (v), then deggw < 1 and
so by the choice of u and v, deggu < degpv < 1, contradicting Lemma
8. Hence w € N (u) or w € N(v). Sincew ¢ N(u)NN (v) it follows
that degpw < 2 and so by the choice of u and v, deggu < deggpv < 2.
But since w is adjacent to u or to v it follows that [N [u] UN [w]| < 4 or
|N [v]U N [w]| <4, a contradiction. [

In particular, Lemmas 8 and 9.1 together imply that R has no isolated
vertices and degp u + degp v > 4. We show that a stronger result holds.

Lemma 9.2 degpu=degpv =3 anduv € E (R), or degpu =degpv =
2 and uwv € E(B).
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Proof. Suppose firstly that uv € E(B) but deggv = 3. As above let
w be a vertex of Ry, with deggw = §(Ryy) < 1. By the choice of v,
degpw > degpv = 3 and so degpw = 3 and w € N (u) N N (v), ie
w € W3 UW, and w is adjacent to v while v is not adjacent (in R) to u.
This contradicts the choice of v. Thus degz v < 2 and so by Lemmas 8 and
9.1, degpu = degrv =2.

Now suppose that uv € E(R). By Lemma 9.1, deggu > 2. But if
degpu = 2, then by Lemma 8, degpv = 3. Also, N [u] C N [v] (since u is
adjacent to v and N (u) NN (v) # 0). This implies that [N [u] U N [v]| = 4,
contradicting Lemma 8 and the result follows. [0

Lemmas 9.1 and 9.2 imply that [N [] U N [v]| < 5and so [N [u] U N [v]|
=5 by Lemma 8. Therefore [N (v) N N (v)] =1; say N (u) NN (v) = {w}.
Then also [N (u)—{v,w}| = |N (v) — {u,w}| = 1; say N (u)—{v,w} = {=},
N (v) — {u,w} = {y}. Let v’ be a vertex of degree at most one in Ry,.
By the choice of 4 and Lemma 9.2, deggw’ > 2 and so w' € N (uv) U
N (v). However, if w' € {z,y}, then degpw’ = degp, w'+1 < 2 and
so degpw’ = 2. But then degpu = degpv = 2 and R has two adjacent
vertices (w’ and one of u and v) of degree two, contradicting Lemma 8.
Hence w' = w and degp w < 3; thus w is adjacent to at most one vertex in
S =V (R) — N[{u,v}]. Say N(w)nS C {z}.

Let G be the subgraph of B induced by S U {u,v,w} and note that
K3m-3 — wz is a spanning subgraph of G. Hence (except in the single
case where |§| = 2, i.e, m =5, and N(w)NS = {z}) 6(G) 22 and G
contains a graph in G,,. In the exceptional case, since R does not contain
a 5—cycle, zy ¢ E (R) and so zy is blue. But then zyuzvz is a 5—cycle in
B, a contradiction.

||

Our last result determines R (Gi, Gm) for all 4 <l < m.
Theorem 10 Forall4 <l <m, R(G,Gm)=m+1.
Proof. The edge colouring (R, B) of Ky, with R & Kj -1 and B &
K1 U Ky is an (I, m) colouring of Ko,. '
Suppose there exists an (¢, m) colouring (R, B) of K41 and let u be a
vertex of B with degg u = 6 (B). Then § (B — u) < 1 (by assumption) and
so there exists a vertex v with degg_,, v < 1. Hence deggu < deggv < 2.
Moreover, if v is not adjacent to u, then degg u < degg v < 1. In either case
N [{u,v}]| <4andso |V(B) - N[{uw,v}]]>m—-321—-22>2. Let S be
any subset of V (B) — N [{, v}] with |S| = {—2. Then Kj3;_» is a spanning
subgraph of (S U {u,v})z with minimum degree two, a contradiction. W
To summarise, the known values of R(G},G?,), where 1 <i < 2, are as
follows:

R(Gl,GL) = m, 2Z1l<m
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R(G%,G3) = R(K3, K3)=6

R(G2,G3) = R(K3,Cy) =T
R(G},G62) = 9

R(G%,G2) = m+2, m>6
R(G},G%) = m+1, 4<i<m

R(G2,62) = m+2 m>4

5 Irredundant Ramsey numbers

We close with some brief remarks about the relevance of the class Ramsey
numbers R(G},G:,), where 1 < i < 2, to generalised irredundant Ramsey
numbers.

For a graph G = (V,E), aset S C V and a vertex s € S, we define
three types of S—private neighbours (S—-pns) t of s (see [4, 5]). The vertex
t is an (i) S—self private neighbour (S-spn) of s if t = s and s is an isolated
vertex of (S); (ii) S—internal private neighbour (S-ipn) of sift € S — {s}
and N(t) NS = {s}; (iii) S—external private neighbour (S-epn) of s if
teV —Sand N(t)NS = {s}. Notice that each such ¢ is an element of
N [s] — N(S — {s}) and that no s € S can have S-pns of both type (i) and
type (ii).

The negation of a Boolean variable z is denoted by Z. For s € S, let
?(s,9), g(s,S) and r(s, S) be Boolean variables which take the value 1 if
and only if s has an S—pn of type (i), (ii) or (iii) respectively. We abbreviate
these variables to p, ¢ and r. Note that for each s € S, pAg =0, i.e. p,q,r
are not independent variables. Let S (s) = (p, g,7). The condition pAg=10
implies that S (s) is never (1,1,0) or (1,1,1). Using this observation together
with conjunction, disjunction and negation, a set F of 62 distinct Boolean
functions f = f(p,q,7) with f # 0, f # 1 are defined in [4]. The set S is
called an f-setof Gifforalls€ S, f(S(s)) =1.

For example, if f = p, then S is an f-set if and only if each vertex
s € S is an isolated vertex of (S), i.e. S is independentin G. If f=pVr,
then S is an f-set if and only if each s € S is isolated in (S) or has an
S—epn, i.e., S is an irredundant set of G.

Further, if f = P, then S is an f-set if and only if no element s € S is
isolated in (S), i.e. §((S)) > 1;if f =P AT, then S is an f-set if and only
if no element s € S is isolated or has an S-ipn in S, i.e. §({S)) > 2. (Note
that in the notation of [5], 7 = feo and PAG = fus.)

Using independent sets instead of complete graphs, the classical Ram-
sey number, here denoted by Rp(s1, ..., 5¢), can now be defined as the small-
est integer n such that for each t—edge colouring (Gh, ..., Gt) of K, there
exists i € {1, ...,t} such that the complement G; contains an independent
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set (i.e. a p-set) of cardinality s;. By replacing “p” by a different Boolean
function f from F, this concept can be generalised — see 4, 5). For exam-
ple, if p is replaced by pVr (respectively pVgVr, pVq), we define irredundant
Ramsey numbers (see [12]) (respectively CO-irredundant Ramsey numbers
[6, 8], 1-dependent Ramsey numbers [7]).

Similarly, if p is replaced by P and ¢ = 2, it is easy to see that the
generalised Ramsey number R5(l,m) is precisely the class Ramsey number
R(G},GL), while if p is replaced by PA g, then Rzag5 (1, m) is the same as
R(G1.G2)-
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