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ABSTRACT. The niche graph of a digraph D is the undirected graph
defined on the same vertex set in which two vertices are adjacent if
they share either a common in-neighbor or a common out-neighbor
in D. We define a hierarchy of graphs depending on the condition of
being the niche graph of a digraph having, respectively, no cycles, no
cycles of length two, no loops, or loops. Our goal is to classify in this
hierarchy all graphs of order n > 3 having a subgraph isomorphic to
Knp_o.

1. INTRODUCTION AND PRELIMINARIES

A survey of the beginnings of the study of niche graphs can be found
in [7]. Some more recent work has distinguished categories of niche graphs
and attempted to identify the niche graphs category of the graphs belonging
to various classes. (See, for example, [1],(3],(9]). The categories we define
in this paper are the ones found in the literature, with the addition of
one suggested by the recent complete description of the niche graphs of all
tournaments in [4]. The purpose of the present work is to give the niche
graph category of each dense graph. We begin with some definitions.

Notation. The set of in-neighbors of a vertez = in a digraph D will be
denoted inp(z). Similarly, the set of out-neighbors will be denoted outp(z).
In case there is not danger of ambiguity, the subscript will be suppressed.
Definition 1. Given a digraph D = (V, A), the niche graph of D is an
(undirected) graph G = (V, E) such that [z,y] € E if and only if either
in(z) N in(y) or out(z) N out(y) is nonempty. We will also say that D
is a niche digraph of G.
Definition 2. Among niche graphs, we identify the following categories.
A graph G is:

e an acyclic niche graph if it has an acyclic niche digraph.

* an asymmetric niche graph if it has an asymmetric niche digraph

(i.e., one without cycles of length 2).
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¢ a cyclic niche graph if it has a niche digraph without loops.
o a loop niche graph if it has an arbitrary niche digraph (possibly con-
taining loops).

It is evident that these categories are nested:
acyclic => asymmetric => cyclic = loop

They also are distinct and do not exhaust all graphs, as is illustrated by
the following list of examples. It is shown in [1] that K5 is not a (loop)
niche graph. The digraph D in Figure 1 demonstrates that K 3 is a loop
niche graph, but it is shown in [3] that this graph is not a cyclic niche
graph. In Section 3 we show that, for example, the graph G, depicted in
Figure 3, is a cyclic niche graph which is not an asymmetric niche graph.
It follows from Proposition 1 that K4 is an asymmetric niche graph, but in
[5] it is shown not to be an acyclic niche graph. Finally, the classification
we provide in this paper shows that most dense graphs are acyclic niche
graphs.

FIGURE 1. Niche digraph for K, 3

Definition 3. We will call a graph of order n > 3 dense if it contains a
subgraph isomorphic to Kp_a.

The goal is to determine the niche graph categories to which each dense
graph belongs. We begin with two easy subclasses. It is proved in [5] that
complete graphs are not acyclic niche graphs. On the other hand:

Proposition 1. Every complete graph of order at least 4 is an asymmetric
niche graph.

Proof. Let n > 4 and G be complete with vertex set {z1,...,2Z,}. Create
the digraph D on the same vertex set and having arc set

AD)={z1—zk: k=2,...,n}U{zi o> iy1:1=2,...,n — 1} U {zn — 22}.

It is routine to check that D is asymmetric and that its niche graph is
G. a

Proposition 2. Every graph of order n > 4 which is not complete and
which contains a subgraph isomorphic to Kn—1 is an acyclic niche graph.
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Proof. Let n > 4 and G be an incomplete graph with vertex set {z1,..., 20}
and suppose that {zs,...,z,} generates a complete subgraph of G. Sup-
pose moreover that the neighbors in G of x; are zo,...,z; (for i < n). The
arc set

A(D)={x1—»zk:k=2,...,n}U{xk-—>mk+1 :k=2,...,i}

defines a digraph D on the same vertex set. (Set the second part of the
definition of the arc set to the empty set if z; is isolated in G). It is routine
to check that D is acyclic and that its niche graph is G. a

The dense graphs of order 3 and 4 which are not covered by these two
results are easily seen to be acyclic niche graphs with the exception of K 3
K3, and Cy4. As already pointed out, K- 1,3 is a loop niche graph which is
not a cyclic niche graph. In [5] it is shown that neither of the other two
is an acyclic niche graph. It follows easily that K3 and, with only a little
more work, that C, cannot be asymmetric either. The digraphs in Figure
2 show that K3 and Cy are cyclic niche graphs.

FIGURE 2. Niche digraphs for K3 and C;

The rest of the paper will be devoted to dense graphs of order at least
5. We say that a graph G of order n satisfies condition % if:

1. n>5,

2. G is not complete, and

3. V(G) = WU {r,s}, where (W) = K, _,.

The symbols r and s will be reserved througout the rest of the paper for
the two vertices of G outside of W. Our determination of niche category
of graphs satisfying condition Y will be split into the case in which r is
adjacent to s in G, undertaken in Section 2, and the case in which r is not
adjacent to s, covered in Section 3.

2. VERTICES r AND s ADJACENT IN THE NICHE GRAPH

Throughout this section we assume that G is a graph satisfying % and
that vertices r and s are adjacent. We will show that all these graphs are
acyclic niche graphs by providing appropriate digraphs.
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Notation. The following abbreviations will be useful:
nbr'(r) = nbrg(r) — {s}
nbr'(s) = nbrg(s) — {r}.
If V is the vertez set of a digraph, B C V and z €V, then
{z - B} = {z — yly € B} and
{B -z} ={y—zlye B}.

Lemma 1. If nbr'(r) # nbr'(s) and nbr'(r) N nbr'(s) # 0, then G is an
acyclic niche graph.

Proof. Suppose, without loss of generality, that nbr'(s) — nbr'(r) # 0 and
fix u € nbr'(r) N nbr'(s) and v € nbr'(s) — nbr'(r). Let D be the digraph
with the following arc set:

{r—Wu—-ss—-viU{y—oulye nbr'(r) — nbr'(s)}
U {u — yly € nbr'(s) — {u}}U{y— vly € nbr'(r) Nnbr'(s)}.

We must show that D is acyclic and has niche graph G. First, notice
that in checking a digraph for cycles, one may remove vertices with either
indegree or outdegree equal to zero. Accordingly, remove from D the vertex
r (since its indegree is zero) and all vertices of W —nbr'(r) (since each has
outdegree equal to zero). In the result, no vertex other than u has positive
indegree and positive outdegree, so D is acyclic. All the vertices of W are
adjacent in the niche graph of D by virtue of the common in-neighbor 7.
The vertex s is adjacent to each of its neighbors in G except u and T by
virtue of the common in-neighbor u and is adjacent to u and to T since
v is a common out-neighbor. Next, the edges between r and the vertices
of nbr'(r) — nbr'(s) arise from the common out-neighbor u and the edges
between  and the vertices of nbr’(r) Nnbr’(s) are due to the common out-
neighbor v. It remains to check that the niche graph of D has no edges
not in G. To this end, it is only necessary to check that the in-neighbors of
each vertex with indegree greater than one are mutually adjacent in G and
that the same is true of the out-neighbors of each vertex with outdegree
greater than one. In the digraph under consideration, only 7 and u have
out-degree greater than one and only the vertices of nbr'(s) have indegree
greater than one. But each of the sets: outp(r), outp(u), inp(u), and
inp(v) generates a complete subgraph of G and, if z € nbr'(s) — {u,v},
then inp(z) = {u,r}. The proof is therefore complete. O

The details showing that the digraph in the preceeding proof is acyclic
and has the desired niche graph are typical. In the rest of this section
and the next, we will provide appropriate arc sets and omit the remaining
details.
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Lemma 2. If nbr'(r) = nbr'(s), then G is an acyclic niche graph.

Proof. Suppose G satisfies the stated conditions, let N = nbr'(r) = nbr'(s)
and fix w € W — N (nonempty for the G under consideration). A suitable
arc set is

AD)={r—-W,s - w,N — w}

Lemma 3. If nbr'(r) Nnbr'(s) = 0, then G is an acyclic niche graph.

Proof. Suppose G satisfies the stated conditions. Assume, without loss of
generality, that |nbr'(s)| < |nbr'(r)]. In case |nbr'(s)| = |nbr'(r)| = 0, the
conclusion follows from Lemma 2. If |nbr'(s)| = 0 < [nbr'(r)|, set

A(D) = {r - W,s > r,s — nbr'(r)}.
If nbr'(r) = {u} and nbr'(s) = {v} (so u # v), then fix w € W — {u,v}
(such a w must exist since |G| > 4) and let
AD) = {r—-Wu— s,u—v,5s > w}.

Finally, if [nbr’(r)| > 1 and |nbr'(s)| 2 1, fix distinct vertices » and w from
nbr'(r) and v from nbr'(s). A suitable arc set is

A(D) = {r - W,u — nbr'(s),nbr'(r) - v,5s - w,u — s}.
O

The list of conditions on nbr’(r) and nbr’(s) from the last three lemmas
is exhaustive:

Theorem 1. If G satisfies % and r is adjacent to s, then G is an acyclic
niche graph.

3. VERTICES T AND s NOT ADJACENT IN THE NICHE GRAPH

In this section we consider the niche category of graphs satisfying
in which vertices r and s are not adjacent. We will show that all such
graphs are acyclic niche graphs with the exception of four specific graphs
and an infinite family (namely those for which nbr(r) = nbr(s) = {u}).
The investigation of these graphs is undertaken in a number of lemmas
depending on the interaction of the sets W, nbr(r), and nbr(s). Throughout
this section we employ the notation of % and assume that r is not adjacent
to s.

Lemma 4. If neither of the sets nbr(r) nor nbr(s) is a subset of the other,
then G is an acyclic niche graph

293



Proof. Fix u € nbr(r) — nbr(s) and w € nbr(s) — nbr(r) and let
A(D) = {r - W,u — nbr(s),nbr(r) —» w,u — s}.
O
Lemma 5. If nbr(s) = @, then G is an acyclic niche graph.

Proof. If nbr(r) = W, then G & K,_; U K, where n is the order of G.
Such a G is an acyclic niche graph [CJLS]. Otherwise, fix u € W — nbr(r)
and let

A(D) = {r » W} U {nbr(r) - u}.

O
Lemma 6. If nbr(s) C nbr(r) = W, then G is an acyclic niche graph.
Proof. If nbr(s) = nbr(r), let
A(D)={r - s,7r > W,W — s}.
Otherwise, fix u € W — nbr(s) and set
A(D) = {s > W,s - r,nbr(s) — u}.
O

Lemma 7. If0 # nbr(s) C nbr(r) C W, then G is an acyclic niche graph.
Proof. Fix u € nbr(r) — nbr(s), and w € W — nbr(r) and set
A(D) = {r - W,u — nbr(s),u — s, (nbr(r) — {u}) — w}.
O

The results of this section so far leave only the case in which nbr(r) and
nbr(s) are equal and nonempty.

Notation. For the rest of this section, let N = nbr(r) = nbr(s) and sup-
pose that N # 0. By Lemma 6, we may assume that N is a proper subset
of W.

Lemma 8. If |N| > 4, then G is an acyclic niche graph.
Proof. Fix distinct vertices u € W — N and w, z,y,z € N and let

AD) ={w — s,w —» (N —{w,z}),z —» (W — {z}),(N — {w}) - v,
r— {u,z,¥},s = z,y = 2,(W - N - {u}) - w}.

Since the arc set in this case is fairly involved, we will include the details
of this proof. To check D for cycles, note that indegp(r) = outdegp(u) =0
so they may be removed from consideration. In the resulting digraph, z
has no in-neighbors and z has no out-neighbors, so they may be removed.
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This leaves a digraph in which only w has both in-neighbors and out-
neighbors, thus D is acyclic. The vertices of W — {z} are out-neighbors
of z and so are adjacent in the niche graph of D. On the other hand, u
is a common out-neighbor of x and the vertices of N — {z,w} and w is
a common out-neighbor of z and the vertices of W — N. Finally, y is a
common out-neighbor of z and w. Thus the vertices of W are mutually
adjacent in the niche graph. Vertex r is adjacent to w due to the common
out-neighbor y and r is adjacent to the rest of the vertices of N due to the
common out-neighbor u. Edges between s and the vertices of N — {w, z}
arise from the common in-neighbor w and those between s, w, and z arise
from the common out-neighbor z. It remains to check that the niche graph
of D contains no edges not in G. For this, it is sufficient to examine only
the vertices adjacent in D to r and s. Specifically, out(w) and in(z) are
subsets of {s} UN and in(z), in(y), and in(u) are all subsets of {r} U N.
Since both {s} UN and {r} U N generate complete subgraphs of G, the
proof is complete. O

Lemma 9. If|{N| > 2 and |W — N| > 3, then G is an acyclic niche graph.
Proof. Fix distinct vertices u,w € N and z,y,z € W — N and let

AD)={s—=z,N o z,w— (W—{w}),(W-N - {z}) - u,
s—=w,y—>rr—o2y— (N-{w})}
a

Lemma 10. If [N| =1 and |W — N| > 4, then G is an asymmetric niche
graph, but not an acyclic niche graph.

Proof. If |[N| = 1, then G belongs to a class of graphs called novas . In
[5] it is proved that no such graph is an acyclic niche graph. On the other
hand, if N = {u} and v,z,y, and z and distinct vertices in W — N, then
the set

AD)={u—-z,v-rz 52>z, (W-{uz})>uy— (W-{y})}
defines an asymmetric digraph with niche graph G. o

The six remaining graphs satisfying % in which r and s are not adjacent
are shown in the Figure 3. (The vertices within the rectangles generate
complete subgraphs whose edges are not shown.)

Below is an arcset A; defining a digraph with niche graph isomorphic
to G; for each integer 7 from 1 to 6. Refering to Figure 3, for each i
between 1 and 6, the vertices outside the rectangle are denoted r and s and
those within the rectangle are denoted (top to bottom) zy,...,z,, where
n= IG,I - 2.
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FIGURE 3. Exceptional Dense Graphs

Ay = {r — 12,71 — {2, 23}, 22 — {z1,z3},z3 — {Z1,8}}

Ay = AU {z1 — 24,T2 — T4}

Az = {r - z;|i =1,2,3} U {z1 — 8,22 — 5,21 — T2, T2 = z1}

Ay =AU {r — z4}

As = {r - zi|i=1,2,3,4} U {{z1,Z2, 23} — 8,71 — T2, T2 — T3,T3 1}
Ag = As U {r — z5}

These arc sets demonstrate that Gi,G2,Gs, and G4 are cyclic niche
graphs and that Gs and G are asymmetric niche graphs. To complete
the classification of dense graphs, it remains to show that one can do no
better in each case. We provide complete details to show that neither G
nor Go has an asymmetric niche digraph in Lemma 11. We have omitted
the details of a similar, but much longer, argument showing that the same
is true of G3 and G,. Finally, an exhaustive computer search revealed
that neither G5 nor Gg has an acyclic niche digraph. (The results of this
computer search confirm those of an independent one reported in )]

Lemma 11. Neither G nor Ga is the niche graph of any asymmetric
digraph.

Proof. Suppose, to the contrary, that D is an asymmetric digraph with
niche graph G (either G; or G2) and, moreover, that any arc whose removal
does not affect the niche graph has been removed. Observe first that this
implies that r and s are not adjacent in D. Indeed, if r — s in D, then
without loss of generality, we may assume that z, — s in D. Now the
edge [s,z1] in G requires 7 — z; but this leaves no way to produce the
edge [z1,Z2] in the niche graph. Thus D contains no arc connecting r and
s. There is no loss of generality in assuming then that z2 is a common
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in-neighbor of r and z;. The edge [s,z1] can only be achieved by z3 as
either a common in-neighbor or a common out-neighbor. In the first case,
the edge [z, z3] requires z4 as a common in-neighbor, as which stage, the
edge [r1,z4) is impossible in an asymmetric digraph. Similaraly, in the
second case, the edge [z, 3] requires z4 as a common out-neighbor, but
again, the edge [z, z4] is impossible. Hence, the niche graph of D cannot
be G, a contradiction. (|

4. SUMMARY

This completes the classification of the niche category of all dense graphs.
All such graphs are acyclic niche graphs except the dense novas, the com-
plete graphs, Cy, and the graphs Gs3, G4, G5, and Gg from Figure 3. The
dense novas of order at least 7, the complete graphs of order at least 4,
Ci, and the graphs G5 and G from Figure 3 are asymmetric niche graphs.
The graphs G; in Figure 3 for 1 < i < 4 are not asymmetric niche graphs,
but are cyclic niche graphs. Finally, K 3, the only remaining dense nova,
is not a cyclic niche graph, but is a loop niche graph.
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