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Abstract
A given nonincreasing sequence D = (di,da,---,d,) is said to
contain a (nonincreasing) repetition sequence D* = (d,, diy, -+ ,di,)

for some k < n — 2 if all values of D — D* are distinct and for any
d;, € D" there exists some d; € D — D* such that d;; = d;. For any
pair of integers n and k with n > k + 2, we investigate the existence
of a graphic sequence which contains a given repetition sequence.
Our main theorem contains the known results for the special case
diy =d;, ifk=1o0r k=2 (see [1, 5, 2)).
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1 Introduction

A nonincreasing sequence (dy, ..., dn) with 0 < d; < n—1 for each i is called
graphic if it gives the vertex degrees of some simple graph of order 7. These
sequences are well characterized by the classical result of Erdds and Gallai
(see Theorem 5), but some questions cannot be answered directly from that
result. An easier result is that a graphic sequence must contain at least one
repetition. In this paper we study repetition patterns in degree sequences,
that is, possible patterns of repeated degrees.

For example, it is known that if a graphic sequence contains precisely
one repetition, then that repetition must lie between 3 — 1 and % (see
Theorem 1). Is there, for example, a graphic sequence with k repeated
values of the integer Z, for 3 < k < n -1, with all other values distinct?
Is it possible to have a graph such that two degrees are 34’—', two are %, two
are %, and all others are distinct? The first question has been answered
previously in Theorems 2 and 3 (in the affirmative). A consequence of the

present work is that the answer to the second question is also yes.

Definition: Let D : d; > dz > --- > dy, be a finite sequence of non-
negative integers. A subsequence D* : d;, > d;, 2 --- > d;, is called the
repetition subsequence, denoted by RS, if

(1) all values of D — D* are distinct, and

(2) for any d;, € D*, there exists some d; € D — D* such that d;, = d,,
and t < i;.

Given two integers n and k with k < n —1 and a sequence D* : n >
d;, > -+~ > d;, >0, we investigate the existence of a graphic sequence D
with single valued repetitions having D* as its RS. When k =n -1, this
question asks about the existence of a d)-regular graph on n vertices, and
it is an elementary exercise to show that such a graph exists if and only if
not both d; and n are odd; hence we assume k < n — 2.

For the special case d;, = d;, , the following three results (see [1, 2, 5])
concern graphic sequences with single repetitions.

Theorem 1 (Behzad, Chartrand) If n > 2, there erists a graphic se-
quence (dy,...,dn) with a repetition sequence D* : d;, = j if and only
if

n n

Z-1<i<—.
g 1Sis3
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Theorem 2 (Hutchinson) Ifn > 4 then there erists a graphic sequence
(d1,...,dn) with a repetition sequence D* : diy =d;, = j if and only if
n—3 3n-1

—_— < <L .
g =733

0

Theorem 3 (Chen, Piotrowski, Shreve) Ifn > k+2, then there exists
a graphic sequence having D* : d;, = d;, = ... = di, = j as its RS if and
only if

Tl—k—l n—k—l
—_— <<l - e ——
o =Jsn-l 2k

o

Note that, with j = 3 and 3 < k < n — 1, this last inequality holds, thus

giving an affirmative answer to one question posed above.

Let n and k be positive integers with n > k + 2, and for two nonin-
creasing sequences of nonnegative values D = (d1,da,---,dyn) and D* =
(dil,d"z,' Tty dik)a we define

a = a(D) = min{z : dz4; < 7},
and for 0 < z < k <n—1, we define
S(2) = (= (z =B +n(z- 3) + 12K,

f(z) =Zd,’, = Zdir

i<z >z

Without loss of generality we will assume that d;, < "T'l (If necessary,
take the complementary graph and let d, =n-1-d, o for1<i<k,
Then one may use D' = {di, di,,---,di, }.) Set

and

m=m(D*) =min{z : d;,,, < l-n—k+2a:J }.
Thus, 0<m<k—-1.

Example 1 Consider the complete bipartite graph K. 3p . With the

n

smaller part completed to Kz. Thus, D = n—-1,...,n—1,2 ...,8) and
3 3 3
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D* = (ds,...,d3,d3+2:--- ,dn). That is, (n — 1) appears in the sequence
D* with multiplicity & — 1 and § appears with multiplicity 28 — 1 Thus,

k=n-2a=%adm=5%-1
In this paper, we will prove the following result.
Theorem 4 (1) If there ezists a graphic sequence D (d1,d2,- -1 dn)

having D* as its RS, then there exists some g with ig < (D) < dg41 (
i1 > a(D) for all1 <1 < k when g =0) such that

f(g) < S(q).
(2) Given n and D* = d;,,diy, ..., di,, @ nonincreasing sequence with
0 < d;, <n—1 for each entry, then ifd;, <n—k+m-—2, d;, 2 m and
f(m) £ S(m),

then there is a graphic sequence having D* as its RS.

o

In Example 1, we have g = 3—1and f(q) = Egz-—n+1 < 1‘93—3-‘—% = S(q).
Consider again the question of whether there is a graphic sequence in which
two of the degrees are 37", two are 3, two are e and all others are distinct.
Thus, D* = (3—;‘-, 2,2),k=3m= 2, f(2) =n, S(2) = % — 2 showing

that D* is an RS by Theorem 4 (2).

In the next section, we will prove Theorem 4 and show how it implies
Theorems 1 and 2.

2 The Proof of Theorem 4

If D = (dy,..-,dn) is a nonincreasing sequence of integers such that 0 <
d; <n—1forall 1 £ i< n, we define
n z
&p(z) =z(z—1)+ Y min{z,d} - di (1)
i=2+1 i=1

In the proof of our result we will use the following classical theorem([4]).
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Theorem 5 (Erdds-Gallai) The sequence D is graphic if and only if
Zd‘ is even, and

i=l

&p(z) 20 for everyz, 1<z <n. (2)

See (3] for a simple proof of Theorem 5.

Observe that if z > a, then formula (1) simplifies to

&p(z) =z(z — 1) + i d; — z::d,-. (3)

i=z+1 i=1

If in addition, Z d; is odd, a simple parity argument shows that ®p(z) # 0.

i=1
Proposition 6 If ®p(a) > 0, then &p(x) > 0 for everya <z < n.

Proof. For z > a, we have dz41 < z, and &p(z + 1) > ®&p(z). In fact

n z+1
dp(z+1) = z(z+1)+ Y, di—) d;
i=z+42 i=1
n z41
> z(z—1)+21+ Y di— Y di=op(z)
i=z42 i=1
A simple induction argument shows that &p(z) > ®p(a) > 0 for every
a<z<n. (=]
In the following, we assume D = (dy,...,dy) is a sequence with D* =

(di,»diy,+ -+, di, ) as its RS, and that there are ¢ (p) indices in D* which are
less than or equal to (greater than) a. Let s and t be the the number of
integers in the intervals [0,a — 1] and [a,n — 1] respectively, which do not
appear in the sequence, where a = a(D). Obviously, we have ¢ +p = k.
Since there are n — k distinct values in D, there are k values missed in D.
Thus, we also have s+ ¢ = k.

Proposition 7 (i) a = a(D) = =%, ifa+1 € {iy,da, -, ik} Or day1 <
a.

(i) a = 218t=1 ifd, =aanda+1#4 forall1<I< k.
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Proof. (i) If da31 < a, then the number of distinct possible values, which
d; may take for a +1 < i < n, is a. Since there are s values missed and p
values repeated, we haven—a =a+p—-s. Byp=k—gand s=k —t, we
obtain g = 2=t

Ifd,yy =aand a+1 € {iy,i2,--+,ix}, then d; may take a + 1 distinct
values for a+1 < i < n. Since there are s values missed and p — 1 repeated

(p are repeated except that now do) does not count as a repeat), we have
n—a=a+1+p—1—s. By s+t =kand p+g =k, we obtain @ = 2=t

(ii) If doy1 =a and a +1 # 4 for all 1 <! < k, for the same reason as
above, we obtain n —a=a+1+4p— s and hence a = 2+4-E=1, o

Proposition 8 If D is a graphic sequence, then ®p(a) < S(q) — f(q).

Proof. Let a; > a (1 <i<t)and & < a (1 <! < s) be the missed
values.

fdyy1 Sa—1lora+1=1i for some 1 <l <k, thena= 2=t and

®p(a) = afe—1)+ Y &~ d

i=a+1 i=1
= ale—-1)+)Y dy - d, +°Z_li - ib,- -§i+iai
i>q 1<q i=1 i=1 i=a i=1
< a(a—-1)— f(g) + a(a2— D _ 3(82_ L _ n(n2— D + a(az_ 1)
-+Hn — w

= n(g- %) +hi(t) — f(a),

where

(g—t)* .. @+t (k—t)(k—t—1)
5 (-1 3 3
—t242k—-q)t+q>—k2—29+k
7 .
Observe that h;(t) is a quadratic function with respect to f, and that
1(t) = 0if t = k —q. Thus, hy(k — g) = max{h(t) : 0 <t < k—1}

and

ha(t)

k—q)?+q?—2q-k>+k
hik—q) = £ q2 q
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= (1-qk-a-3
Hence, we have ®&p(a) < S(q) - f(q)-

Ifdayy =aand a+1 # 4 for all 1 <! < k, then by Proposition 7,
o= nta—t-l ;t—l and

®p(a) = ala—1)+ Zn: di—za:d,'

i=a+1l i=1
a 3 n—-1 t
= a(a—l)-l-Zdi,—Zdi,-i'Ei—Zbi— z i-{-—Zai
I>q I<q i=1 =1 i=a+1 =1
_ a(@+1) s(s—1) =n(n-1) (a+1l)a
tt+1 1
= 2D gy 4 ) - £1a),
where
—t—1)2—t2—(k—t)2+k—-2t
iy = GtV oP oy
2 +2k—-q)t+q*—k® -2 +k+1
= 5 .

Since ha(t) = h1(t) + %, reasoning as above, we have
ha(t) < max{ha(t) :0 St < K} = ha(k = g) = ha(k—q) + 3.

Hence, ®p(a) < S(q) — f(q). o
Let D* = {d;,,d;,,---,d; .} bea xionincreasing sequence satisfying d;, <

n—k+m-2,d;, >mand f(m) < S(m). We define £ = (ey,...,e,) to
be the following sequence.

39



n—i—-k+m if 1<i<n—-diy—-k+m,

d; if i=n—-di,—k+m+1,
n—i—-k+m+1 if dizgn—i—k+m+15d,-‘—1,

di, if i=n—-k—d,~,+m+2,

o n—i—k+m+l-1 if dy+1<n—i—k+m+1<d;_,,
€= d;, if i=n—dy—k+m+l,
n—i—k+m+l if diy.. <n—-i-k+m+1<d;—1,

141

n—i+m-—1 if di,+1<n-i+m<d;_,,
d;, if i=n-—d; +m,
L n—i+m if n—dij,+m+1<isn.

(4)

In other words, £ is the sequence with D* as its RS, and such that the
k — m largest and the m smallest integers of the interval [0,n — 1] do not
appear in the sequence.

Proposition 9 Let ep, =d;, for 1<l <k anda= a(€).

(i) If m =0, then hy > a for all1 <1 < k. (Thus g¢ = 0, by Proposition
7.) '

(i) If m > 1, then either, hm—1 <o < hm and fg(m —1) € Sg(m —1),
orhm < @ < hmy1, where hg = hy—1. (Thus g¢ = m—1 or m, respectively,
by Proposition 7.)

Proof. (i) Since m = 0, di; < |25%]. By the construction of €, by =
n—k—dy +1>di +1=en +1. Thus, by —1 > a. Hence, b > a for
all1<I<k.

(ii) If m > 1, by the construction of £, we have by, =n — di,, —k+2m.
If n — k is even, di,, > 2=%+2(m=l) Thys,

n—k+2m
2

By the definition of @, hm — 1 < a. Hence hn < a. Similarly, since
hpyr=n—di,,, —k+2m+1 and d;, ., < “—‘"—}‘2—"‘, we obtain

hm—1< <d;, =epn,.

—k+2m
At 2 Z T 4 1 2 diy + 1= iy, + 1
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Hence, hpmyy — 1 > a, that is, Apmy; > a. If n — k is odd, then di, >
L""‘;’"—"l. Thus,

—k+2m-1
hm_1$'1}k+2—m5d,-m=ehm.

By the definition of a(£), we have hm — 1 < a(£). When A, < a, for
the same reason as above it follows that Amy) > a. Thus, the proposition
holds.

When by = a+1, by the construction of £, we obtain a = 2=kt2m=1 _
en,, =d; . Hence, h;,; < a < Ay, and

fe(m —1) = fe(m) — 2ep,, < Sg(m) — (n—k+2m —1) < Sg(m —1).
a

Proposition 10 If &¢(a) > 0 then ®g(z) > 0 for every1 <z < n.

Proof. Notice by the construction of £ that e; —e;.; < 1 for any i such
that 1 < ¢ < n. By Proposition 6, it is enough to show that ®¢(z) > 0 for
every 1 <z < a; i.e., we may assume that e,,; > z. Then

n

Be(z) - Pe(z+1) = eq1—z— » (min{z+1,e}—min{z,e})
i=z+42
= ez+l-$—|I|’

where I ={e; : ; 2z +1, i >z +2}.
F{r+2,z+3,---,e:43} ND* =0, then |I| = ez,5 — x, and
Pe(z) — Pe(z +1) = €z41 — €742 2 0.
If{z+2,2+3,---,ez43} ND* #0, then, |I| > e,42 —z+1 and
Pe(z) — Pe(z+1) = €z41 —€z42 — 1 <0.
Trivially, ®£(1) > 0; a simple induction argument completes the proof. O

Now, we are ready to prove the main theorem.

Proof of Theorem 4, Part (1)

Let D = (dy,...,d,) be a sequence with D* = {d;,,d;;,--,d;, }, and let
q be the number of indices of D* which are less than or equal to a = a(D).
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Then iy < a < ig41 OF U > a for all 1 < < k when g = 0. By Theorem 5
and Proposition 8, we have

0 < ®p(a) < S(g) — f(g), that is, f(g) < S(9)-

Proof of Theorem 4, Part (2)

Recall that m = min{z : di_,, < |2=%t22|} and f(m) < S(m). We will
show that the sequence & defined before is graphic, where e, is chosen in
n

such a way that Ze‘- is even; i.e. we take a sequence F where f; = €; +1

i=1
and all other elements of both sequences are identical. (Notice that e, ¢
D*.) By the Erdés-Gallai theorem and Proposition 10, to prove that £ is
a graphic sequence, it is enough to show that ®¢(a) > 0, where a = a(€).
By Propositions 7 and 9, it follows that @ = 2=K£2% or ¢ = ncki2m-l

Case 1. a = "—’%"2—"‘ In this case, we have by Proposition 9, m = 0 or
hm a< hm+1.

Ifey=n—-k+m-—1,

a(a—1)+ i di—za:di

Qg(a) =
i=a+1 i=1
a—-1 m—1 n—1 n
= ala-1)+ 3 dy = > dy+Y i- Y i-) it >
i>m i<m i=l1 i=1 i=a n—k+m
_ ala-1) m(m-1) (a+1)a
= ale—1)-fm)+ 2N PO gy B2
+(k_m)n_(k—m)(k—m+1)

2
= gD+ -m)E—m) - f(m)

Since —f(m) > —S(m) and Pg(a) is an integer, we have ®g(a) > —3,
making ®¢(a) > 0.

If e, = n — k+ m, that is, the sum of all values of £ is odd, then
®s(a) #0. Since & = ®¢ — 1 and P¢(a) >0, we have ®x(a) > 0.

Case 2. a = Eﬁ}'—“—'—l In this case, by Proposition 9, we have m = 0

or hym—1 < a < hm, and fe(m —1) < Sg(m - 1). Using the same method
as in Case 1, either ®z(a) > 0 or ®x(a) > 0.
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Hence, the proof of Theorem 4 is complete. a

Now, we prove Theorems 1 and 2 by applying Theorem 4.

Suppose without loss in generality that D contains only one repeated
value j < | 23L|. Let k, ¢, g and m be defined as before. By symmetry we
need only to check the lower bound for ;.

If k = 1, then a(D) > [27%] > j. Thus,g=0. When D is a graphic
sequence, by Proposition 8, —j < —% +1, that is, j > 2 — 1. Conversely,
given D* = (d;,) with d;, = j and 3-1<j< 3, We may assume without
loss of generality that j < 231 Thatis, d;, = j < [251]. By definition
m = 0. Thus, j > 3 — 1. When n > 5, it follows that j £n-3. Thus,
by Theorem 4(2), there exists a graphic sequence with j as its RS. For the
case, 2 < n < 4, we can directly verify that Theorem 1 holds.

If k =2, then a(D) > | 2=2*4|. Since j < [251], we have ¢ < 1. When
q =0, by Theorem 4, we have -2j < —"T‘3. Thus j > "T""’. Forg=1, it
follows that j = |21 > n=3

Conversely, given D* = (d;,,dy,) with d;y, = dj, = j and 253 < j <
%, we may assume with no loss of generality that j < l;—l- First we
note that for n < 6, a graphical sequence with appropriate RS can be
shown by direct verification. Since0 <m <k—1and k = 2, we only need
consider two cases. If m = 0, then we only need show that 0 £j<n-4
and f(0) < S(0). The former is true for all n > 7 and the latter is a
restatement of the hypothesis that j > 223 If m =1, then we need show
that 1 < d;, =j=4d;, <n-3, and f(1) £ S(1). The former is clearly
satisfied for all n > 5 since j < 271, The latter is 0 < 221, true for all

appropriate n.

Thus, we have proven Theorems 1 and 2 by using Theorem 4. Unfor-
tunately, we are unable to prove Theorem 3 by using Theorem 4 directly.
We conclude this section by raising the following conjecture which is a
generalization of Theorem 3.

Conjecture Let D* = (d;,,d;,,---,d;,) be a nonincreasing sequence
with d distinct values and n > k+d + 1. Then, there exists a graphic
sequence with D* as its RS if and only if £(0) < $(0) and f(k) < S(k).
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