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ABSTRACT. The problem is to determine the number of ‘cops’ needed to
capture a ‘robber’ where the game is played with perfect information with
the cops and the robber alternating moves. The ‘cops’ capture the ‘robber’
if one of them occupies the same vertex as the robber at any time in the
game. Here we show that a graph with strong isometric dimension two
requires no more than two cops.
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1. Introduction and preliminaries.

The game of ‘Cops and Robber’ was introduced by Nowakowski & Win-
kler [6] and, independently, by Quilliot [7]. The game rules were: given a
connected graph G, the cop chooses a vertex of G, then the robber chooses
a vertex. Afterward, they move alternately — each can move to an adja-
cent vertex or pass. The cop wins if he ever occupies the same vertex as
the robber; the robber wins if this situation never occurs. In [6] and [7],
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the authors characterize those graphs in which the cop has a winning strat-
egy. Aigner and Fromme [1] pose the question: given a graph G, determine
the least number of cops required to capture a robber on G. In this case, a
get of cops choose vertices of G and then alternate moves with the robber.
The cops’ move consists of some (possibly empty) subset of the cops each
moving to an adjacent vertex. The minimum number of cops needed to
guarentee a winning strategy is called the copnumber of G and denoted
¢(G). In (1), they show that if G is a finite, planar graph, then ¢(G) < 3.
Quilliot {8] extended the analysis and showed that on a graph of genus g no
more than 2g + 3 cops are required to catch a robber. Andrea [2,3] pursued
this further showing that excluded minors play a part in determining the
copnumber. A comprehensive list of references concerning this game can
be found in [5).

The strong product of a set of graphs {G; : i =1,... ,k} is the graph
®%.,G; whose vertex set is the Cartesian product of the sets {V(G;) :
i=1,...,k}, and there is an edge between & = (a1,42,... ,a8) and b =
(b1, ba, ... ,bs) if and only if a; is adjacent or equal to b; for § = 1,... ,k.
See (5] for an analysis of copnumbers for several different products of paths.
A graph G is an isometric subgraph of a graph H if the distances of
the two coincide; i.e. dg(z,y) = du(z,y) for all z,y € V(G). The strong
isometric dimension of a graph G is defined to be the least number k such
that there is a set of k paths {P,, P,,... , Px} with G an isometric subgraph
of @, P; (see [4]). This is denoted idim(G) = k. Let n; : @5\ P; + F;
be the projection map onto the path P;.



‘Figure 1: An example of a graph with idim = 2

2. Results.

In this section, we show that any graph with strong isometric dimension
two has copnumber at most two. The strong product of two paths is known
to have copnumber one while the cycle on four vertices has both strong
isometric dimension two and copnumber two. Hence, this bound is sharp.
In proving this bound, we employ the following lemma, :

Lemma 2.1 (Aigner & Fromme [1]). Let P be an isometric path in a
graph G. A single cop moving on P can guarantee that after a finite number
of moves the robber will be immediately caught if he moves onto P.

Since this is a central result, we include the following proof. Let P =
{a0,a1,... ,an} be an isometric path in G and let the map f:G = P be
defined by

f(v):{:: :)fﬂl:e;;iigeao,v)andkgn
This map is edge preserving, so the image or “shadow” of the robber will
move along the path according to the rules of the game. The copnumber of
a path is one, so a single cop is able to catch this shadow and stay with it.
Since every vertex on the path is its own shadow, if the robber now moves

onto the path he will be immediately captured. The maximum number of
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moves before the robber is captured is the length of the path.

Note that the result only holds for isometric paths.

Theorem 2.2. Let G be a finite connected graph. If idim(G) = 2, then
cG) 2.

Proof. Suppose idim(G) = 2, then G is an isometric subgraph of P, @ P,
for some n,m > 1. We may assume that n +m is minimum. Let V(P,) =
{1,... ,n} and let f: V(G) =+ {(,j):1<éi<m1 < j < m} be an edge
preserving map such that f(G) is an isometric subgraph of P, ® P,. We
identify G with this subgraph.

First, we partition the vertices of G according to their first coordinate.
Let A;={veV(G):m(v) =i} forall1 <i<n. We claim that for each
1 < i < n there exists an isometric path of G which contains all the vertices
of A;. To see this, let A = A; for some 1 < i < n. Order the vertices of A by
their second coordinate, i.e. A= {v;,v2,... v} where m2(v;) < m2(vjs1)
foral1 < j<k-1 Foreachl <j<k-1,let Q; be an isometric
path in G from v; to vj41. Now let R=Q, U---U Qi—1. Note that for
any pair of vertices u and v in A4, d(u,v) = |we(u) — w2(v)|]. Therefore,
SEL d(vg,0341) = Thot (r2(vin) = ma(v)) = 7a(vk) —ma(en) = dlvr, 0a),
and the path R is isometric.

Hence, there exists a set of isometric paths Ry, ... ,Rn such that for
each i =1,...,n all the vertices of A; are on the path R;. By Lemma 2.1,
we know that one cop moving on R; can, after a finite number of moves,
prevent the robber from moving onto R;. Therefore, one cop can “protect”
the vertices in A; by moving on the larger set R;. Now suppose that we
have two cops. Place one cop on a vertex in 4, and the second on a vertex
in Ap. After a finite number of moves the cops can prevent the robber
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from moving onto A; and A;. Therefore, once the cops have A4; and A
protected, the robber, if uncaptured, must occupy a vertex in A; for some
i>2.

By induction, assume that for some k& < n — 1 the cops have the sets
Aj-; and A; protected and the robber occupies a vertex in A; for some
i > k. The cop protecting Ax—; now leaves R;_; and moves to protect the
set Ap,1. Meanwhile, the other cop continues to protect the vertices of Ag.
The robber can obviously not move from a vertex in A; for some § > k to
a vertex in A; for j < k without moving through a vertex in Ax. Since a
move onto A would result in his immediate capture, we can assume that
the robber restricts his movement to the vertices in Agy; U---U A,. Once
the set Ag4, is protected, the robber’s movement is further restricted to
AgpaU---UA,.

If we continue in this manner, the cops will eventually protect the sets
Apn-1 and A, and the robber will have no vertex which he can safely occupy.
Therefore, two cops are sufficient to apprehend the robber. o

We can extend this result to obtain an upper bound for the copnumber
of a graph of strong isometric dimension three.

Theorem 2.3. Lei G be a finite connected graph. Ifidim(G) =3 and G is
an isometric subgraph of P, ® Py, R P, wheren < m <1, then c(G) < n+2.

Proof. Let f : V(G) = {(i,j,k) : 1 <i<nl<ji<ml<k<l}
be an edge preserving map such that f(G) is an isometric subgraph of
P, @ P, B F,. Identify G with this subgraph. We wish to partition the
vertices of G according to their first and second coordinates. First, let
B;j = {v € V(G) : ma(v) = j} and then let 4;; = {v € Bj : m(v) = {}.
Hence, A; ; is the set of all vertices in V(G) with ¢ as their first coordinate
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and j as their second coordinate. As in Theorem 2.2, there is an isometric
path of G, R, ;, which contains all the vertices of A;;. If A;; is empty
for some 4, j, then let R;; be a path with zero vertices. Any cop assigned
to an empty set may occupy any vertex in G and still be considered to
be protecting that set. Hence, the set of paths S; = {Ry j, Raj,... , Rn j}
covers all the vertices of Bj, and a set of n cops can prevent a robber from
moving onto B;.

Now suppose we have a set of n + 2 cops, {c1,... ,¢n,Cnt1,Cn42}. Let
the cop ¢; protect the set A;) for § =1,...,n. Let cpy1 protect 4; 2 and
Cn+2 protect Az a. The cops now force the robber to occupy some vertex in
BUB; - - -UBy,. Suppose, by induction, that for some 5, n+1 cops protect
the sets in Ap = {A1,j+1,42,j41,- -+ »Ap,j+1,Apjs Apt1,4s- -+ s Anj}. The
(n+2)™ cop may be protecting a set or may be in transition. If the robber
is on some vertex, z, in Bj41, then he must be in A; j;, for some i > p+1.
Hence, any vertex in B; adjacent to z is protected by one of the cops.
Therefore, if the robber occupies a vertex in the set Bj4, U-++U By, then
it is impossible for him to move out of that set. The (n+ 2)"4 cop can now
move to protect the set Apy1 ;41 and thus, A, can be replaced with Apy,.
Eventually the entire set Bj,., is protected by cops in B, and the robber
will be confined to vertices in BjaU---UBy,. Note that this requires only
n cops. Move the other two cops to protect A; ;12 and Az ;g and repeat
this procedure.

By induction, the cops will eventually protect By, and the robber will
have no vertex which he can safely occupy. Hence, the robber will be
apprehended by one of the cops and ¢(G) < n+ 2. o

Corollary 2.4. If idim(G) = 3, then ¢(G) < diam(G) + 3.
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Proof. Suppose G is an isometric subgraph of P,, @ P,, 8 B wheren <m < [
and n + m + [ is minimized. Then ! — 1 = diam(G) and, by Theorem 2.3,
¢(G) £n+2<1+2=diam(G) + 3.

We believe that the results in Theorem 2.3 and Corollary 2.4 are not the
best possible.

3. Genus.

We saw in the previous section that if idim(G) = 2, then ¢(G) < 2. We
can contrast this result with the genus result of Quilliot, ¢(G) < 29 + 3
[8]. It is the case that for arbitrarily high genus, g, there is a graph of that
genus with strong isometric dimension two, and, thus, restricted clique size.
To demonstrate this we use the following theorem, where 4(G) denotes the
genus of a graph G.

Theorem 3.1 (Battle, Harary, Kodama & Youngs [9]). If two graphs
G and H are joined at a vertez v (called G *, H), then v(G %, H) =
7(G) +v(H).

Now consider the graph P; ® P, in Figure 3. It has a vertex set of size 20
and an edge set of size 55. For any planar graph, G, |E(G)| < 3|V (G)| —6.
Hence, this graph has genus at least 1. If we take n copies of this graph
and associate vertices as in Figure 4, then, by Theorem 3.1, the resulting
graph, F, has genus at least n. Now, any isometric subgraph of Ps,, @ P},
that has F as a subgraph (in particular, P;, & Py, and F itself) has genus
at least n and copnumber at most 2.
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Figure 2: G, H

Figure 3: P; ® Py

n

Figure 4: n copies of P; @ P4 with associated vertices
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