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1 Introduction

A graph T is said to be strongly regular if I is a conuected regular graph
such that for any two distinct vertices = and ¥, the number of vertices
which are adjacent to both of them only depends on whether x and y are
adjacent or not. In this paper, we look at some geometric condition of a
representation of some strongly regular graphs. In the representation of a
strongly regular graph on a sphere, we will consider the following question:
Cau the vertices of the graph be partitioned into two sets such that each set
is on a hyperplane? This will give one characterization of a strongly regular
graph. This problem arose from the geometric condition of some coherent
configuration, as proposed by Prof. Baunai in AMS conference, 1998 [1].
Some coherent configuration has the property that it can be embedded on
two concentric spheres, such that the representations of the vertices on one
sphere can be partitioned into two hyperplanes with respect to one of the
vertices lying on the other sphere. This characterization may be of some
Lelp in the classification of such coherent coufiguration. In this paper. we
will give a classification of the partition of the graph of Johnson graph of
class 2 and Hamming graph of class 2, and some results on a few other
graphs.

*This is a research for the master thesis of the author in Kyushu Unjversity, which
includes the complete proofs for this discussion.

ARS COMBINATORIA 59(2001), pp. 75-84



2 Basic concepts

For a graph T, let A be an adjacency matrix of T'. which is a matrix indexed
by the vertices of I' and whose (x, y) entry is 1 if x and y are adjacent and
0 otherwise. The adjacency matrix of strongly regular graph has 3 distinct
eigenvalues, one of which is the valency of the graph. Let p; and p, be
the other eigenvalues and let E; and E; be projection matrices to the
eigenspaces with respect to p; and p., respectively. These projections map
the vertices of the graph on a sphere S§mi=1 (hy rescaling) where m; is the
multiplicity of the eigenvalue. The distance of the vertices on the sphere is
determined by its adjacency. For a subset Y of vertices in I, Y is said to
be a 1-design if, for Y = 3__cy @, E\Y =0, and E;Y # 0. while Y is a
1-antidesign if E;Y # 0 and E,Y =0.

3 The Johnson graph

Definition 3.1 [Johnson graph] Let $ = {1,...v}and X ={T C S | |1T) =
k} (k < v/2). Johnsoun graph J (v,k) has X as a vertex set with T, T3 € X
adjacent if and only if [T NTa| =k - 1.

Now we consider J(v,2), which is a strongly regular graph. The number
of vertices of the graph is n = 2v-1)  Let Ey, E,,Es be the projection
to the eigenspaces of J (v,2), then the rank of these matrices are 1, v —1
and ('—_—z)z(—”_—”-, respectively. Identify a vertex = with a vector in R™ which
is indexed by the elements of X having 1 in the x-th place, 0 otherwise.
Consider the set X = {E,z|z € X} as a representation of the graph which
are on the surface of a sphere in RV~ vector space. Our purpose is to divide
the points of X into two in order that they are on two parallel hyperplaues,
which is equivalent to finding a vector which is normal to the planes.

The inner product between two points are defined by the adjacency
between the points, because E; can be written as a linear combination of
the adjacency matrix. Observe that (Eyx, Ery) is equal to % if x = w;

) - —-—

- (zv _42). if -, y are adjacent; and p Y w f %)

As a solution to our problem, we give a complete classification of the
division of the vertices of J(v,2).

otherwise.

Theorem 3.1 The Johnson graph J(v,2), when it is represented in o v — 1
dimensional space, can be partitioned in this way: the wvertices are placed
on two parallel hyperplanes such that one hyperplane contains {i,1}, {i,2},
oo {i,v} where i € S, while the other one has the other vertices. Moreover,
this is the only partition of vertices into two parallel hyperplunes.

76



Proof. Since E; has rank v — 1, there are v — 1 vertices which are linearly
independent. One can easily check that X; = {z1 = {1,2},..., 291 =
{1,v}} are such a set of vertices. Restate our problem using the above
vertices as follows: For u = E:’;ll a;Eyx; and for every & € X, Determine
a1,...,0y—1 € R such that (u, Eyz) has one of two values.

First, let us consider the innerproduct of w and the vertices of X
By permutation of {2,...,v}, we may assume that (u,Eyx;) = p for i =
1,...,s and (u,Byzj) = qfor j=s+1,....v~ 1. It is straightforward
that e = a;fori=1,...,sandb=a;for j=s+1,...,v -1

Next, let us calculate the innerproduct of u and x € X \ Xh. If s > 2,
each of them take one of the following values:

r = 2#%)-a+(s—2)m——:17)a+(u—l—s)m’_—j2—)b.

ry = ;(v——f273a+2;(v'—u_—;12)-b+(v—l-s—2)v—(;—f§)-b,

e = v(v—f2)a+v(v_fz)b+(s—l)Tv_f—2)a.
+('v—1—s—1)v(—v—§2—)b.

Since they take one or two values, r = 7y, and so p = ¢. Therefore a = b.
Assume that s = 1. Then the innerproducts p, ¢ are giveu by
1 1 v—4 v—4 .
p= ;(2(1 +(v—4)b) and ¢ = ;(21) + o 2a+ o 2(0 — 3)b). The inner-

{(v —4)a = (3v - 8)b} =y, if

1
product of » and x € X \ X, are W -2)

x = {2,k} for some k, and —m—l—aﬂ(v —4)b+ 4a} = ry, otherwise. Let

p = 13 and ¢ = 7 then immediately we know this case does not fit our

hypothesis. Let p = r; and g = r2, then we have a = —(v — 3)b.
v—2 times

e ’ . . _
Let u = (-(v-3), 1,...,1 ). Let X; C X with X = {{2. 1}.{2,3},...,
{2,v}}. and v =Yy, E1z. Then we have v = —u. Remembering that

we permuted {2,...,v} for calculation, we have the following result: Let
X' be a subset of X with cardinality v — 1, such that for all 2,y € X',
| Nyl =1, and u = 3 cx. E1z. Then this u divides the points of the
graph on two hyperplanes so that one hyperplane has X' and the other
one has the other vertices, and these are the only vectors which divide the
vertices. ]
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Let us see briefly the case J(v,d), d > 2. Let X' be the set of d subset
of S, which includes a given letter i. In this case, by the same discussion,
> rex+ Frz divides the points of X into two hyperplanes, X’ and the other
vertices.

4 The Hamming graph
In this section we see the same problem on the Hamming graph.

Definition 4.1 [ Hamming graph | Let F = {1,...,¢} and X be an »
direct product of F. Hamming graph has X as a vertex set and adjacency on
X is defined that for x,y € X, where = = (21, 2, ., ), ¥ = (Y1, Y24 +-er U )
z,y are adjacent if and ounly if #{jlz; # y;} = 1. We call this graph
Hamming graph H(n,g).

Now we consider the graph H(2, ¢), which is a strongly regular graph. The
number of vertices of the graph is n = ¢2. Let E; be a projection to the
eigenspace of H(2, q) with respect to the second largest eigenvalue with the
rank 2(q — 1). The question is: Can the vertices be partitioned into two
parallel hyperplanes? How they are partitioned?

Theorem 4.1 For the graph H(2,q), in the representation on 2(q — 1)
dimensional Buclidean space, there is a vector w such that uny embedded
point of the gruph lies on one of two hyperplanes with respect to the vector
u. The expression of u is as follows: Let v, be the sum. of the embeddings
of (4,t), 7 = L..q, v* be the sum of the embeddings of (t. j). J = 1l.q, (md
S be a proper subset of {1,...,q}. Then us =3, . v, or u® =Y es V'
gives the description for u.

Proof. For the vertices of H(2, q), by abuse of notation, identify the em-
bedded points with (¢,7) (i = 1,...,¢, j = 1,...,¢). They are embedded
on a sphere with its radius (2¢ — 2)'/2 and the innerproduct of two vertices
is ¢ — 2 for the adjacent pair and —2 for the non-adjacent pair.

Let X; = {(1,2),(1,3),...,(1,4).(2,1),(3,1),....(¢, 1)}, (the set of
vertices which contains 1 as either coordinate) then if ¢ > 2, X is the
basis of representation space. For the case g = 2, it is easy to see that the
assertion holds, so we may assume that. q>2.

Let w= 3", ai(1,i) + 39, b;(J, 1). Let us determine {a;,b;} so that
for every vertex x € X, the muerpmdu(t of u and ' has one of two values.
Denote « =2(q—1),=q-2,y= -2.
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First, let us see the value (u,(1,i)) or (%, (i, 1)).

adi +3 0580 + 1,70 ife=(Li) (i=2,..q)
(w,2) =

ab; + 3 Bb; + i, ve; e =(i,1) (i=2,..q).

By the reordering of the indices, let

(ﬂ,(1,2)),...,(‘u.,(1,1')) = M.
(w,(1,7+1)),...,(u,(1,9)) = pa,
(w,(1,2),...,(u,(1,s)) = l”l’

(u,(1,5+ 1), (u, (1, q)) = 1"'2'

Hence, we have the following for the a;’s and b;’s.

@

a

b,

@y =« = app
ap1+(r—=1)Bp1 + (4= 1 = r)Bpz + v(sp) + (¢ — 1 — s)p}),
Qpgy = =00 = 0y

apz +18p + (-2 = 7)8p2 + v(spy + (¢ — 1 — s)p}),

by =+ =bspy

Ve + (79— 1=r)p2) + apy + (s — 1)p} + (¢ — 1 - 5)Bp),
btz =+ = b,

Yrp + (g = 1= r)pa) + aphy + sBp} + (¢ — 2 — 5)0p).

Conversely, this meaus that p;, ¢; are described as follows.

n
D2
U

141

!
2

= 2g-1)a+(r—1)¢-2)a+(g—1-r)(qg—2)a'
~2(sh+ (g -1 — s)¥),

= 2(q—-1)a' +r(g=2)a+ (g~ 2-r)(q—2)a’
=2(sb+ (g —1 - s)b'),

= =2ra+(¢—-1-1)d')+2(q=1)b+ (s —1)(q—2)b
+g=1-s)(g—2)V,

= =2ra+(qg-1-7)a')+2(q— 1)V + s(q — 2)b
+(qg—2 - s)(q - 2)b". ‘

Then, here we have p; — p; = q(a — @'), p} — p§ = q(b —V'). Note that
we have at most two distinct values for p;’s and p!’s. Let p = (u,(1,1)) =
(g=2)(ra+(¢q—1—=r)a’ +sb+ (g —1— s)’). This is equal to either of
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P1.p2, P4, ) or it is equal to none of them and py, pz,p,p; have the same
value.

Let us see case by case.
Suppose py = py and py = phy. Then p = (¢ — 2)(gy — 1)(¢ + ), and
m=(=-2¢+2)a-2¢g-1)0b py = -2(q-a+ (¢ —2¢+2)b. If
p = p1, then we have a = (¢ — 1)b, and conversely if p = pj, then we have
b=(q—1)a.

For these two cases, p = p; or p = pj, then it is easy to see that
u=(g-2) T, (Li) or u= (g~ 2) L, (i, 1)
Suppose py = py and p} # py. Let py = p}. Then we have gu = (s +1)b +
(q=1—s)i'. f p=p; then (¢ — 1)a=b and if p = p}) then (¢ — 1)a ="
If p=p1,a=sb+(q—1- s)V/ therefore (¢ — L)a = b. and if p = p3,
(g = 1)a=0D.
Let p' = (4,(i,j)) = =(g=2)a+(¢g—2 - 2(s—1))b = 2(¢ — 1 — s)V’ for
(i,j)) EFxF2<i<r+1,2<j<q Whenp =pi. (¢~1)a=1hand
when p' = p), a = (s — 1)b+ (¢ — s)l'.
Let " = (u,(i,j)) = —(¢ — 2)a — 2sb+ (2s — ¢ + 2)V’ for (i,j) € F x F
r+2<i<q,2<j<q Ifp"=p then (g — )a =" and if p” = p) then
a=sh+(g—1- r)b’.
Checking each of the cases above, we finally get one case that py = p = p'
and b = (g—=1)a, (r(1—g)+1)b = (g—1-r)(¢—1)¥'. Now let v be a sum of the
following vertices: (1,1),(1,2),...(1,¢), and (3, j) fori <r+1,5=1....,¢q.
v =Y Y¢_,(i.j). Then by direct calculation, we see that v is scalar
product of u.

Let p; = p). Then we can get similar result, by the same step, that u
is the scalar product of v = }0_ ., 9_,(i.))-
Suppose p1 # p2 and p) = py. By the same discussion, u is the scalar prod-
uctofv=3)1, Z;:ll(u) or the scalar product of v = 30, Y4_,.,(0.)).
Now suppose py # py and py # ph. In this case, it is easy to see that
@ —a =0 —b=0, and this leads the same discussion as above.

Now, remember that we reordered the indices for easy calculation, so
we have the desired result.

|

Now let us see the case H(n, ¢), n > 2. In this case, as the same maunner
we saw in the above, there is a vector u such that the embedded vertices
of the graph are partitioned into the two hyperplanes with respect to the
vector u. The expression of u is as follows: Let vy; be the sum of the
vertices which has ¢ in ith place, and S be a proper subset of {1,....¢}
then for some number z, ug = Eze 5 V1, gives the description for u.
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5 General results and other topics

Do all strongly regular graphs have such a property that when it is repre-
sented on a sphere, the vertices can be placed on two hyperplanes? The
author found a few graphs which do not satisfy this property. They are
three graphs which are Chang graphs with the same parameters as J(8,2).
For each of them, we cannot give a division such that they can be placed on
two hyperplanes. The proof is in [10]. From this fact, we can say that the
property depends not on the parameters but on the property of association
scheme. For the second smallest strongly regular graph, a pentagon, we can
say that there is no such a division of the vertex set. On the other hand,
we also have some other strongly regular graphs which can divided on two
hyperplanes. For the complete bipartite graph kL, ,,. we can classify the di-
vision of the graph as follows: let X; and X, be the two maximal cocliques
of K, ,and fora=1,...,n—1, Y and Y be any subsets of X; and X,
with cardinality a. Then Y; UY; are on one hyperplane while the other
vertices are placed on the other hyperplane, and these are ouly division of
the graph L, .. For the Grassmaun graph over F,, ¢ the prime power.
the set of 2 dimensional subspaces which contains a given one dimensional
subspace is on one hyperplane, while the other 2 dimensional subspaces are
on the other hyperplane. For any Steiner triple system (P, B), the set of
blocks which includes a given point « € P is on oune hyperplane. while the
other blocks are on the other plane. For the Shrikhande graph, we can give
a complete classification for divisions into two hyperplanes. with 8 vertices
lying each hyperplane. For the Paley graph of 9 vertices. the graph cau be
divided into two sets of vertices, one of them has 3 vertices. But the Paley
graph of 13 vertices can not be divided into two hyperplanes.

In general, when can a strongly regular graph be divided into two hy-
perplanes? The author considered one condition such that the vertices of
the graph is divided by a vector which is described as a sum of a set of
vertices.

In the following discussion, I' is 2 SRG, X is its vertex set, and E;
is a primitive idempotent of I'. Let u be a vector of Euclidean space V.
We say that H is a hyperplane with respect to = if for any x,y € H,
1/|x|(w,2) = 1/|y|(u,y). Note that if Vi is an eigenspace of I' with re-
spect to the eigenvalue not equal to the valency, then the sum of all the
representative vectors of X is zero.

Let u be a vector in V7, and Hy, Hy be hyperplanes with respect to u in
V1. Let all the points of X be on either Hy or Hy. Let X, = XN H,, X, =
XNH,, with cardinalities &, and x,, respectively. Since (u, E) Eze.\'. x) =
—(u.E1 L ey, ¥) for any x € X1,y € Xy, @1(u, Eyx) = —ia(u, Ery).
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Lemma 5.1 Let 3 . Erz = u ond (u,Erx) = o for any x € X1,
(u,Ery) = B for any y € X3, where X = X \ Xi. Then for any x € X,.
o = #{y € Xily is adjacent to x} is constant and does not depend on the
choice of z € X;.

Proof. Let z(resp. y) € X and a;(resp. aj) be the number of the vertices
which are adjacent to z(resp. y) in Xj, and ay(resp. a}) be the number of
the points which is not adjacent to x(resp. y) in X1. Let o, q1,¢2 be the
values of innerproduct of a pair of vertices which are equal, adjacent, and
non-adjacent, respectively. Then

a = (go+ a1+ azp)
= (qo + a1 + t302).

Suppose a; # o). Since ay = 1 —ay and ay = oy —aj, az F# di. Thus (a, —

’ ’ - _ ay—d, _ R T
al)p +(az—ay)p =0,and ¢y = —r_;{-ql = ¢z, which is a contradiction.
Therefore, a; = a). ]

Definition 5.1 A vertex set X; in the SRG is said to be a regular subset
if for any vertex x in X, the number of adjacent vertex within X is d,
and for any vertex y in X \ X, the number of adjacent vertices in X is e.
and it does not depend on the choice of x and y. If d > e, then the regular
set is said to be positive and if d < e, it is said to be negative.

Iu the following discussion, we will see that for any strongly regular graph. if
there is a regular subset, it gives a division of the graph on two hiyperplanes.
Now we prepare a lemma on a SRG with a regular subset. which proved
in [7). For a strongly regular graph T, let n be the cardinality of X, k be
the valency of T', A be the number of points which are adjaceut to a pair of
adjacent vertices, while x be the number of points which are adjacent to a
pair of non-adjacent vertices, and r, s be eigenvalues of T’ where r > s.

Lemma 5.2 (Neumaier) Let ' be a strongly reqular graph having o rey-
ular subset X1. If X, is positive. |X)| = 12 and |[X)| = 2= otherunse.
Moreover, the eigenvalue of T is r = d — e of X is posative. s = d — ¢

otherunse.

Proposition 5.3 Let X, be a subset of X, and Xy = X \ Xi. Then the
following conditions are equivalent;

(1) X.ex, Erz makes two hyperplanes so that each point on X is on
either of two hyperplanes.

(ii) X, is a reqular subset. i.e.. Xy satisfics the following conditions:
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(a) For any point x in X, the number of points which are adjucent
to x within X is constant.

(b) For any point y in Xy, the number of points which are adjacent
to y within X, is constant.

(i#i) X, is a 1-antidesign or 1-design.

Proof. By abuse of notation, identify = as Eyx. When Zze‘\-l & makes two
hyperplanes which have every point of X on either of them, then so does
Yoee X, F == x, &+ Therefore the statement (i:) holds from Lemma
9.1. Conversely, if X; satisfies the conditions in (#i), for u := Z:ex. z,
z € X LYE X2’

(u,2) = (g0 + a1q1 + (),
(u,9) = (90 +big1 + bagy),

where a;,b; are the number of the elements in X 1 or Xy which are adjacent
tox and y. Since 1+ar+ay = 21,14 b1 +by = xy, (u,2) = a for Vo € X,
(u,y) =B for Yy € X.

Suppose (i) holds. Then from Lemma 5.2, we know the cardinality of
X1 and the eigenvalues of I'. Let E; be a projective map to the eigenspace
correspouds to r, and E; be one corresponds to s. When X, is positive,
then we get |Ey 3, oy, 2> = (T,ex, 2)'Br 2 :ex, * = 0 by a direct cal-
culation, therefore X is a 1-antidesign. When X\ is negative, then we have
[E2 3 .ex, | =0, and it proves that X, is a 1-design.

Suppose X to be a l-antidesign, then for x € X. the number of the
adjacent point from x in X is;

(D 9)'As

(X 9)'(kEo+rE\ + sEy)a

YEX, yeX,
= Z y)'{(k = 7)Eo + rI + (s - r)Ey }a
yEX,
= ( Z 9)'(k = ) Egxr + r( Z y)' Ix
yeEX, yeX,

X
(k - T)l -nll + M*,‘\'n
Here, ’
s . _[1 ifzeX
=X 0 otherwise.

The case that X is a 1-design leads the same discussion.
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Remark. All examples of the divisions previously we saw are regular subset
in strongly regular graph. In section 3 and 4, the author gave the classi-
fication of the regular subset of J(v,2) or H(2,q), and we kuow that the
Chang graphs has no regular subset.
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