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Abstract

We construct a small table of lower bounds for the maximum

number of mutually orthogonal frequency squares of types F(n; A)
with n < 100.

1 Introduction

Let n = Am. An F(n; )\) frequency square is an n X n array in which each
of m distinct symbols appears exactly A times in each row and column.
Two such squares are said to be orthogonal if upon superposition, each
of the m? distinct ordered pairs occurs exactly A% times. Finally a set
of t > 2 such squares is said to be orthogonal if any two distinct squares
are orthogonal. We refer to Laywine [11] for a brief survey of sets of
mutually orthogonal frequency squares.

Thus F(n;1) frequency squares are simply latin squares of order n.

A table of lower bounds for the maximum number of mutually orthog-
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onal latin squares (MOLS) of order n < 10,000 is provided in [1]. The
purpose of this note is to provide a small table of lower bounds for the
maximum number of mutually orthogonal frequency squares (MOFS) of
type F(n; ). This new table has been, to a large extent, inspired and
influenced by the older table which directly provided the F(n;1) entries,
and, indirectly, many others.

An F(n; Ay,. .., Am) frequency square based upon the symbols 1,...,m
is an n x n array in which each symbol ¢ occurs exactly A; times in each
row and column. Two such squares are orthogonal if upon superposition-
ing of them, each of the ordered pairs (4, j) occurs exactly A;A; times. A
set of ¢t > 2 such squares is orthogonal if each pair of distinct squares is
orthogonal. While this note focusses only on the case of sets of MOFS
with constant frequency vectors, sets of at least two MOFS exist for
any frequency vector (A1,...,An) which partitions a given order n > 2
except for the partition A\; = --- = Ag = 1 in the case where n = 6.
Such sets can always be found by the method of substitution of symbols
outlined in (h) below and discussed by Laywine and Mullen in [12)].

For n = mA, an upper bound on the maximum number of MOFS of

type F(n;)\) was given in [8]. This upper bound is
(n-1)*/(m-1),

and a set of MOF'S attaining this bound is said to be complete.

We now list the major constructions for sets of MOF'S with constant
frequency vectors.

(a) Let g denote a prime power and let ¢ > 1 be an integer. There

are several methods of constructing complete sets of MOFS of type
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F(g*;¢*"') containing (¢* — 1)2/(q — 1) squares. These include statis-
tical methods as in (8], linear polynomials over the finite field F, as in
(15], substitutions to the symbols of a complete set of MOLS in which
the symbols of the MOLS are grouped together to form the blocks of a
related affine design as in [13], and using certain properties of subsquares
as in [10]. These methods all yield complete sets of F(g*;¢*~!) MOFS.
See also [17] for a considerable extension of [15] to sets of very general
hyperrectangles.

(b) In [6] complete sets of MOFS of type F(4t;2t) are constructed
whenever there is a Hadamard matrix of order 4t (which for n < 100, is
always the case).

(c) In [7] Finney constructs 8 F(6;2) MOFS and 7 F(6;3) MOFS.

(d) In [14] the authors show that if there is a Hadamard matrix of
order 4t, then there are 4¢ — 2 MOFS of type F'(4¢;t).

(e) The Kronecker product is an effective technique for constructing
sets of MOLS of order njns from sets of MOLS of orders n; and na. A
similar technique was extended to sets of MOFS by Hedayat, Raghavarao
and Seiden [8]. In particular, if one has ¥ MOFS of type F(n;; ;) and k
MOFS of type F(n2; A2), the Kronecker product can be used to construct
k MOFS of type F(ning; AjA2). This technique is especially effective for
non-prime powers where few other techniques are currently available.

(f) In [5] Dillon, Ferragut, and Gealy give a construction for ¢4 — 1
MOFS of type F(q%; q) when q is a prime power. Using a more general
technique, for any prime power ¢ and positive integers r and s with

(r,s) = 1, they are able to construct a set of g>*+" — 1 MOFS of type
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F(g™*%;¢%). For r = 2 and odd s > 1, they obtain

q2a+4 -1 qs+2 -1
¢ -1 g-1

+(g-1)(¢"+1)

MOFS of type F(g**2;¢*). In addition, when t + 2 divides s, the last
factor of ¢° + 1 can be improved to (¢°***+2 — 1)/(¢**2 — 1).

(g) In a private communication [16] to the authors, Stufken describes
various sets of MOFS of small orders. Further details for these construc-
tions are given in [9].

(h) By making a substitution on the symbols of a set of § MOLS,
one can easily obtain a set of § MOFS with any prescribed frequency.
Specifically to obtain F(n; Ay, ..., Am) MOFS from a set of MOLS of or-
der n, replace \; of the symbols in the MOLS by i for i = 1,...,m. More
generally, one can make similar substitutions on a set of MOFS under
suitable circumstances. Suppose A = {uy,...,px} and B = {A1,..., A}
are partitions of n for £ < k. Then A is a refinement of B if the set A can
be partitioned into £ subsets A1, ..., A¢ such that if A; = {pi,,. .., i, }
then A\; = pi, + - + pi,, for i =1,...,£. Then a set of 6 MOFS of
type F(n;A,--.,A¢) can be obtained from a set of § MOFS of type
F(n;p1,...,ux) by replacing the symbols in A4; by ¢ for i = 1,...,L
Complete details are given by Laywine and Mullen in [12].

We now include our table. We use the notation f(n;A) to denote
the number of MOFS that can currently be constructed of type F(n;A)
where n = Am. Hence f(n;)) < (n — 1)2/(m — 1). In this notation,
m denotes the number of distinct symbols, and A denotes the frequency

with which each symbol occurs. Underlined values indicate that the
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given set is complete; i.e. that the number of MOFS equals the upper
bound given in [8]. All entries in the latin cases, i.e., all entries of
the form f(n;1) are taken from [1]. In order to save space we have
omitted all entries of the form f(p;1) = p — 1, where p is a prime. The
letter that occurs as an exponent on each value refers to the method of
construction, and should not be interpreted as an exponent. In those
cases where more than one construction provide the table entry for a
particular value of f(n;A) we have identified, somewhat subjectively,
the method we consider the most efficient.

f(41)=3;f(4;2)=9°

f(6:1) =1; f(6;2) = 8% (6;3) = 7°

f(8:1) =T7; f(8;2) = 157; £(8;4) = 49°

f(9;1) = 8; f(9;3) = 32°

£(10;1) = 2; f(10;2) = £(10;5) = 2"

F21) = 5 £(12;2) = 5% (12;3) = 10% f(12;4) = 5% f(12;6) =
121°

F(14;1) = 3; f(14;2) = f(14;7) = 3%

F(15;1) = 4; £(15;3) = f(15;5) = 4"

f(16;1) = 15; f(16;2) = 317; f(16;4) = 75%; f(16;8) = 225°

f(18;1) = 3; £(18;2) = £(18;3) = 3"; f(18;6) = 1199; £(18;9) = 3"

£(20;1) = 4;£(20;2) = 7(20;4) = 4% £(20;5) = 18% f(20;10) =

o
<

61

f(21;1) = 5; f(21;3) = f(21;7) = 5%

£(22:1) = 3; £(22;2) = f(22;11) = 3"

f(241) = 6;f(24,2) = f(24;3) = 6% f(24;4) = 8% f(24;6) =
22%; £(24;8) = 8"; f(24;12) = 529°
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f(25;1) = 24; f(25;5) = 144°

£(26;1) = 4; £(26;2) = f(26;13) = 4*

£(27;1) = 26; £(27;3) = 807; f(27;9) = 338°

F(28;1) = 5 f(28;2) = f(28;4) = 5"; f(28;7) = 267 f(28;14) =
729

£(30;1) = 4; f(30;2) = f(30;3) = f(30;5) = £(30;6) = £(30;10) =
£(30;15) = 4"

£(32;1) = 31; £(32;2) = 637; f(32;4) = 127/; f(32;8) = 319/; f(32;16) =
961°

f(33;1) = 5; f(33;3) = f(83;11) = 5"

F(341) = 4; £(34;2) = f(34;17) = 4

£(35;1) = 5 £(35;5) = f(35;7) = 5"

£(36;1) = 6; £(36;2) = 8% f(36;3) = 6"; £(36;4) = 8"; f(36;6) =
9¢: £(36;9) = 34¢; f(36;12) = 9*; £(36;18) = 1225°

£(38;1) = 4; (38;2) = f(38;19) = 4*

£(39;1) = 5; £(39;3) = £(39;13) = 5"

£(40;1) = 7; £(40;2) = f(40;4) = £(40;5) = f(40;8) = 7*; f(40;10) =
38%; £(40; 20) = 1521°

£(42;1) = 5; £(42;2) = 6¢; f(42;3) = 6% f(42;6) = 6"; f(42;7) =
5, £(42;14) = 6%; £(42;21) = 6"

f(44;1) = 5; f(44;2) = f(44;4) = 5P; f(44;11) = 42% f(44;22) =
@b

f(45;1) = 6; £(45;3) = £(45;5) = f(45;9) = f(45;15) = 6"

£(46;1) = 4; £(46;2) = F(46;23) = 4*

f(48;1) = 7,f(48;2) = f(48;3) = Th; f(48;4) = 8% f(48;6) =
7h; £(48;8) = 8%; £(48;12) = 46% £(48;16) = 8*; £(48;24) = 2209°
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f(49;1) = 48; f(49;7) = 384°

F(80;1) = 6; f(50;2) = f(50;5) = 6"; £(50;10) = 5399; f(50;25) =
Gh

f(51;1) = 5; £(51;3) = £(51;17) = 5*

F(52%1) = 5; f(52;2) = f(52;4) = 5%, £(52;13) = 50%; f£(52;26) =
2601°

f(54;1) = 5; f(54;2) = 8% £(54;3) = 7¢ f(54;6) = 8¢; f(54; 9) =
7h, f(54;18) = 13259; f(54;27) = T

f(55;1) = 6; (55;5) = f(55;11) = 6*

f(56;1) = 7; £(56;2) = £(56;4) = f(56;7) = f(56;8) = 7*; £(56; 14) =
54% £(56;28) = 3025

f(57:1) = 7, £(57;3) = f(57;19) = 7%

F(58;1) = 5; f(58;2) = f(58;29) = 5%

f(60;1) = 4; £(60;2) = £(60;3) = f(60;4) = £(60;5) = f(60;6) =
f(60;10) = £(60;12) = 4%; £(60; 15) = 58¢; £(60;20) = 4 f(60;30) =
3481°

f(62;1) = 4; f(62;2) = f(62;31) = 4

f(63;1) = 6; £(63;3) = f(63;7) = £(63;9) = £(63;21) = 6°

F(64;1) = 63; £(64;2) = 127/; £(64;4) = 255/; £(64; 8) = 567°; /(64; 16) =
1323%; f(64; 32) = 3969°

f(65;1) = 7; f(65;5) = £(65;13) = 7

f(66;1) = 5; f(66;2) = 8°; £(66;3) = 7¢; £(66;6) = 8h; f(66;11) =
5"; £(66;22) = 8"; f(66;33) = 7*

F(68;1) = 5; £(68; 2) = 9% (68;4) = 9*; £(68;17) = 66%; £(68; 34) —
4489°

f(69;1) = 6; £(69;3) = f(69;23) = 6"
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£(70;1) = 6; £(70;2) = f(70;5) = f(70;7) = f(70;10) = f(70;14) =
£(70;35) =

FI21) = 7, £(72;2) = 8% £(72;3) = T f(72;4) = 8 f(72;6) =
15¢; £(72;8) = 8h; £(72;9) = 7h; £(72;12) = 32°; (72;18) = 70% f(72;24) =
32h; £(72; 36) = 5041°

F(74;1) = 5; f(74;2) = f(74;37) = 5"

£(75;1) = 5; £(75;3) = f(75;5) = f(75;15) = f(75;25) = 5"

F(76;1) = 6; f(76;2) = 9°; £(76;4) = 9; £(76;19) = 74%; £(76;38) =

5625

F17;1) = 6; f(77;7) = f(77;11) = 6%

F(18:1) = 6; F(78;2) = 8¢; f(78;3) = 7° f(78;6) = 8 f(78;13) =

6h; £(78;26) = 8"; £(78;39) =

£(80;1) = 9; £(80;2) = f(80;4) = f(80;5) = f(80;8) = f(80;10) =
£(80;16) = 9"; £(80;20) = 78%; £(80;40) = 6241°

£(81;1) = 80; £(81;3) = 242/, f(81;9) = 800%; f(81;27) = 3200

£(82;1) = 8; f(82;2) = f(82;41) =

£(84;1) = 6; £(84;2) = £(84;3) = f(84;4) = f(84;6) = f(847) =
£(84;12) = f(84;14) = 6"; £(84;21) = 82%; f(84;28) = 6"; f(84;42) =
68809°

£(85;1) = 6; f(85;5) = f(85;17) =

£(86;1) = 6; £(86;2) = f(86;43) =

f(87;1) = 6; f(87;3) = f(87:29) =

F(88;1) = T; £(88;2) = 10°; f(88;4) = 10%; f(8;8) = f(88;11) =
10; £(88; 22) = 80¢; f(88;44) = 7569

£(90;1) = 6; £(90;2) = £(90;3) = f(80;5) = f(90;6) = f(90;9) =
£(90;10) = £(90;15) = £(90;18) = £(90;30) = f(90;45) =
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£(93;1) = 7; £(91;7) = f(91;13) = 7*

F(92;1) = 6; £(92;2) = 8% £(92;4) = 8"; f(92;23) = 90%; £(92;46) =
_ﬁlb

£(93;1) = 6: f(93;3) = f(93;31) = 6"

£(94;1) = 6; £(94;2) = f(94;47) =

f(95;1) = 6; f(95;5) = f(95;19) =

£(96;1) = 7; £(96;2) = 8% £(96;3) = 7" f (96*4) = 8"; £(96;6) =
10¢; £(96;8) = 85; £(96;12) = 15%; £(96;16) = 8"; £(96;24) = 94¢; f(96;32) =
8h; £(96; 48) = 9025°

£(98;1) = 6; £(98;2) = £(98;7) = 6"; £(98;14) = 1455%; f(98;49) =
6h

£(99;1) = 8; £(99; 3) = 10% £(99;9) = f(99;11) = f(99;33) = 10"

£(100;1) = 8; £(100;2) = 9%; £(100; 4) = 9"; £(100;5) = 8"; £(100; 10) =
£(100;20) = 9"; £(100; 25) = 98%; £(100; 50) = 9801°

We close with two conjectures. Let F(n;A) denote the maximum
number of MOFS of type F(n;\) with n = Am.

Conjecture 1: If A; < Ag, then F(n; A1) < F(n; Az).

This conjecture reflects the fact that the expression (n — 1)2/(m —1)
increases as m, the number of symbols, decreases. For the most part
the values in the table seem to reflect this. If true those values in the
table which are not consistent with the conjecture, such as F'(6;2) and
F(6; 3), would be obvious candidates for further investigation.

Conjecture 2: There exists a complete set of F(m";m*~!) MOFS
if and only if m is a prime power.

When h = 1, Conjecture 2 reduces to the well known prime power
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conjecture for sets of MOLS which postulates that there is a complete
set of MOLS of order n if and only if n is a prime power.
Acknowledgment: We would like to thank J. Stufken for a number

of helpful comments related to the table.
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