{K1,3, Z,}-FREE GRAPHS OF LOW CONNECTIVITY

ALLEN G. FULLER

ABSTRACT. A graph G is {R, S}-free is G contains no induced sub-
graphs isomorphic to R or S. The graph Z; is a triangle with a path
of length 1 off one vertex; the graph Z; is a triangle with a path
of length 2 off one vertex. A graph that is {K1,3, Z1 }-free is known
to be either a cycle or a complete graph minus a matching. In this
paper, we investigate the structure of {K) 3, Z}-free graphs. In par-
ticular, we characterize {K1, 3, Z2}-free graphs of connectivity 1 and
connectivity 2.

1. INTRODUCTION

All graphs considered in this paper are simple graphs, no loops or multi-
ple edges. For terms not defined here, see [3]. A graph Gis {H1, Ha, ... , Hi}-
free (k > 1) if G contains no induced subgraph isomorphic to an H;,
1 < i < k. The set of graphs {Hy, Hs,... ,Hy} is called a forbidden family.
The neighborhood of a vertez v is the set of vertices that are adjacent to
v and is denoted by N(v). The closed neighborhood of a vertez v, N[v], is
N(v) U {v}.

Two special graphs will be discussed in this paper, Z; and Z;. The
graph Z; is a triangle with a path of length 1 off one vertex. The graph Z,
is a triangle with a path of length 2 off one vertex.

In recent years the concept of forbidden families has played an impor-
tant role in the study of hamiltonian-like properties ([1], [2]). Two of the
forbidden families are {K1,3,Z:} and {K13,2Z2}. It is well known that a
{K1,3, Z, }-free graph is either a cycle or a complete graph minus a match-
ing. Thus, it is natural to ask about the structure of graphs free of the
other forbidden families, especially {K} 3, Z2}.

In this paper, we characterize all { K1 3, Z}-free graphs with connectivity
1 and connectivity 2. To characterize these graphs, we will use the following
theorem by Shepherd [4].

Theorem 1 ([4]). A connected graph G is claw-free if and only if for every
minimal cut set S and every v € S, (N(v) — S) is the disjoint union of two
complete graphs.

First, we use Theorem 1 to prove:
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Figure 1: {K1 3, Z2}-free Families of Connectivity 1.

Theorem 2. Let G be a {K} 3, Z2}-free graph with £(G) = 1. Then G is
either a path or a member of one of the families of graphs shown in Figure 1.

Having the result in Theorem 2, we use this result and Theorem 1 to
prove:

Theorem 3. Let G be a {K 3, Z2}-free graph of order at least 10 that
is not a cycle. Further, let x(G) = 2. Then G is a member of one of the
families of graphs in Figures 2, 3, and 4.

2. PROOF OF THEOREM 2

First, we suppose that G is a tree. We note that if a tree has a vertex v
of degree 3 or more, then v and three of its neighbors form a claw. Hence, a
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Figure 2: {K} 3, Z;}-free Families of Connectivity 2.

tree can only be {K( 3, Z }-free if it has vertices of only degrees 2 or 1. Since
paths are clearly { K 3, Z}-free the only trees that are {K; 3, Z2 }-free are
paths.

We now suppose that G is not a tree. Let v be a cut vertex in G. By
Theorem 1, (N(v)) = K, U K where K, and K} are two disjoint cliques
of orders a and b, respectively. We will divide remainder of the proof into
three parts.

PART 1: For this part, suppose that a > 1 and b > 1. Thus, we have
the family of graphs in (1) of Figure 1. Suppose that (N[v]) # G. Then,
since G is connected, there is a vertex z in V(G) that is not in N[v] such
that z is adjacent to either K, or K. Without loss of generality, assume
that z is adjacent to a vertex, say u, in V(K,). Since b > 1, there are two
vertices, say p and g, in K} that form a Z> with z,u, and v. Since v is a
cut vertex, z cannot be adjacent to p or g. Also, notice that  cannot be
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Figure 3: {K1,3, Z2}-free Families of Connectivity 2 continued.

adjacent to v by Theorem 1. Since G is {K13, Z,}-free, G = N[v]. Thus,
no such z exists, and G is a member of only family (1) in Figure 1.

PART 2: Suppose without loss of generality that a = 1, b> 1, and
K, = {t}. (See (2) in Figure 1) K Np]=V(G),Gis a member of family
(2) and we are finished. So suppose that (N[v]) # V(G). Then since G
is connected, there is a vertex z € V(G) — N [v] that is adjacent to some
subset of N(v). If z is adjacent to t then by the same arguments in Part 1,
there is a Zs in G. Thus,  must be adjacent to some vertex (or vertices)
in V(Kb).

Case2.1: Suppose Ni,(z) # V(Ks). Either (N[v]U {z}) is all of G or
it is not. If it is all of G, we are done since G will be a member of family (3)
in Figure 1. So, assume that (N[v] U {z}) # V(G). Since G is connected,
pick y to be a vertex of G that is not in (N[v]u{z}) such that y is adjacent
to something in (N[v] U {z}). Then either y is adjacent to z or it is not.
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Figure 4: {K) 3, Z,}-free Families of Connectivity 2 continued.

Subcase 2.1.1: First, suppose that zy € E(G). Note, z cannot be a
cut vertex, since if 2 were a cut vertex, then y would be adjacent to z, but
to no vertices in N[v]. A Z; would be formed by v, a vertex in N, (z),
a vertex in V(K}) — Nk, (z), =, and y; hence y must be adjacent to some
vertices in N(v)].

If y were adjacent to some vertex, say w, in Ng, (z), a Z, would be formed
by {t,v,w, z,y}. However, we now note that y is adjacent to all the vertices
of V(K3) — Nk, (z), since if there were a vertex w in V(K}) — Nk, (z) that
was not adjacent to y, then a Z, would be formed by v,w, z,y and a vertex
in Nk, (). Hence, we see that Nk, (z) and Nk, (y) partition the vertex set
of K. Thus, G is a member of family (4) of Figure 1.

Suppose graph (4) in Figure 1 is not all of G. Then, since G is connected,
there is a vertex z adjacent to a vertex in V(K,) U {z,y}.

Suppose first that 2 is adjacent to s, a vertex of K. Then, s is either
in Ng,(z) or Nk, (y). Without loss of generality assume the s € Nk, (y).
Then z is adjacent to y or else ({s,v,y,2}) induces a K 3 centered at s.
But then ({s,t,v,y,2} induces a Z;. Hence, z cannot be adjacent to a
vertex in Kjp.

Now suppose, without loss of generality, that yz € E(G). Then v,y, 2,
a vertex of Nk, (z), and a vertex of Nk, (y) induce a Z;. Since z is not
adjacent to any vertices of K3, graph (4) in Figure 1 must be all of G.

Subcase 2.1.2: Finally, suppose the vertex zy € E(G). Note that y
cannot be adjacent to vertex s in Nk, (z) or else a claw centered at s will
be induced by {s,v,z,y}. Thus, y must be adjacent to some vertex (or
vertices) in V(Kj3) — Nk, (z). Assume (N[v]U {z,y} is not all of G. Then,
since G is connected, there is a vertex z in G that is not in N[v]U {z,y}
which is adjacent to N(v) U {z,y}. Note that neither z nor y can be a cut
vertex or else a Z, would be induced by v, y, a vertex in Nk, (z), and a
vertex in Nk, (y) (assuming, without loss of generality, that y is the cut
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vertex). Also, {z,y} cannot be a minimal cut set with respect to z or a Z,
would be induced in exactly the same manner as above.

Now, suppose that z is adjacent to both z and y. Then z must be
adjacent to some vertex (or vertices) of K;. Observe that z cannot be
adjacent to (1) a vertex in Nk, (z) or Nk, (y) or else a Z; would be induced;
or (2) vertex in V(K;) — {N(z) U N(y)} or else a Z, would be. Thus, 2
cannot be adjacent to both z and y.

Next, suppose z is adjacent to only one of z or y. Suppose, without loss
of generality, z is adjacent to 2. Then z cannot be adjacent to (1) a vertex
in N(z) or a Z; is induced; (2) a vertex in N(y) or a claw is induced; or
(3) a vertex in V(K}) - {N(z) UN(y)} or a Z, is induced. Hence, z cannot
be adjacent to one of z or y.

Therefore, z can only be adjacent to some vertex (or vertices) in V (K})—
{N(z)UN(y)}. By continuing the preceding arguments, we see that G must
be a member of family (5) in Figure 1.

Case 2.2: Suppose that Nk, (z) = V(K,). If this is all of G , then G is
a member of family (6) in Figure 1. Hence, suppose that it is not all of G.
Then, since G is connected, there is a vertex y that is adjacent to either z
or a vertex in Kj.

If y is adjacent to a vertex, say w, of K, and z, then, by the same
arguments as in Subcase 2.1.1, a Z; is formed by ¢,v,w,z and y. Now, if y
is adjacent to a vertex, say w, in K} but not adjacent to z, then a claw is
formed by v, w,z and .

Consequently, ¥ can only be adjacent to  and we have the situation
depicted in graph (7) in Figure 1. If N[v]U {z,y} is all of G, then we are
done. Thus, assume that N[v] U {z,y} # V(G). Then there is a vertex
z which is adjacent to z or y since G is connected. (Note that z cannot
be adjacent to a vertex of K} by the argument above.) Suppose that z is
adjacent to only vertex z. Then a claw is formed. Thus, if 2 is adjacent
to z, z must also be adjacent to y. Suppose that z is adjacent to z and y,
then a Z; is formed by ¢,v,z,y, z and a vertex in K,. Hence, z can only be
adjacent to y. However, a Z, still exists induced by z,y, z and two vertices
in K. Thus, G is either a member of family (6) or (7) in Figure 1.

CASE 3: Suppose that a = b = 1. The situation thus far is a path on
three vertices, say u,v and w. Recall that we assumed that G was not a
tree (path). Hence, there is a vertex of degree at least 3. If deg(w) > 3,
then there are vertices = and y that are adjacent to w. Note that neither
z nor y can be adjacent to u since v is a cut vertex. Also, z and y are not
adjacent to v since b = 1. Thus, = must be adjacent to y or else a K 3
would be formed. But then we have a Z, formed by the set of vertices
{u,v,w,z,y}. Now, if deg(w) = 2, then by proceeding along the path in
the direction from u to v we will find a vertex of degree at least 3. Hence,
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by the preceding argument, we will form a Z, that cannot be removed.
Thus, we see that a and b cannot both be equal to 1.

So, if G is a {K1,3, Z;}-free graph of connectivity 1, then G is a path or
a member of one of the seven families in Figure 1. O

3. PROOF OF THEOREM 3

Since G has connectivity 2, let T = {v,w} be a cutset of G and let
H = G - w. So, H is a {K1,3,Z;}-free graph with x(H) = 1. Hence, we
know that H is a graph of Figure 1 or H is a path. We will also consider
the graph H' = G —v.

CASE 1: Suppose that H is a path. Since Ny (w) is the disjoint
union of two complete graphs, w is adjacent to at most two vertices in each
component of G — {v, w}; otherwise, a claw would be formed. Observe that
w is adjacent to the end vertices of H since the degree of the end vertices
is 1 and G has connectivity 2.

Subcase 1.1: Suppose that v and w are adjacent. Then G — {v,w} has
one component that is an isolated vertex otherwise a claw would be created
that could not be removed as H is a path. The other component can only
have at most two vertices or a K 3 or Z; would be formed. Thus, G would
have order less than 10, a contradiction.

Subcase 1.2: Suppose now that v and w are not adjacent. Observe
first that since G # C,,, one component of G — {v,w} must have at least
two vertices, and w must be adjacent to two vertices in one component.

Now, if a component of H — v has three or more vertices, then w must
be adjacent to only the end vertex or else a Z3 or K 3 would be formed.
Since G # C,, each component of H — v has two or fewer vertices. Thus,
G has at most 6 vertices, a contradiction, since G has order at least 10.

CASE 2: Suppose that H = G — w is in family (1) in Figure 1. Note
that Case 1 above takes care of the case when a = b = 1. We assume
that a,b > 2. Since Ng/(v) is the disjoint union of two complete graphs,
Ny (v) € V(Ka) U V(K;) since V(G) = V(H) U {w}.

Subcase 2.1: If vw € E(G), then w is adjacent to all the vertices in
either K, or K;. Suppose instead there are vertices s and ¢ in K, and K,
respectively, that are not adjacent to w. But now, {v,w,s, t} forms a claw.
Assume, without loss of generality, that w is adjacent to all the vertices in
K,. If w is not adjacent to all the vertices of K3, a Z» would be formed by
two vertices in K, w, a vertex in Nk, (w), and a vertex in V(K,)— N, K, (W).
Thus, G is a member of the first family in Figure 2.

Subcase 2.2: Next, suppose vw ¢ E(G) and @ > 3 or b > 3. (Since
G has order at least 10, both a and b cannot be less than 3.) Then w is
adjacent to N(v), for if not then, w must be adjacent to all but one vertex
of K; or a Z; is formed. Note that w must be adjacent to all the vertices
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of K, or a Z, will be formed by two vertices in Kj, w, a vertex in Nk, (w),
and a vertex in V(K,) — Nk, (w). Now, since a > 2, w must be adjacent to
all of K, or a Z is present. Thus, G is a member of family (2) in Figure 2.

CASE 3: Suppose that H is a member of family (2) in Figure 1. As
Ny (w) is the disjoint union of two complete graphs, w is adjacent to t and
a subset of K. Since |V(G)| > 10 and b > 3, w must be adjacent to all
but one vertex of K or a Z, would exists. Hence, G is in one of families
(3) through (6) in Figure 2.

CASE 4: Suppose that H is a member of family (3) in Figure 1. Since
Ny (w) is the disjoint union of two complete graphs, w is adjacent to ¢ and
to some clique included in V(K U {z}). Note that if wz € E(G), then w
is adjacent to at most N{z], or Ny (w) would not be the disjoint union of
two complete graphs. Since |V(G)| > 10, we know |V (K})| > 6. We now
consider three subcases.

Subcase 4.1: Suppose that 2 < |Nk,(z)| < b—2. Then wz ¢ E(G),
for otherwise w and v must be adjacent or a Z; is formed by two vertices
in Ky — N(z) and {t,v,w}. But there is still a Z, formed by two vertices in
Ky — N(z) and {v,w,z}. Thus, z cannot be adjacent to w. Also, observe
that if w is adjacent to a vertex in N(z), then it is adjacent to all the
vertices of N(z) or else there are Zy’s.

If w is not adjacent to all of Kp, then there is a claw whose center is a
vertex in N (z) with neighbors z, w, and any vertex in Kp— N(z) that is not
adjacent to w. If w is adjacent to a vertex in Kj — N(z) and w is adjacent
to v, then w is adjacent to all of K;. Otherwise a Z; would be formed by
t,v,w,z and a neighbor of z not adjacent to w. By the above argument if
vw € E(G) and w is adjacent to a vertex in Kp — N(z) and |[N(z)| 2 2,
then w is adjacent to a vertex in N(z) and hence to all of K;. Assume
vw ¢ E(G) and that w is only adjacent to part of Ky — N (z). Then a Z,
is formed by two vertices in N(z), v,w, and ¢. Thus, w must be adjacent
to all of N(z) and hence to all of K. Now, note that if vw ¢ E(G), a K13
is formed by z,v,w, and a vertex in N(z). Therefore, G is a member of
family (7) in Figure 2.

Subcase 4.2: Suppose that |Ng,(z)] = 1. Note that Ng(w) is the
disjoint union of two complete graphs. Observe that w is adjacent to both
¢t and z or else G would have connectivity 1. Let Nk, (z) = {y}. Notice
that there are two Z»’s in G. The only way to eliminate both is to add the
edges vw and wy. However, there is still a Z, induced by v,w,x and two
vertices in Kj —y. This Z; cannot be eliminated since N(w) is the disjoint
union of two complete graphs.- Thus, no graphs are possible in this case.

Subcase 4.3: Suppose that [Nk, (z)] = b— 1. By the arguments of
Subcase 4.1, if wz ¢ E(G), then w is adjacent to v and to all of K,. If
wz € E(G), then w is adjacent to at least b — 1 vertices in N (z) or else a
Z, would be formed. If wz € E(G) but vw ¢ E(G), then w is adjacent to
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all of N[z] or else a Z, is formed. Thus, G is a member of one of families
(8) through (10) in Figure 2

CASE 5: Suppose that H is in family (4) of Figure 1. Since Ny (w) is
the disjoint union of two complete graphs, w is adjacent to ¢ and a subset
of N[z]U N[y] that is a clique. Note that if w is adjacent to z (or y), then
w can only be adjacent to at most N[z] (or N[y]). As in Case 4, since
IV(G) >10,b > 3.

Subcase 5.1: Suppose that 2 < [Nk, (z)| < b—2 and 2 < |Ng,(z)| <
b—2. Then w is not adjacent to z (or y). If it were, then since | Ng, (z)| > 2,
a Z would be exist unless wy € E(G). But if wy € E(G), then a Z; would
exist since w could not be adjacent to any vertices in K; (as N(w) is the
disjoint union of two complete graphs). Hence, suppose, without loss of
generality, that w is adjacent to a vertex in Nk, (z). Then w must be
adjacent to all vertices in N, () or Z2’s would exist. But this implies that
w must be adjacent to all vertices in Nk, (y) or claws would exist. Observe
now that vw € E(G) or else a claw will be induced by z,v,w and a vertex
in K, adjacent to x. However, a claw is still induced by ¢,v,w,z and a
vertex in Nk, (x). Thus, |Nk,(z)| = 1, a contradiction.

Subcase 5.2: Suppose without loss of generality that |Ng, (z)| = 1 and
INk,(y)| = b — 1. By a similar argument used in Subcase 5.1, wz ¢ E(G)
(but wy can be in E(G)). However, if vw € E(G), then wy ¢ E(G) since
if it were, then {t,w,v,z,y} would induce a Z;. Thus, zw € E(G), a
contradiction. Hence, w cannot be adjacent to y. Next, if vw ¢ E(G) but
wy € E(G), then w is adjacent to Nk, [y]; for if not, there is a vertex s in
Nk, (y) that is not adjacent to w which together with N, (z),v,w, and ¢
would form a Z,. If w is not adjacent to v or y, then by arguments similar
to those in Subcase 5.1, we can see that w is adjacent to all of K. Hence,
G must be a member of family (11) in Figure 3.

CASE 6: Suppose that H is a member of family (5) in Figure 1. Since
Np:(w) is the disjoint union of two complete graphs, w is adjacent to ¢
and a subset of K} and/or a subset of N[z;] for i =1,2,... ,h. (Note w is
adjacent to at most one z; or else Ny (w) is not the disjoint union of two
complete graphs.)

Subcase 6.1: Suppose that wz; € E(G) for any 2 < i < h. Observe
that [N(z;)| 2 2 for 2 < i < h or else G will have connectivity 1. If w is
adjacent to a vertex in N(z;) for some ¢, then w must be adjacent to all
of K or a claw or Z; exists. If there is a vertex y in V(K}) — N(z;) not
adjacent to w, then a K, 3 will be formed by w,z;,y, and the vertex in
N(z;) that is adjacent to w. If there is a vertex y in N(z;) not adjacent to
w, then a Z is formed by ¢, w, z;, y, and the vertex in N(z;) that is adjacent
to w. So, suppose w is not adjacent to vertices in N(z;) for 2 < i < h;

that is, w is only adjacent to vertices in V (K3) — U:‘=2 N(z;). Then a Z, is
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formed by two vertices that are not adjacent to w, a vertex to which w is
adjacent, w, and t. Hence, w must be adjacent to all of K. Now, observe
that vw must be an edge in G or else one z;, one of its neighbors, v, and w
for a K, 3. Hence, G must be a member of family (12) in Figure 3.

Subcase 6.2: Suppose w is adjacent to z; for some i, say z;. Now,
w can be adjacent to at most Nk, [z,] since N(w) is the disjoint union of
two complete graphs. Observe that w must be adjacent to all vertices in
Nk, (z;) or else a Z; would be formed by two vertices not in Nk, (x,), 2
vertex in Nk, (z,) that is not adjacent to w, 5, and w. However, some z;
(i # s), one of z;’s neighbors, a neighbor of z,, =5, and w still form a Z,.
Thus, w cannot be adjacent to z; for any ¢, and G can only be a member
of family (12) in Figure 3.

CASE T7: Suppose that H is a member of family (6) in Figure 1. Since
Ny (w) is the disjoint union of two complete graphs, w is adjacent to ¢ and
a clique contained in N, [z]. If w is adjacent to z, then w must be adjacent
to at least b — 1 vertices of K or else a Zs would exist. However, if w is
not adjacent to , then w is adjacent to all of K} or else a Z; is present.
Observe, that these Z5’s exist whether or not vw is an edge in G. Thus, G
is a member of one of families (13) through (16) in Figure 3 or family (17)
in Figure 4.

CASE 8: Suppose that H is a member of family (7) in Figure 1. As
Ny (w) is the disjoint union of two complete graphs, w must be adjacent
to t and y or else G would have connectivity 1 (since deg(t) or deg(y) would
be equal to 1). Observe, however, that there are two Z’s that are formed.
The first is formed by two vertices in Kj, z,y, and w; the second by two
vertices in K}, v,t, and w. These can only be eliminated by adding the
edges vw and vz since w cannot be adjacent to vertices in Kj;. But, the
graph formed by adding these two edges has a Z; that cannot be removed;
namely, the one formed by two vertices in Kj, v, w, and y. Hence, no such
graph is possible. O
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