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ABSTRACT. The star graph S, and the alternating group graph A,
are two popular interconnection graph topologies. An has a higher
connectivity while S, has a lower degree, and the choice between the
two graphs depends on the specific requirement of an application.
The degree of Sy, can be even or odd but the degree of A, is always
even. We present a new interconnection graph topology, split-star
graph SZ, whose degree is always odd. S2 contains two copies of An,
and can be viewed as a companion graph for A,. We demonstrate
that this graph satisfies all the basic properties required for a good
interconnection graph topology. In this paper, we also evaluate S,
An and S2 with respect to the notion of super connectivity and super
edge-connectivity.

1. INTRODUCTION

Useful distributed processor architectures offer the advantage of im-
proved connectivity and reliability. An important component of such a
distributed system is the system topology, which defines the inter-processor
communication architecture. Two popular system topologies are star graphs
[1, 6] and alternating group graphs [7).

Both the star graphs and the alternating group graphs interconnect
O(n!) vertices using a degree of O(n) to provide a diameter of O(n). More-
over they are regular graphs and maximally connectivity, that is, the con-
nectivity is equal to the regularity of the graph.

Table 1 contains the basic properties of the star graph S, and the alter-
nating group graph A,. A, has a higher connectivity than S,, and natu-
rally S, has a smaller degree (regularity). This is a trade-off, and choices
depend on whether a particular application prefers higher connectivity or
smaller regularity.

The alternating group graphs have even degrees for every n whereas
the degree of the star graphs has the opposite parity of n. In this paper,
we introduce a class of graphs, namely, the split-stars S2, related to the
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TABLE 1. Summary of Basics Properties

no. of | degree | diameter
vertices

Sa] n | n-1] %)

A, nj2 [2n—4| %]

H n! 2n—-3| [257]

TABLE 2. Summary of Connectivity Properties

connectivity | tightly super | tightly super
(fault tolerance) | connected edge-connected

Sn n-1 yes yes
unless n = 3 unless n =3

An 2n—4 yes yes
unless n =4

SZ 2n -3 yes yes

unlessn =3

alternating group graphs in which the degree is always odd. They can be
seen as companion graphs of the alternating group graphs as 52 contains
two copies of A,. However, like Sn, Sﬁ has n! vertices and its construction
is a variant of the construction for S,. Hence the split-stars act as bridges
between the star graphs and the alternating group graphs. In Section 3,
we give an optimal routing algorithm on a split-star and determine its
diameter to ensure it has all the basic properties of a good graph topology.
The results are contained in Table 1.

Like most interconnection networks, split-stars are cayley graphs. How-
ever, they are not edge-transitive. This is not a deficiency since they are
almost edge-transitive and retain all the attractive properties required for
interconnection networks while providing some diversifications.

We assume the reader is familiar with the basic terminologies in graph
theory. (See [9).) Let G be an r-regular graph. Then the graph has connec-
tivity at most r. G is said to be mazimally connected if its connectivity
is . It is well-known that both the star graphs and the alternating group

1In distributed computing, it is more commonly known as fault tolerance. However,
some authors distinguish the terms connectivity and fault tolerance by defining fault
tolerance to be one less than the connectivity.
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graphs are maximally connected. But given an r-regular graph, we can im-
pose an additional condition that the graph be close to (r+ 1)-connected in
that its only minimal disconnecting sets are those induced by the neighbours
of a vertex. This is a much stronger property than maximal connectivity.
This makes an r-regular graph almost (r + 1)-connected and it is indeed
a desirable characteristic. If a graph has this property, then it is said to
be (loosely) super connected. If, in addition, the deletion of a minimum
disconnecting set results in a graph with two components (one of which
has only one vertex), then the graph is tightly super connected. Note that
an r-regular graph can be loosely super connected but not tightly super
connected; for example, the complete bipartite graph K, with r > 3. An-
other related notion is that of super edge-connectivity. It requires the only
minimal edge-disconnecting sets are those induced by a vertex. (Obviously,
the notion of loosely superness and tightly superness are the same in this
case.) The notion of superness was first introduced in [3]. Although maxi-
mal connectedness is a stronger notion than maximal edge-connectedness,
it is possible for a graph to be super connected and yet not super edge-
connected. In section 4, we state that the star graphs, the alternating
group graphs and the split-stars have these properties except for a couple
of small cases. The result is summarized in Table 2. The proofs of all these
results are similar. Since the star graphs and the alternating group graphs
are familiar objects, we will only provide a proof of the result for split-stars.

Throughout this paper, we consider permutations of M = {1,2,... ,n}.
A permutation [a;, as, . . ., a,] corresponds to the bijection 7 with 7(¢) = a;.
If a; = i, then ¢ is in its natural position. The identity permutation
[1,2,...,n] is denoted by . It is well-known that every permutation can
be written as a product of disjoint cycles known as the disjoint cycle de-
composition. The cycle (a1, ag,- .. ,an) denotes the bijection f on the set
{a1,02,... ,am} where f(a;) = ai41 and the subscript arithmetics are done
in modulo m, and is referred to as an m-cycle. A permutation is even (odd)
if it has a factorization as a product of an even (odd) number of, not nec-
essarily disjoint, 2-cycles.

2. A SPLIT-STAR

[1] introduced the star graph through a puzzle. We consider a similar
game: n checkers with labels a;,as,... ,an,n > 3, are placed on the vertices
of the graph in Figure 1. The objective of the game is to perform a sequence
of valid moves so that each checker a; is placed on the ith vertex. There are
two types of moves: 2-ezchange and S-rotation. A 2-exchange interchanges
the checkers on the vertices 1 and 2. A 3-rotation rotates the checkers
on the vertices of a triangle, that is, the triangle with vertices 1, 2 and
k for some k € {3,4,...,n}. Each move corresponds to premultiplying
the current permutation = by the appropriate cycle. A 2-exchange yields
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the new permutation #(1,2). Similarly, a 3-rotation of 7 through k yields
either 7(1,2,k) or 7(2,1, k). These 3-cycles will be called valid. Note that
(1,2,k) and (2,1, k) are inverses of each other, and that for any valid 3-cycle

7, (1,2) = (1,2)y7L.

N
231 k) V3

FIGURE FIGURE 2. S2
1. Generator-graph

The number of possible instances of this game is n!. Two permutations
are said to be related if one can be obtained from the other by a move. Let
S2 be the relation graph of these instances. It is called a split-star. Figure 2
gives 52 and Figure 3 gives S7. The following observation is obvious.

FIGURE 3. 5?7
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Proposition 2.1. Letn > 3. Then S2 is a (2(n—2)+1)-reguler undirected
graph on n! vertices. Moreover, S is vertes-transitive? and has two equiv-
alence classes of edges®, namely, those induced by 2-ezchanges and those
induced by 3-rotations.

Let S2 p be the subgraph of 52 induced by the set of even permutations.
This is precisely the alternating group graph, A,, introduced in [7). Let
S;‘:,o be the subgraph of S2 induced by the set of odd permutations. Then
Sf,,o is isomorphic to S,{E via ¢([a1,a2,a3,... ,a,)) = [az,0y,03,... , Q).
Moreover, the edges corresponding to the 2-exchanges induced a perfect
matching? between the set of even permutations and the set of odd permu-
tations.

3. DIAMETER AND OPTIMAL ROUTING

This section will be brief. Complete proofs can be found in the technical-
report [4]. Since S? is vertex-transitive, it is enough to consider optimal
routing from every other vertex to . This is a computationally tight re-
duction. Intuitively: If 7 is even, we use the routing for A,; if = is odd,
we route it to ¢(1,2) and then use a 2-exchange. This works because of the
following:

Proposition 3.1. Let 7 be a permutation. Then there is at most one 2-
ezchange in an optimal routing of length q from 7 to 1. Moreover, such a
2-exzchange can be made to occur as the last step in another optimal routing
from the given optimal routing in O(gn) time. This 2-ezchange is present
in an optimal routing if and only if w is odd.

Proof. Any routing is a product of valid 3-cycles and cycles of the form
(1,2). Suppose this product contains two or more cycles of the form 1,2).
Consider the following subproduct of this routing, (1,2)m7:---7k(1, 2)
where each 7; is a valid 3-cycle. This is equivalent to 47 2y, -+ -4 L. This
decreases the length of the routing, so the original routing is not optimal.
Suppose the optimal routing is y1v2 - - - (1, 2)7Yi41 - - - v+ where each v; is
a valid 3-cycle. This is equivalent to (1,2)7; 5 - -4 ;41 - - v¢. Thus
we may assume the 2-exchange occurs at the end. The last statement is
obvious. 0

A greedy strategy for a routing from 7, = [a1,0s,...,a8,) to ¢ is the
following: Let 7, the current permutation, be ,; repeat the following until
7 is equal to ¢.

2Two vertices u and v are equivalent if there is an automorphism ¢ such that ¢(u) = v.
A graph is vertez-transitive if every pair of vertices are equivalent

3Two edges (u,v) and (x,y) are eguivalent if there is an automorphism ¢ such that
$(u) =z and ¢(v) =y, or ¢(u) =y and ¢(v) = z.

4Given a graph G = (V, E), M C E is a perfect matching if every vertex of the graph
H = (V, M) has degree one.
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o If there is a symbol in the first two positions of 7 that is neither 1
nor 2, then perform a 3-rotation to put this symbol, say ¢, to the ith
position. Let 7 be the updated permutation.

o If the symbols in the first two positions of 7 are 1 and 2, and there
exists another symbol j not in the jth position, then perform a 3-
rotation to put this symbol in one the first two positions. Let 7 be
the updated permutation.

o If the symbols in the first two positions of 7 are 1 and 2 and every
other symbol i is in the ith position, then perform a 2-exchange move
if 1 is in the 2nd position (and hence 2 is in the 1st position.) Let =
be the updated permutation, which of course will be ¢.

Theorem 3.2. Let © be a permutation. The greedy algorithm gives an
optimal routing from = to .

Proof. Tt follows from the fact that the greedy algorithm is optimal for the
alternating graph (see [7]) and Proposition 3.1. O

Example 3.3. Let 7 = [4,5,6,2,1,7,3]. A greedy routingis [4,5,6,2,1,7,3],
I.'5_)2: 63 4: .];: 71 3]: [.2.’ l, .6.: 4) 55 7) 3]’ [g’ _2.) la 4-: 5)1) 3]7 [2.7 _7.5 11 41 51 6) §]a [3.) 2) la 4}
5,6,7), [2,1,3,4,5,6) which gives ¢ by applying a 2-exchange. An alternate
optimal routing is to start with [4,5,6,2,1,7,3] (a non-greedy step) to
[5,6,4,2,1,7,3] and then proceed with a greedy routing. This shows that
there exist optimal routings that are not greedy.

In fact, the length of any greedy routing from m, to 7 depends only
on the cycle structure of m; 'ma. (See [7] or [4].) It is straightforward to
compute both the maximum distance between vertices (the diameter), and
the average distance in S2.

Theorem 3.4. The diameter of S2 is | 32| —2. An optimal routing between
any two vertices in S2 can be found in O(n?) time.

Theorem 3.5. The average distance of S2 isQ=n+Hn, -5+ % where
H,, is the nth harmonic number.

4. CONNECTIVITY

It is well-known that A, and S, are maximally connected. In fact,
this follows from the fact that they are regular, connected edge-transitive
graphs. We now consider the connectivity of 52 which is not edge-transitive.
One can use the fact that A, is maximally connected to show that 52 is
maximally connected but we will give a proof without this fact. The reason
is a slight modification of the argument provides a proof for S2 being tightly
super connected.

Let Hi be the subgraph of S2, n > 4, induced by the set of vertices
corresponding to the permutations with ¢ in the nth position. Then H}
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is isomorphic to S2_;. (See Figure 3.) Suppose we know that $2_, with
n > §is (2(n — 3) + 1)-connected. An edge is a solid edge if both ends
belong to H: for some i; otherwise it is a dashed edge. Hence each vertex is
incident to exactly two dashed edges. Therefore there are exactly 2(n — 1)!
dashed edges with exactly one end in HE. (See Figure 3.) It is not difficult
to see that the number of dashed edges between H and H,{ is consta.nt.
Hence the number of dashed edges between H: and Hj is 2(n — 2)\.
fact, these edges can be determined explicitly. The only vertices in H i
that are adjacent to Hj are the vertices with j in the 1st or 2nd position.
Hence there are two cho1ces for j and since 7 is in the last position, we
have (n — 2)! ways to permute the remaining symbols. We claim that S2 is
(2(n - 2) + 1)-connected. It is easy to check that S? and S? are maximally
connected. We continue with an inductive argument. Suppose S? is not
(2n — 3)-connected. Then there exists a set T of 2n ~ 4 vertices such that
S2\ T is not connected. Let T' = TyUTUT5U - - - UT, such that T is a set
of vertices in Hi. Let t; = |Ti| for 1 < i <n. So 21—1 ti =2n-4.

Suppose t; < 2n — 6 for all 1 < i < n. Since S2_, is (2n — 5)-connected,
H} \T; is connected. The number of dashed edges between H: \ T; and
H-" \Tjin S2\T is at least 2(n — 2)! — 2(2n — 6) = 2(n — 2)! — 4n + 12
whxch is positive if n > 5.

Suppose there exists a T; with ¢; = 2n — 4. Without loss of generality,
we may assume t; = 2n —4 and t; = 0 for 2 < ¢ < n. Suppose H} \ Ty
is not connected. Let v; and v, be two vertices in different components of
HI\T\. Since t; =0 for 2 < i < n, v; (vs, respectively) is still adjacent to
a vertex in Hf for some i. Hence S2 \ T is connected.

Suppose there exists a T; with £; = 2n—5. Without loss of generality, we
may assume ¢; = 2n — 5, ¢ = 1 and ¢; = 0 for 3 < i < n. Suppose H. \ Ty
is not connected. Let v; and v, be two vertices in different components of
HX\Ti. Since it is clear that (S2 \ H2) \ T is connected, it is enough to
show that v; (v2, respectively) is still adjacent to a vertex in Hi for some
1. This is true since v; (v2, respectively) is incident to two dashed edges
but ¢; = 1 and ¢; = 0 for 3 < 7 < n. Hence we have the following theorem.

Theorem 4.1. Letn > 3. Then S2 is mazimally connected.

Now that we know S2 is maximally connected, it is still interesting to
determine exactly which sets of size 2(n —2) +1 are minimum disconnecting
sets. Since S2 is (2(n — 2) + 1)-regular, S? has at least n! disconnecting
sets.

Theorem 4.2. Letn > 3. Then S2 is tightly super connected.

Proof. 1t is easy to see that the statement is true for n = 3,4. Forn > 5,
we follow the type of analysis in the proof of Theorem 4.1. We only have

5This notation denotes disjoint unions.
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to make the analysis slightly tighter. Using the same terminology, we have
Yoiati = 2n—3. As before, if t; <2n—6forall1 <i < n, then T
is not a disconnecting set. Without loss of generality, the remaining cases
arety =2n—-35,t =2n—4 and t; = 2n - 3. Suppose {; = 2n —4 or
t; = 2n — 3. Then H} \ T} may be disconnected. Let Y be a component of
HX\Ti. If we can show that there is a dashed edge having exactly one end
in Y, then T is not a disconnecting set. This is obvious since each vertex
in Y is incident to exactly two dashed edges and [T'\ T1| < 1. Now suppose
t1 = 2n = 5. It is clear that the only case in which the above condition is
not satisfied is when |Y'| =1 and T\ T are the two other ends of the two
dashed edges incident with the vertex in Y. Hence T is the neighbour set
of the vertex in Y and S, \ T has exactly two components, one of which
has only one vertex. 0

In some situations, the vertices are highly reliable but the edges are
not. In this case, one can look at the edge-connectivity. Since S2 has
connectivity 2(n — 2) + 1, the edge-connectivity is 2(n — 2) + 1, that is,
mazimally connected. (It is well-known and indeed easy to see that the
connectivity is less than or equal to the edge-connectivity in any graph.) In
fact, since S? is vertex-transitive, one can conclude it is maximally edge-
connected by using a theorem of Watkins [8].

Theorem 4.3. ¢ Let H = (V,E) be a k-regular tightly super connected
graph with k > 1. If H has more than 2k + 2 vertices, then it is super
edge-connected.

Proof. Note that the assumption of H being a s-regular tightly super con-
nected graph implies H is simple, that is, H has neither multiple edges nor
loops. Recall that the edge-connectivity of H is k. If k = 1, then H must be
the graph with two vertices and one edge; so there is nothing to prove. Any
minimum edge-disconnecting set is of the form (X, X) for some @ # X C V,
that is, edges having exactly one end in X. Note that |(X,X)| = dg(X).
Choose § # X C V such that dy(X) = & and (X,X) is a (minimum)
edge-disconnecting set. Our objective is to show either | X|=1or |X|=1.
Let Vi (V2, respectively) be the set of vertices in X (X, respectively) that
are incident with an edge in (X,X). We note that |Vi| < & and |V3] < &.
If Vi = X and V; = X, then |X| < & and |[X| < k. Hence H has at most
2k vertices, a contradiction. Without lost of generality, we may assume
n#X.

Since V; # X, V; is a disconnecting set. Since dg(X) = k and H
has edge-connectivity «, Vi is in fact of size k, that is, V5 is a minimum
disconnecting set. Since H is tightly super connected, either X has only

6This is a weaker version of a more general result. For our purpose, this weaker
version is enough. See (4] for a proof of the stronger result.
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one vertex or X \ 1} has only one vertex. If X| = 1, then we are done. So
we assume X \ V; has only one vertex; call this vertex a. If X = V;, then
the vertex-set of H is ViUVaU{a}; hence H has at most 2« + 1 vertices, a
contradiction. Therefore X \ V; is not empty. Then it is easy to see (as
above) that V- is a minimum disconnecting set (so |V3| = &) and that we
may assume X \V; is a singleton (or we are done); call this vertex b. So the
vertex-set of H is ViUV,U{a, b}. This implies that H has 2k + 2 vertices, a
contradiction. a

Corollary 4.4. Letn > 3. Then S2 is super edge-connected unless n = 3.

Proof. Since S? is a (2n — 3)-regular tightly super connected graph and it
has n! vertices which is greater than 4n—6 if n 2 4, the result follows from
Theorem 4.3. It is clear that S? is not super edge-connected. ]

The corresponding result for Sy, and A, can be proved in a similar way,
and we state it here without proof. (In fact, the proofs are somewhat
simpler.)

Theorem 4.5. Letn > 3. Then A, is tightly super connected unlessn = 4,
and A, is super edge-connected.

Theorem 4.6. Let n > 3. Then S, is tightly super connected and super
edge-connected unless n = 3,

5. CONCLUDING REMARKS

In this paper, we introduced split-stars, a new class of interconnection
networks. This compliments two existing classes, namely, the star graphs
and the alternating group graphs. S2 can be viewed as a companion graph
of An: The degree of S2 is always odd and the degree of Ay, is always even,
and both have higher connectivity than S,,. S2 is constructed in a way sim-
ilar to the construction of S, and therefore, can be seen as a variant of Sh.
This gives a valuable addition to the collection of good interconnection net-
works. We also applied super connectivity and super edge-connectivity as
measures of reliability of these interconnection networks. These are stronger
measures than maximal connectedness and maximal edge-connectedness.
These are desirable properties as they imply little degradation of structural
integrity in the presence of a tolerable or even an intolerable number of
faults. We showed that S,, A, and S2 have these properties. In fact,
there are other measures of reliability that are stronger than maximal con-
nectedness and maximal edge-connectedness. Most of these measures are
N P-Hard to compute. One such existing measure is the toughness [5]. It
follows from a theorem of [2) that S, has toughness one as it is vertex-
transitive and bipartite. It also follows from a theorem in [2] that A, and
Sn have toughness strictly greater than one. We have also computed this
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parameter for A, and Sp,. We discovered that they, having toughness 2,
are much tougher than Sy. '
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