# The Jump Number of $P \times n$

Deok Rak Bae <sup>1</sup> and Jong Youl Kim <sup>2</sup> Department of Mathematics, Sogang University, Seoul, 121-742, Korea (bae@math.sogang.ac.kr and jykim@math.sogang.ac.kr)

Abstract. In this paper, we calculate the jump number of the product of an ordered set and a chain.

Mathematics Subject Classification (2000). 06A10.

Key words: Jump number, (P, L)-chain, optimal linear extension.

#### 1 Introduction

An order R on a set is called an *extension* of another order S on the same set if  $S \subseteq R$ . Let P be a finite ordered set and let |P| be the *number of vertices* in P. We say that b covers a, denoted by  $b \succ a$ , provided that for any  $c \in P$ ,  $a < c \le b$  implies that c = b. A linear extension of P is a linearly ordered set L such that  $a \le b$  in L whenever  $a \le b$  in P. We write  $[x_1, x_2, \dots, x_n]$  as a linear ordered set such that  $x_1 \prec x_2 \prec \cdots \prec x_n$ . Szpilarjn [4] showed that any order has a linear extension. Let  $\mathcal{L}(P)$  be the set of all linear extensions of P. Then  $\mathcal{L}(P)$  is a nonempty set.

Let P and Q be two disjoint ordered sets. The disjoint sum P+Q of P and Q is the ordered set on  $P\cup Q$  such that x< y if and only if either  $x,y\in P$  and x< y in P or  $x,y\in Q$  and x< y in Q. The linear sum  $P\oplus Q$  of P and Q is obtained from P+Q by adding the relation x< y for all  $x\in P$  and  $y\in Q$ .

A (P, L)-chain is a maximal sequence of elements  $z_1, z_2, \dots, z_n$  such that  $z_1 \prec z_2 \prec \dots \prec z_n$  in both L and P. Let c(L) be the number of (P, L)-chains. A consecutive pair  $(x_i, x_{i+1})$  of elements in L is a *jump* of P in L if  $x_i$  is incomparable to  $x_{i+1}$  in P. The jumps induce a decomposition

<sup>1,2</sup> This work was supported by the Brain Korea 21 Project

 $L: C_0 \oplus C_1 \oplus \cdots \oplus C_m$  of L into (P, L)-chains  $C_0, C_1, \cdots, C_m$  where m = c(L) and  $(\max C_i, \min C_{i+1})$  is a jump of P in L for  $i = 0, 1, \cdots, m-1$ . Let s(P, L) be the number of jumps of P in L. The jump number of P is the minimum number of s(P, L) over all linear extensions L of P, denoted by s(P). If s(P, L) = s(P) then L is called an optimal linear extension of P. We denote the set of all optimal linear extensions of P by  $\mathcal{O}(P)$ . For a positive integer n, we denote by  $\mathbf{n} = [1, 2, \cdots, n]$  the n-element chain.

The jump number of a product of ordered sets has been studied by a few authors. Bae, Kim and Lee [2] determined the jump number of the product of generalized crowns as following;

$$s(S_n^k \times S_m^l) = 2(m+l)(n+k) + 2(m-2)(n-2) - 1.$$

Jung [3] studied the jump number of the product of a tree and a chain. Let T be a tree and  $C_1 \oplus C_2 \oplus \cdots \oplus C_n$  a greedy optimal linear extension of T. Then  $s(T \times \mathbf{n}) = \sum_{i=1}^{n} \min\{|C_i|, n\} - 1$ . More generally, we consider the product of an ordered set and a chain.

In this paper, we find an optimal linear extension of  $P \times n$  from the linear extension of P. Furthermore, we introduce a way to find the jump number of the product of an ordered set and a chain. Our main result is the following:

**Theorem** Let P be an ordered set and let  $L_P = C_0 \oplus C_1 \oplus \cdots \oplus C_r$  be a linear extension of P such that  $\sum \max\{0, |D_i| - n\} \leq \sum \max\{0, |C_i| - n\}$  for all  $D_0 \oplus D_1 \oplus \cdots \oplus D_t \in \mathcal{L}(P)$ . Then

$$s(P \times \mathbf{n}) = \sum_{i=0}^{r} \min\{|C_i|, n\} - 1.$$

From the above Theorem, we can see that the problem of finding the jump number of  $P \times \mathbf{n}$  is the that of finding a linear extension L of P which has maximum of the sum of |C|-n for all (P,L)-chains with |C|>n. Hence we have  $s(P \times \mathbf{n}) = |P|-1-t$ , where  $t = \sum_{C:(P,L)-\text{chain}} |C|-n$ .

#### 2 Preliminaries

In this section, we discuss a property of the linear extension of  $P \times Q$  and construct a linear extension of  $P \times Q$  for finite ordered sets P and Q. It is easy to determine an upper bound of the jump number of  $P \times Q$ .

Now, we see that  $(a,b) \prec (c,d)$  in  $P \times Q$  implies either a=c or b=d. In general, if  $L=C_0 \oplus C_1 \oplus \cdots \oplus C_t$  is an arbitrary linear extension of  $P \times Q$  consisting of  $(P \times Q, L)$ -chains, then, for  $i=0,1,\cdots t$ ,

either 
$$C_i = D \times \{y\}$$
 or  $C_i = \{x\} \times E$ 

for some chains D and E in P and Q, respectively, and for  $x \in P$ ,  $y \in Q$ . In this case, the  $(P \times Q, L)$ -chain  $C_i$  is said to be left  $(P \times Q, L)$ -chain if  $C_i$  is of the form  $D \times \{y\}$  with  $|D| \geq 2$  and right  $(P \times Q, L)$ -chain if  $C_i$  is of the form  $\{x\} \times E$  with  $|E| \geq 1$ .

Jung showed in [3] that, for all positive integers m and n,

$$s(\mathbf{m} \times \mathbf{n}) = \min\{m, n\} - 1.$$

For some positive integers m and n with  $m \ge n$ , it is well known that an optimal linear extension L of  $m \times n$  is of the following form;

(2.1) 
$$L = \bigoplus_{k=1}^{n} [(1,k),(2,k),\cdots,(m,k)].$$

Furthermore, we see that  $[(1, k), (2, k), \dots, (m, k)]$  is an  $(\mathbf{m} \times \mathbf{n}, L)$ -chain for  $k = 1, 2, \dots, n$ .

Now, consider an arbitrary linear extensions  $L_P$  and  $L_Q$  of P and Q, respectively, with  $L_P = C_0 \oplus C_1 \oplus \cdots \oplus C_r$  and  $L_Q = D_0 \oplus D_1 \oplus \cdots \oplus D_t$ . Using the same above method, we will construct a linear extension L of  $P \times Q$ . Let  $L' = \bigoplus_{i=0}^r \bigoplus_{j=0}^t C_i \times D_j$  and let  $L_{i,j}$  be an optimal linear extension of  $C_i \times D_j$ , which is of the same form in (2.1). Then L' is an extension of  $P \times Q$  and  $L = \bigoplus_{i=0}^r \bigoplus_{j=0}^t L_{i,j}$  is a linear extension of  $P \times Q$ , which is denoted by  $L_P * L_Q$ . Moreover, we obtain an upper bound of the jump number of  $P \times Q$  as follows;

$$(2.2) \quad s(P \times Q) \le s(P \times Q, L_P * L_Q) = \sum_{i=0}^r \sum_{j=0}^t \min\{|C_i|, |D_j|\} - 1.$$

A certain question is raised as follows: Does it imply that there are  $L_P \in \mathcal{L}(P)$  and  $L_Q \in \mathcal{L}(Q)$  such that

$$s(P \times Q) = s(P \times Q, L_P * L_Q)?$$

Let  $L_1 = C_0 \oplus C_1 \oplus \cdots \oplus C_r$  and  $L_2 = D_0 \oplus D_1 \oplus \cdots \oplus D_r$  be linear extensions of P. Then we say that  $L_1$  and  $L_2$  are of the same type if  $\{|C_i|: 1 \leq i \leq r\} = \{|D_j|: 1 \leq j \leq r\}$  as the same multi-set. Let  $\mathcal{O}^*(P)$  be the set of all distinct types of linear extensions of P.

**Example 1.** (1) Consider the given ordered sets P and Q in Figure 1. Let  $L_p = [0,1] \oplus [2] \cong 2 \oplus 1$  and  $L_Q = [a,b,c] \oplus [d] \cong 3 \oplus 1$ . Then  $L' = ([0,1] \times [a,b,c]) \oplus ([0,1] \times [d]) \oplus ([2] \times [a,b,c]) \oplus ([2] \times [d])$  is an extension of  $P \times Q$ .



Figure 1.

Thus we have a linear extension  $L_P * L_Q$  of  $P \times Q$  as follows;

$$L_P * L_Q = [(0, a), (0, b), (0, c)] \oplus [(1, a), (1, b), (1, c)]$$

$$\oplus [(0, d), (1, d)]$$

$$\oplus [(2, a), (2, b), (2, c)]$$

$$\oplus [(2, d)].$$

In fact,  $L_P * L_Q = L_{0,0} \oplus L_{0,1} \oplus L_{1,0} \oplus L_{1,1}$  is an optimal linear extension of  $P \times Q$  with  $s(P \times Q, L_P * L_Q) = s(P \times Q) = 4$ . Furthermore, we see that

$$s(P\times Q)=s(P\times Q,L*M)$$

for all  $L \in \mathcal{O}^*(P) = \{2 \oplus 1\}$  and  $M \in \mathcal{O}^*(Q) = \{3 \oplus 1\}$ .



Figure 2.  $P \times Q$ 

(2) In general, it doesn't need to be true that there are linear extensions  $L_P$  and  $L_Q$  of P and Q, respectively, with  $L_P = C_0 \oplus C_1 \oplus \cdots \oplus C_r$  and  $L_Q = D_0 \oplus D_1 \oplus \cdots \oplus D_t$  such that

$$s(P \times Q) = s(P \times Q, L_P * L_Q) = \sum_{i=0}^{r} \sum_{j=0}^{t} \min\{|C_i|, |D_j|\} - 1.$$

Consider the ordered sets P and Q in Figure 3. Then we see that

$$\mathcal{O}^*(P) = \{ \mathbf{3} \oplus \mathbf{3}, \mathbf{1} \oplus \mathbf{4} \oplus \mathbf{1}, \mathbf{1} \oplus \mathbf{3} \oplus \mathbf{2}, \mathbf{2} \oplus \mathbf{1} \oplus \mathbf{1} \oplus \mathbf{2}, \mathbf{1} \oplus \mathbf{1} \oplus \mathbf{3} \oplus \mathbf{1} \},$$

$$\mathcal{O}^*(Q) = \{ \mathbf{3} \oplus \mathbf{1}, \mathbf{2} \oplus \mathbf{2}, \mathbf{2} \oplus \mathbf{1} \oplus \mathbf{1} \}$$

and so  $s(P \times Q, L_P * L_Q) = \sum_{i=0}^r \sum_{j=0}^t \min\{|C_i|, |D_j|\} - 1 \ge rt - 1$  for all  $L_P \in \mathcal{O}^*(P)$  and  $L_Q \in \mathcal{O}^*(Q)$  with  $L_P = C_0 \oplus C_1 \oplus \cdots \oplus C_r$  and  $L_Q = D_0 \oplus D_1 \oplus \cdots \oplus D_t$ .



Figure 3.

Therefore, we see that  $s(P \times Q, L * M) \ge 7$  for all  $L \in \mathcal{O}^*(P)$  and  $M \in \mathcal{O}^*(Q)$ . However, it is known that  $s(P \times Q) = 6$ .

Now we study the jump number of the product of an ordered set and a chain. If  $L_P$  is any linear extension of an ordered set P with  $L_P = C_0 \oplus C_1 \oplus \cdots \oplus C_r$ , then we obtain from (2.2) that

$$s(P \times \mathbf{n}) \leq \sum_{i=0}^{r} \min\{|C_i|, n\} - 1.$$

In particular, we see that  $s(P \times n) \leq |P| - 1$ . Furthermore, let m(L) be the maximum number of  $|C_i|$  for  $i = 0, 1, \dots, r$ . We say that the *height* of P with respect to linear extension is the maximum number of m(L) over all linear extensions L of P, denoted by  $h_l(P)$ , i.e.,

$$h_l(P) = \max_{L \in \mathcal{L}(P)} \left\{ \max\{|C| : C \text{ is a } (P, L)\text{-chain } \} \right\}.$$

Then it is easy to see that  $h_l(P) \leq h(P)$ . Jung showed in [3] that if the maximum size of a chain in a ranked ordered set P is at most n, then  $s(P \times n) = |P| - 1$ . For a more generalization, we prove the following.

**Proposition 1**  $s(P \times \mathbf{n}) = |P| - 1$  if and only if  $h_l(P) \leq n$ .

*Proof.* Suppose that  $h_l(P) \leq n$  and let L be any linear extension of  $P \times \mathbf{n}$ . We see that the length of any  $(P \times \mathbf{n}, L)$ -chain less than n. Thus  $s(P \times \mathbf{n}, L) \geq \frac{|P \times \mathbf{n}|}{n} - 1 = |P| - 1$ . Hence  $s(P \times \mathbf{n}) = |P| - 1$ .

Suppose that  $h_l(P) > n$ . Then there is a linear extension  $L = C_0 \oplus C_1 \oplus \cdots \oplus C_r$  of P such that  $|C_{r_0}| > n$  for some  $0 \le r_0 \le r$ . Hence we have  $s(P \times \mathbf{n}) \le \sum_{i=0}^r \min\{|C_i|, n\} - 1 < \sum_{i=0}^r |C_i| - 1 = |P| - 1$ .

## 3 Proof of Theorem

We have the following lemma which is decisive in determining the jump number to its source of the product of ordered sets. **Lemma 2** Let P be an ordered set and let L be any optimal linear extension of  $P \times \mathbf{n}$ . Then we have the following properties:

- (1) The number of left(resp., right)  $(P \times \mathbf{n}, L)$ -chains in  $P \times \{i\}$  is equal to the number of left(resp., right)  $(P \times \mathbf{n}, L)$ -chains in  $P \times \{j\}$  for all i, j with 1 < i, j < n.
  - (2) Every  $(P \times \mathbf{n}, L)$ -chain has the length at least n-1.

Proof. Let P be an ordered set and L any linear extension of  $P \times \mathbf{n}$ . Suppose that  $\alpha_i$  is the number of left  $(P \times \mathbf{n}, L)$ -chains in  $P \times \{i\}$  and that  $\beta_i$  is the number of right  $(P \times \mathbf{n}, L)$ -chains in  $P \times \{i\}$  for all  $i = 1, 2, \cdots, n$ . In fact, we see that every right  $(P \times \mathbf{n}, L)$ -chain in  $P \times \{i\}$  is an one element chain of the form  $\{x\} \times \{i\}$  for some  $x \in P$ . Now, for each  $i = 1, 2, \cdots, n$ , let  $L \mid_{P \times \{i\}} = \bigoplus_{k=1}^{\alpha_i + \beta_i} D_{i,k} \times \{i\}$  be the restriction of L to  $P \times \{i\}$ , where  $D_{i,k} \times \{i\}$  is a left  $(P \times \mathbf{n}, L)$ -chain or one point in a right  $(P \times \mathbf{n}, L)$ -chain. We will construct a new linear extension  $L_i$  of  $P \times \mathbf{n}$  with respect to  $L \mid_{P \times \{i\}}$ .

For  $k = 1, 2, \dots, \alpha_i + \beta_i$ , we define a chain  $L_{i,k}$  in  $P \times \mathbf{n}$  as follows:

$$(3.1) L_{i,k} = \begin{cases} D_{i,k} \times \{1\} \oplus D_{i,k} \times \{2\} \oplus \cdots \oplus D_{i,k} \times \{n\} & \text{if } |D_{i,k}| \ge 2\\ D_{i,k} \times \mathbf{n} & \text{if } |D_{i,k}| = 1. \end{cases}$$

Let  $L_i = \bigoplus_{k=1}^{\alpha_i + \beta_i} L_{i,k}$ . Hence  $L_i$  is a linear extension of  $P \times \mathbf{n}$  and we have the following properties:

$$(3.2) s(P \times \mathbf{n}, L) \ge -1 + \beta_j + \sum_{i=1}^n \alpha_i \text{ for all } j = 1, 2, \dots, n,$$

(3.3) 
$$s(P \times \mathbf{n}, L_i) = -1 + \beta_i + n \cdot \alpha_i$$

Now, there exist integers  $i_0$  and  $j_0$  with  $1 \le i_0$ ,  $j_0 \le n$  such that

$$n \cdot \alpha_{i_0} + \beta_{i_0} = \min\{n \cdot \alpha_i + \beta_i \mid 1 \le i \le n\} \text{ and } \beta_{j_0} = \max\{\beta_1, \beta_2, \cdots, \beta_n\}.$$

Therefore, we have

$$n \cdot \alpha_i + \beta_{j_0} \ge n \cdot \alpha_i + \beta_i \ge n \cdot \alpha_{i_0} + \beta_{i_0}$$

and so

$$\alpha_i + \frac{\beta_{j_0}}{n} \ge \alpha_{i_0} + \frac{\beta_{i_0}}{n}.$$

Hence we see that

$$\beta_{j_0} + \sum_{i=1}^n \alpha_i = \sum_{i=1}^n (\alpha_i + \frac{\beta_{j_0}}{n}) \ge \sum_{i=1}^n (\alpha_{i_0} + \frac{\beta_{i_0}}{n}) = n \cdot (\alpha_{i_0} + \frac{\beta_{i_0}}{n}) = n \cdot \alpha_{i_0} + \beta_{i_0}.$$

Furthermore, we obtain from (3.2) that

$$s(P \times \mathbf{n}, L) \ge -1 + \beta_{j_0} + \sum_{i=1}^{n} \alpha_i \ge -1 + n \cdot \alpha_{i_0} + \beta_{i_0} = s(P \times \mathbf{n}, L_{i_0}).$$

(1) Suppose that L is an optimal linear extension  $P \times \mathbf{n}$ . Since  $L \in \mathcal{O}(P \times \mathbf{n})$ , it follows from (3.2) that, for all  $k = 1, 2, \dots, n$ ,

(3.4) 
$$\beta_{j_0} + \sum_{i=1}^n \alpha_i - 1 \le s(P \times \mathbf{n}, L) \le s(P \times \mathbf{n}, L_k) = n \cdot \alpha_k + \beta_k - 1.$$

Thus summing both sides of (3.4) from k = 1 to n, we obtain

$$\sum_{k=1}^{n}(\beta_{j_0}+\sum_{i=1}^{n}\alpha_i)\leq \sum_{k=1}^{n}(n\cdot\alpha_k+\beta_k)$$

and so  $n \cdot \beta_{j_0} \leq \sum_{k=1}^{n} \beta_k$ . By the maximality of  $\beta_{j_0}$ , we see that

$$\beta_{i_0} = \beta_k$$

for all  $k = 1, 2, \dots, n$ .

Since L is an optimal,  $s(P \times \mathbf{n}, L) = s(P \times \mathbf{n}, L_{i_0}) = n \cdot \alpha_{i_0} + \beta_{i_0} - 1$ . By inserting this into (3.4), we have

$$\beta_{j_0} + \sum_{i=1}^{n} \alpha_i - 1 \le n \cdot \alpha_{i_0} + \beta_{i_0} - 1 \le n \cdot \alpha_i + \beta_i - 1.$$

Since  $\beta_{i_0} = \beta_i = \beta_{j_0} (i = 1, 2, \dots, n)$ , it follows that  $\sum_{i=1}^n \alpha_i \leq n \cdot \alpha_{i_0}$  and  $\alpha_{i_0} \leq \alpha_i$  for all  $i = 1, 2, \dots, n$ . By the minimality of  $\alpha_{i_0}$ , we see that

$$\alpha_i = \alpha_i$$

for all  $i, j = 1, 2, \dots, n$ .

(2) Without loss of generality, we may assume from (1) that  $\alpha = \alpha_i$  and  $\beta = \beta_i$  for  $i = 1, 2, \dots, n$ . Then  $s(P \times \mathbf{n}, L) = \beta + n \cdot \alpha - 1$  for  $L \in \mathcal{O}(P \times \mathbf{n})$ . Since every  $(P \times \mathbf{n}, L)$ -chain is either right  $(P \times \mathbf{n}, L)$ -chain or left  $(P \times \mathbf{n}, L)$ -chain, it follows that  $\beta$  is the number of right  $(P \times \mathbf{n}, L)$ -chains and  $n \cdot \alpha$  is the number of left  $(P \times \mathbf{n}, L)$ -chains.

Suppose that  $C = [(a, j), (a, j + 1), \dots, (a, j + k - 1)]$  is a right  $(P \times \mathbf{n}, L)$ -chain. If j > 1, then there are distinct  $\beta$  right  $(P \times \mathbf{n}, L)$ -chains penetrating  $P \times \{j-1\}$ , which are different from C. Hence the number of right  $(P \times \mathbf{n}, L)$ -chains is greater than  $\beta$ , which is a contradiction. Similarly, we induce a contradiction in the case j + k - 1 < n. Hence the length of every right  $(P \times \mathbf{n}, L)$ -chain is exactly n - 1.

Furthermore, suppose that there is a left  $(P \times \mathbf{n}, L)$ -chain  $D \times \{i\}$  with  $D = [d_1, d_2, \cdots, d_r]$  and r < n. Then we see from (1) that  $L_i = \bigoplus_{k=1}^{\alpha+\beta} L_{i,k}$  is an optimal linear extension of  $P \times \mathbf{n}$ , where  $L_{i,k}$  is defined in (3.1). Now, there is k with  $1 \le k \le \alpha + \beta$  such that  $D = D_{i,k}$  and so  $L_{i,k} = D_{i,k} \times \{1\} \oplus D_{i,k} \times \{2\} \oplus \cdots \oplus D_{i,k} \times \{n\}$ . Let  $L_i^* = L_{i,1} \oplus \cdots \oplus L_{i,k-1} \oplus L'_{i,k} \oplus L_{i,k+1} \oplus \cdots \oplus L_{i,\alpha+\beta}$ , where  $L'_{i,k} = \{d_1\} \times \mathbf{n} \oplus \{d_2\} \times \mathbf{n} \oplus \cdots \oplus \{d_r\} \times \mathbf{n}$ . Then  $L_i^*$  is a linear extension of  $P \times \mathbf{n}$  and  $L'_{i,k}$  consists of  $r (P \times \mathbf{n}, L_i^*)$ -chains and so

$$s(P \times \mathbf{n}, L_i^*) = -1 + \beta + r + (n-1) \cdot \alpha < -1 + \beta + n \cdot \alpha = (P \times \mathbf{n}, L_i),$$
 which is a contradiction as  $L_i$  is optimal. Hence we have the result.

Now we are ready to proof the main result:

*Proof of Theorem.* Let L be any optimal linear extension of  $P \times \mathbf{n}$ . We see from Lemma 2 that there are exactly distinct  $n \cdot \alpha$  left  $(P \times \mathbf{n}, L)$ -chains and  $\beta$  right  $(P \times \mathbf{n}, L)$ -chains such that  $s(P \times \mathbf{n}, L) = n \cdot \alpha + \beta - 1$ .

Now, consider the restriction linear extension  $L|_{P\times\{i\}}=\bigoplus_{k=1}^{\alpha+\beta}C_k\times\{i\}$  of L to  $P\times\{i\}$ , where  $C_k\times\{i\}$  is a left  $(P\times\mathbf{n},L)$ -chain or one point in a right  $(P\times\mathbf{n},L)$ -chain. Then each  $C_k(1\leq k\leq \alpha+\beta)$  is a chain in P with either  $|C_k|\geq n$  or  $|C_k|=1$ . Hence  $L_P=\bigoplus_{k=1}^{\alpha+\beta}C_k$  is a linear extension of P and  $s(L_P*\mathbf{n},P\times\mathbf{n})=n\cdot\alpha+\beta-1=s(P\times\mathbf{n})$ , that is,

$$s(P \times \mathbf{n}) = n \cdot \alpha + \beta - 1$$

$$= \overbrace{n + n + \dots + n}^{\alpha} + \overbrace{1 + 1 + \dots + 1}^{\beta} - 1$$

$$= \sum_{k=1}^{\alpha + \beta} \min\{|C_k|, n\} - 1.$$

Corollary 3 Let P be an ordered set. Then we have

$$s(P \times \mathbf{n}) = -1 + \min_{L \in \mathcal{L}(P)} \left\{ |P| - \sum_{i=1}^r \max\{0, |C_i| - n\} : L = C_1 \oplus \cdots \oplus C_r \right\}.$$

## 4 Concluding Remarks

1. Let P be any ordered set with  $n = h_l(P)$ . Then we see that

$$s(P) = s(P \times 1) \le s(P \times 2) \le \cdots \le s(P \times n) = \cdots = |P| -1$$

2. Observe that it need not be true that

$$\sum \min\{|D_i|,n\} \leq \sum \min\{|C_i|,n\}$$

for each linear extension  $C_0 \oplus C_1 \oplus \cdots \oplus C_r$  of an ordered set P and each optimal linear extension  $D_0 \oplus D_1 \oplus \cdots \oplus D_t$  of an ordered set P. For instance, let P be an ordered set as in Figure 4.



Figure 4.

Consider the optimal linear extension  $L_1$  and non-optimal linear extension  $L_2$  of P, where  $L_1 = D_0 \oplus D_1 = [a,b,f] \oplus [e,c,d] \cong \mathbf{3} \oplus \mathbf{3}$  and  $L_2 = C_0 \oplus C_1 \oplus C_2 = [e] \oplus [a,b,c,d] \oplus [f] \cong \mathbf{1} \oplus \mathbf{4} \oplus \mathbf{1}$ . In fact, we have  $5 = \sum_{i=0}^2 \min(|C_i|,n) = s(P \times \mathbf{n}, L_2 * \mathbf{n}) < s(P \times \mathbf{n}, L_1 * \mathbf{n}) = \sum_{i=0}^1 \min(|D_i|,n) = 6$  for some integer n=3. Furthermore, we see that

$$s(P \times 2) = s(P \times 2, L_1 * 2) = s(P \times 2, L_2 * 2) = -1 + |P| - 2 = 3.$$

3. We see from main Theorem that we can construct an optimal linear extension of  $P \times n$  from the linear extension of P. And this linear extension of P depends on the value of n. Because of this fact, the statement of the example (2) in section 1 is not true. In fact, in the example, we take a linear extension of Q of the type  $\mathbf{3} \oplus \mathbf{1}$  and let L be a linear extension of  $P \times Q$  such that  $L = ((\mathbf{1} \oplus \mathbf{4} \oplus \mathbf{1}) * \mathbf{3}) \oplus ((\mathbf{3} \oplus \mathbf{3}) * \mathbf{1})$ . Then L is an optimal linear extension of  $P \times Q$ . Hence we give a following question: Is there a linear extension  $L_Q$  of Q with  $L_Q = D_0 \oplus D_1 \oplus \cdots \oplus D_t$  such that  $L = \bigoplus_{i=0}^t L_i$  is an optimal linear extension of  $P \times Q$  for  $L_i \in \mathcal{O}(P \times D_i)$ ?

#### References

- [1] B. Chein and B. Habib, The jump number of dags and posets: an introduction, Ann. Disc. Math. 9 (1980), 189-194.
- [2] D. R. Bae, J. Y. Kim and J. G. Lee, The jump number of the product of generalized crowns, Bull. Korean Math. Soc. 36 (1999), 411-417.
- [3] H. C. Jung, On the product of some poset of all posets: jump number, greediness, ARS Combinatoria 40 (1995), 109-120.
- [4] E. Szpilrajn, Sur l'extension de l'ordre partiel, Fund. Math. 16 (1930), 386-389.