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Abstract

Let G be a cubic bipartite plane graph that has a perfect
matching. If M is any perfect matching of G, then G has a
face that is M-alternating. If f is any face of G then there
is a perfect matching M such that f is M-alternating. There
is a simple algorithm for visiting all perfect matchings of G
begining at one. There are infinitely many cubic plane graphs
that have perfect matchings but whose matching transforma-
tion graphs are completely disconnected. Several problems are
proposed.
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1 Matching Transformation Graphs

Transformation graphs have attracted some attention and they reveal pos-
sibilities of certain algorithms ([2], [4] and [1]). In this paper we consider
the connectivity of matching transformation graphs of cubic biparitite plane
graphs and give examples of matching transformation graphs that are com-
pletely disconnected. Througout the paper, |S| denotes the cardinality of
a set S. The addition of subgraphs will be performed with respect to their
edges over the binary field and that of integers will be in the ring of integers.

Let G = (V,E) be a graph. If F is a spanning subgraph of G, i.e.,
V(F) = V(G) and E(F) C E(G), then F is said to be a factor of G. A
factor F regular of degree r is said to be an r-factor. In this paper, a
1-factor is called a perfect matching. For brevity, denote |G| = |V (G)|.

Let M be a perfect matching of G and C be a cycle of G. If the edges of
C alternate between M and E — M, then it is said to be an M-alternating
cycle. If G is a 2-connected graph then each edge of G lies in a cycle.

Let X be a surface and G be a graph that has a cellular embedding on
J. Then each component of X' — G is said to be a face of Gon X. If L' is
the sphere then the graphs that have cellular embeddings on X' are said to
be planar graphs. A plane graph is a planar graph embedded on the sphere
(or equivalently, on the plane). The set of faces of a plane graph will be
denoted by &.

Let G be a cubic bipartite planar graph that contains a perfect match-
ing. The matching transformation graph of G is defined (see [3]) to be the
graph M(G) with vertex set

V(M(G)) = {M : M is a perfect matching of G}

and two vertices M; and M being adjacent if M;+M;; consists of boundaries
of faces of G.

2 Squares in Cubic Bipartite Plane Graphs
A face of size k is said to be a k-face. Denote by p; the number of k-faces
of G.
LEMMA 2.1 Every cubic bipartite plane graph has at least siz squares.
Proof: By Euler’s formula for polyhedra,
> (6 — k)px = 12. : (1)
k>4, k=0(mod 2)

Hence,
pa=12+ ), (k-Om 2)
k>6, k=0 (mod 2)
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Therefore, p; > 6. |

LEMMA 2.2 Let f be a face of a cubic bipartite plane graph G. Then every
square of G is adjacent to f if and only if G ~ C, X K, and the boundary
of f is one of the two m-cycles 0 X Crp, and 1 X Cy, for m > 6 and m =
0 (mod 2).

Proof: The sufficiency (the “if” part) is obvious.

Necessity (the “only if” part). By Lemma 2.1, G has at least six squares.
Clearly, f cannot be a square, since a square has only four sides and if it
is to be adjacent to all other squares then it has to be adjacent to at least
five squares.

Hence |8f| > 6.

If |0f| = 6, then G has precisely six squares and f is adjacent to all of
them. Clearly, G ~ Cs x K, with f being either one of the two hexagons.

Let |0f| = m > 6 and suppose that the “only if” part holds for (H, f')
with |H| < |G], |8f'} < m and f' adjacent to all the squares of H. Let
§ = ujugu3u4au; be a square adjacent to f, hi, g, he in the order given and
Uy, Uz € SN f, ug,uz € sNhy, uz,ug € sNg and uy,uq € sNha.

Claim: hy # hs.

Assume that h; = hy. Then § = {ujuq, uzus} is a cyclic 2-cut. (Cyclic
means that each component of G — S has a cycle.) Let L and R be the two
cyclic components of G — S, with u1,us € L and u3,us € R. Let v; be the
neighbour of u; that is not on s. Now if g is a square then it is a square
not adjacent to f, a contradiction to the assumption of the lemma. Hence
|g| > 6. Let

H(g) =R- {’U.3,’U4} U {'03'04}.

Then H(g) is a cubic bipartite plane graph. By Lemma 2.1, H(g) has at
leas six squares, at least one of which is a square of G not adjacent to f.
This is a contradiction. Hence the claim is proved.

Assume that f # g and let

H=G-{u;:1<i<4}+vv;+v304

and
Of = 0f + viuruavz + v1v2.

Then H is a cubic bipartite plane graph in which f' is a face adjacent
to all the squares of H, |H| < |G| and |8f'| < |8f| = m. Moreover,
m = |0f'| + 2 and hence |8f'| = m = 0 (mod 2) and |0f'| > 6. By the
inductive hypothesis, H ~ Cp,_2 x K, with 8f' being one of the two (m—2)-
cycles for some m —2 > 6 and m — 2 =0 (mod 2). Clearly, G ~ Cp x K2
with 8f being one of the two m-cycles, where 8f = 8f' +v1vs + viusugvs.
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If f = g, then the proof is exactly the same except that
Of' = 0f + viurusvs + VausuaVy + V12 + V3U4,

H~Cpn-q4x K
and |0f'| = |6f| — 4. [ |

3 Matchings and Alternating Faces

LEMMA 3.1 Let G be a cubic bipartite plane graph that haes a perfect match-
ing. Then for each perfect matching M of G, G has an M -alternating face.

Proof: Let G be a cubic bipartite plane graph and let M be any perfect
matching of G. The proof is by induction on the order |G| of G. Each cubic
graph satisfies 3|V| = 2| E|. Hence it is routine to verify that the least order
of a cubic bipartite planar graph is 8 and there is precisely one graph of this
order, namely the graph of the 3-dimensional cube: Ko x Ko x Ky = Cyx Kj,
where x denotes the cartesian product of graphs. For each perfect matching
of this graph, there is clearly a face that is alternating.

Assume that for each cubic bipartite plane graph H with 8 < |[V(H)| <
|[V(G)] that has a perfect matching, the statement of lemma holds. As
shown in Lemma 2.1, G has at least six 4-faces. In particular, there are
two 4-faces that are not adjacent. Let f be any one of these 4-faces of G.

If the edges of f are M-alternating, then f is a face that satisfies the
assertion of the lemma. Assume therefore that the edges of f are not M-
alternating. Since M is a perfect matching, each vertex of f is M-saturated
(i.e., is a vertex of M). Let f = ujusugusu; and let the neighbour of u; not
on f itself be denoted v;. By symmetry, consider the following two distinct
cases.

1. u;u; € M for 1 < i < 4. In this case, let

H=G-{u;:1<i<4}U{viv4,v203}.
Then H is a cubic bipartite plane graph with |V(H)| < |[V(G)|. Let
M = M 4+ viv4 + vous +{u,-v,- :1<31 < 4}.

Then clearly, M’ is a perfect matching of H. By the inductive assumption,
H has a face h whose boundary, denoted by 8k, is M’'-alternating.

If 8h N {v1v4,v2vu3} = O, then h itself is a face of G and Ok is an M-
alternating cycle of G.

If 8h N {vyv4,v2v3} = v1v4, then Ok + vivg + u vy + urus + ugvy is an
M-alternating cycle that is the boundary of a face of G.
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If Oh N {v1v4,v3v3} = vav3, then Oh + vau3 + ugvs + ugus + ugvs is an
M-alternating cycle that is the boundary of a face of G.

If 0h N {v1v4,v9v3} = {viv4,vovs}, then both 8f, and 8f, are M-
alternating, where f; is the face of G that is adjacent to f at uyup and f,
is the one adjacent to f at uzuy.

2. ujug,usvq,u3vs € M. Let H be the graph given in the above case
and let :

M=M+ U203 + U Ug + UgV2 + U3V3.

Then the proof is exactly the same as that of case 1.
In summary, G has a face f which is M-alternating. [ |

LEMMA 3.2 Let G be a cubic bipartite plane graph that has a perfect match-
ing. If f is any face of G then there is a perfect matching M such that f
is M -alternating.

Proof: In the proof of the previous lemma, take f to be any face of G.

Then it has been shown that G has a perfect matching M, for which f is

M-alternating except the case that f is a 4-face. However, if f is a 4-face,

then take a 4-face g that is not adjacent to f and consider a reduction on

g as in the proof of the above lemma. Now by the inductive hypothesis,

there is a perfect matching M for which f is M-alternating. ]
Note that both these results improve upon the results of [3).

4 The Connectivity of Matching Transformation Graphs

The following theorem is the main result of [3]. The proof is included here
for completeness.

THEOREM 4.1 If G is a cubic bipartite plane graph with a perfect matching,
then the matching transformation graph M(G) of G is connected.

Proof: If G has only one perfect matching then the matching transforma-
tion graph of G has just one vertex and by definition it is connected. Hence
let M; and M, be any two perfect matchings of G. It will be shown that
there is a path connecting M; and M; in M(G).
Let
Ml +M2 = {CI,CZ,”HC@} U {DlaD21' "’Dt})

where each cycle C; (i = 1,2,---,8) bounds a face and each cycle D;
(i=1,2,---,t) does not.
Let

t
T = Jint(D;) = T(My, My),
i=1

where int(D) denotes the topological interior of cycle D.
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We use induction on |T|.

If |T| = 0, then every cycle in M; + M> bounds a face of G and by the
definition of matching transformation graphs there is an edge joining M,
and M, in M(G).

Assume inductively that for |T| < n the graph M(G) has a path con-
necting M, and M,. We then prove that the assertion holds also for |T'| = n.

Suppose without loss of generality that D, is a cycle whose interior does
not contain any other D;’s. Since D; is not the boundary of any face of G,
and since G has a perfect matching, int(D;) contains at least two vertices.
Since D, is M;-alternating as well as M;-alternating, no edge that has an
end in int(D;) and an end on D; belongs to M; or to M,. Therefore, the
induced subgraph G |int( p,) has both a perfect matching M; Nint(D,) and
a perfect matching M2 Nint(D;). Hence, each vertex in int(D;) is saturated
by both M; and M,. Hence, int(D;) has vertices v; and v, adjacent to
vertices of D, that are connected by an Mj-alternating path @ whose
terminal edges are in M;.

Let u; be the vertex of D, that is adjacent to v; (¢ = 1,2). Assign a
temporary orientation to D; and let P, = D7 (u1,uz) and P, = Dy (uy,u2).
Since D, is both M;-alternating and M,-alternating, hence both terminal
edges of P, and those of P, belong to M; or to M», respectively; for other-
wise, a contradiction to the assumption that G is bipartite. It may then be
assumed that both terminal edges of P, are edges of M;. Then both termi-
nal edges of P, are edges of M. Let D = PLUQU {ujv1,u2v2}. Then D is
an M;-alternating cycle. (Note that D is not necessarily M,-alternating.)

Let M3 = M; + D. Then Mj; is also a perfect matching of G. By the
definition of M3, we have M, + M3 = D. Also, int(D) C int(D,), i.e.,
|T(My, M3)| < |T(M1, M;)| = n. By the inductive assumption, M(G) has
a path connecting M, and Msj.

Now M, + M3 C {D',C,,---,Cs} U {D’',Dy,---,D,}, where D' is a
cycle contained in the interior of D; and int(D’) C int(D;). Hence,
|T(Ma, M3)] < n. By the inductive assumption, M(G) has a path con-
necting M, and Mj;. Therefore, M(G) has a path connecting M; and M.
|

It was also noted in [3] that all 1-factors of a cubic bipartite plane graph
can be visited starting from a given 1-factor since the matching transforma-
tion graph is connected. This provides an algorithm. This algorithm works
by means of an operation called rotation. Let M; be any perfect matching
of G. Then by the lemma above, G has a face f that is M,;-alternating.
Let My = M, + 8f. Then M, is also a perfect matching of G. By means
of rotations, all perfect matchings of G can be visited, though some will be
visited more than once. Therefore, a natural question is: What conditions
on G guarantee that M(G) is hamiltonian? If the hamiltonicity is difficult
to establish, then how about 2-connectedness?
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It would be of interest also to know whether the above theorem achieves
a kind of sharpness. In the next section, cubic plane graphs will be con-
structed, whose matching transformation graphs are completely discon-
nected.

5 Cubic Plane Graphs

Let M be a perfect matching of a cubic plane graph G. A natural way for
a face f not to be M-alternating is that it to have an odd size. If all the
faces of G are odd, then the matching transformation graph of G consists
of isolated vertices, i.e., it is completely disconnected.

Consider a 3-connected cubic plane graph G with all faces odd.

LeMMA 5.1 If G is a cubic plane graph without even face, then

|G| = 0(mod 4).

Proof: Since G must be of even order as it is cubic, there is an integer n
such that |V (G)| = 2n,|E(G)| = 3n and |$(G)| = n+ 2 by Euler’s formula.
Since any plane graph has an even number of odd faces,

|¢(G)| =n+2 =0 (mod 2).

That is,
n =0 (mod 2),

and therefore
|G| = 2n = 0 (mod 4).

Denote, as above, by py the number of k-faces of G. Then

3ps +2ps+ps =12+ ) (k- 6)py.
k>6
Since all faces are of odd sizes,

pr =0, for k=0(mod 2).

Hence,
3p3 +p5s =12+ Z (k - 6)px.
k>7,k=1 (mod 2)

Clearly,
3ps +ps 2 12.
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Consider, for example, 3ps + ps = 12. In this case, if p3 = 0 then G is
isomorphic to the dodecahedron. p3 = 1,2,3 result in contradictions, and
p3 =4 gives ps =0 and G ~ Kj.

Let p = 2k + 1 be any sufficiently large odd integer, & > 3. Then we
may construct a cubic plane graph with

ps = 4k+2, (3)
DPokyr = 2 4)

and
p=0, forl#5,2k+1.

Construct a cubic plane graph as follows.
Let

U={u;:1<i<2k+1}, V={v;:1<i<2k+1},
X={z;:1<i<2k+1}, Y ={y;:1<i<2k+1}.
On the plane draw a polygon
Cu = u1uau3 - * - Ugk41U1.
Then another concentric polygon

Cxuy = Tin1Z2y2 * * - T2k+1Y2k+1%1
in the interior of Cyy. Then a third concentric polygon
Cv = v1v2u3 - - - V24101

in the exterior of Cxyy. Finally, introduce edges u;z; and v;y; for i =
1,2,.--,2k + 1. Denote the resulting graph by Gar+1. Then Gapy; is a
cubic plane graph with 4k+ 2 pentagonal faces and two (2k + 1)-faces. This
realizes the above sequence of numbers of faces, justifying the sharpness of
Theorem 4.1.

To see that G2x41 has a perfect matching, consider the following hamil-
tonian cycle:

UI1Z1Y1V1V2Y2T2U2U3T3Y3V3 V4

©c U2k —1T2k—1Y2k-1V2k—~1V2kV2k+1Y2k+1 T2k +1 Y2k T2k U2k U2k +1 U1 -
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