LIST EDGE COLORINGS OF OUTERPLANAR GRAPHS

ANDREA HACKMANN AND ARNFRIED KEMNITZ

ABSTRACT. The list edge coloring conjecture states that for every
graph, the chromatic index equals the choice index. We prove the
conjecture for outerplanar graphs with maximum degree at least five.

1. INTRODUCTION

A k-edge coloring of a (simple) graph G is an assignment of colors to the
edges of G such that adjacent edges are colored differently. The minimum
number k for which a graph G admits a k-edge coloring is the chromatic
index x/(G) of G.

If a list L(e) is assigned to every edge e of a graph G, an L-edge coloring
of G with L = {L(e) : e € E(G)} is defined as an edge coloring of G such
that each edge e obtains a color from its list L(e). If G admits a list edge
coloring where every list has cardinality at least k then G is said to be k-list
edge colorable. The minimum number k for which a graph G is k-list edge
colorable is the choice index ch’(G) of G.

The well-known list edge coloring conjecture states that the chromatic index
X'(G) and the choice index ch’(G) coincide for all graphs G (see [1]). Till
now, the list edge coloring conjecture is proved only for some specific classes
of graphs, for example for bipartite graphs [6], complete graphs with odd
order (7] and for graphs with maximum degree A(G) = 3 and x'(G) =4 (a
consequence of the theorem of brooks for list colorings, see [4] and [8)).
The list edge coloring conjecture is also proved for planar graphs G with
maximum degree A(G) > 12 [2] and for regular planar graphs [3]. In this
note we prove the conjecture for outerplanar graphs with maximum degree
at least five.

An outerplanar graph is a plane graph such that all vertices are on the
boundary of the same face, without loss of generality on the boundary of
the outerface. In [5] it is proved that an outerplanar graph G is A(G)-edge
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colorable if and only if G is not an odd cycle Czn41. Therefore, to prove
the list edge coloring conjecture for outerplanar graphs it remains to show
that ch’/(G) = A(G) whenever G % Capn41 is outerplanar.

2. REsuLr

In this section we prove that G is A-list edge colorable if G is outerplanar
and has maximum degree A > 5. For the proof we use the following two
lemmas. Lemma 2 is based on a weaker version of a corresponding result

in [9].

Lemma 1. Every 2-connected outerplanar graph G on p > 4 vertices con-
tains at least two non-adjacent vertices both of degree 2.

Proof. Since G is outerplanar, it can be drawn in such a way that the
vertices of the outerface form a hamiltonian cycle C' = (v1,vs,...,v,,v1).
If p = 4 or G = Cp, the result is obvious. Therefore, let G be an outerplanar
graph with p > 4 and A(G) > 3.

Let v; € V(G) with d(v;) > 3. Then there exists a vertex v; which is
adjacent to v; (v; ~ v;) such that the edge v;v; ¢ E(C). Let Gy =
({vi, vig1,...,vj-1,v;}) and G2 = ({vj,vj41,...,vi—1,;}) be induced sub-
graphs of G. Obviously, G; and G, are 2-connected and outerplanar. If
[V(Gk)| = 3 for k =1 or 2 then V(Gi) = {z,v,v;} and d(z) = 2. Oth-
erwise, we can use the induction hypothesis to prove that both Gy and G,
contain at least one vertex y; and yz, respectively, such that yx ¢ {v;,v;}
and d(yx) =2, k = 1,2. Since y; # y; in G, the lemma is proved.

(m]

Lemma 2. Let G be an outerplanar graph with minimum degree §(G) > 2.
Then G has at least one of the following two properties:

(a) There exist two vertices of degree 2 having a common neighbor of
degree 4.

(b) There exists a vertezx of degree 2 having a neighbor of degree < 3.

Proof. Let G be drawn in such a way that the outerface contains every
vertex in its boundary. Then G can be partitioned in outerplanar blocks,
i.e. 2-connected maximum subgraphs of G. There exists at least one block
B that contains only one cut vertex v of G (if G is 2-connected, let v be
an arbitrary vertex of V(G)). Let D be the graph with vertex set V(D) =
V(B)UN(v), where N(v) = {u: u ~ v, u € V(G)} is the neighborhood of
vertex v, and with edge set E(D) = E(B) U {uv : u € N(v)}. Therefore,
dg(w) = dp(w) for all w € V(B). We show by induction that at least one
of properties (a) and (b) is already fulfilled for vertices of block B.
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Obviously, if |V (B)| < 4 then property (b) holds. Let [V(B)] > 5. Due to
Lemma 1, there exist two non-adjacent vertices of degree 2 in block B of
which at least one, say z, fulfils dg(z) = dp(z). Let N(z) = {y,2} and,
without loss of generality, let dg(2) = dp(z) and dp(y) = dp(y)—k, k > 0.
If dp(y) or dp(z) is at most 3 then property (b) holds. Therefore, let both
dp(y) and dp(z) be at least 4. Define graph D’ by

D = D—2 if yz € E(D)
T | D—z+yz otherwise.

In both cases D' is outerplanar, |V(D’)| = |V(D)| — 1, and D’ contains
block B’ which is analogously defined by

g={ B-¢2 if yz € E(B)
| B—z+yz otherwise.

Therefore, we can use the induction hypothesis for D'.

a) Consider first the case that D’ fulfils property (a), i.e. there exist
vertices uy,us € V(D) with dp/(v1) = dp/(uz) = 2 which have a
common neighbor w with dp/(w) = 4. Since B’ is 2-connected and
outerplanar, there is a hamiltonian cycle C' in B’. Because y and z are
neighbors on C' and dp/(y) as well as dp(z) are at least 3, we have
w ¢ {y,z}. Therefore, the degrees of u;, u; and w in D, respectively,
equal the appropriate degrees in D’. This implies that property (a) also
holds in graph D.

b) If otherwise property (b) is fulfilled in D', then there exists a vertex u
of degree dp:(u) = 2 which is adjacent to a vertex w of degree < 3.
Suppose first that D' = D —z. If w =y or w =z in D/, then dp(w) =
dp:(w) + 1 < 4 and therefore dp(w) = 4, which implies that > and v
are vertices of degree 2 in D having a common neighbor w of degree 4.
Thus property (a) is fulfilled in D. If w ¢ {y, z} then dp(v) = dp+(v)
and dp(w) = dp/(w). Hence property (b) also holds in D.

If D' = D~z +yz, then w ¢ {y, z} since y and z both have degree > 4
in D'. This implies that property (b) is fulfilled in D, which concludes
the proof.

o

We use Lemma 1 and Lemma 2 to confirm the list edge coloring conjecture
for outerplanar graphs with maximum degree at least 5.

Theorem. If G is an outerplanar graph with mazimum degree A(G) > 5,
then ch'(G) = A(G).

Proof. We assume that the edges of G are not list colorable with A(G)
colors. Let G’ be a subgraph of G with minimum number of edges such
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that ch/(G) > A(G), and let L = {L(e) : e € E(G')} be a family of lists
such that |L(e)] = A(G) for all e € E(G’) and G’ is not L-edge colorable.
Obviously, G’ is outerplanar.

If there was a vertex of degree 1, then G’ would contain an edge e adjacent
to at most A(G) — 1 edges in G’. According to the minimality of G,
the graph G’ — e would have an L-list coloring assigning at most A(G) — 1
different colors to the adjacent edges of e. Therefore, there would be at least
one additional color of L(e) which could be assigned to edge e, implying an
L-edge coloring of G’ in contradiction to the assumption. Hence §(G’) > 2.
According to Lemma 2, G’ fulfils at least one of the properties (a) and (b).
It follows that there exists an edge e in G with at most 4 < A(G) — 1
adjacent edges, which implies as above that G’ is L-edge colorable, contra-
dicting the assumption. Hence G is A(G)-list edge colorable.

m]

3. REMARKS

Considering outerplanar graphs G with A(G) = 4, Lemma 2 again implies
that at least one of properties (a) and (b) is fulfilled.

In the case that (a) holds, i.e. there exists a vertex of degree 2 in G adjacent
to a vertex of degree at most 3, it can be proved in exactly the same way
that ch'(G) = A(G).

If property (a) does not hold, then the method of the proof is not sufficient
to confirm the list edge coloring conjecture for G. The case A = 3 also
needs a different treatment.

As we have been recently informed, there is an independent unpublished
proof of the main result for all outerplanar graphs, using different methods,
by Juvan and Mohar.

REFERENCES

[1] B. Bollobés and A. J. Harris, List-colourings of graphs. Graphs and Combinatorics
1 (1985), 115-127.

[2] O. V. Borodin, A. V. Kostochka and D. R. Woodall, List edge and list total colour-
ings of multigraphs. Journal of Combinatorial Theory, Series B 71 (1997), 184-204.

[3] M. N. Ellingham and L. Goddyn, List edge colourings of some 1-factorable multi-
graphs. Combinatorica 16 (1996), 343-352.

[4] P.Erdés, A. L. Rubin and H. Taylor, Choosability in graphs. Proceeding of the West
Coast Conference on Combinatorics, Graph Theory and Computing, Congressus
Numerantium 26 (1979), 125-157.

[5) S. Fiorini, On the chromatic index of outerplanar graphs. Journal of Combinatorial
Theory, Series B 18 (1975), 35-38.

[6] F. Galvin, The list chromatic index of a bipartite multigraph. Journal of Combina-
torial Theory, Series B 63 (1995), 153-158.

[7] R. Haggkvist and J. C. M. Janssen, New bounds on the list-chromatic index of
the complete graph and other simple graphs. Research Report 19, Department of
Mathematics, University of Umea (1993).

184



[8] V. G. Vizing, Coloring the vertices of a graph in prescribed colors (in Russian).
Diskret. Analiz. 29, Metody Diskret. Anal. v. Teorii Kodov i Shem 101 (1976),
3-10.

[9] H. P. Yap, Total colourings of graphs. Lecture Notes in Mathematics 1623, Springer-
Verlag, Berlin (1996).

ANDREA HACKMANN

DISKRETE MATHEMATIK

TECHNISCHE UNIVERSITAT BRAUNSCHWEIG
POCKELSSTR. 14

D-38106 BRAUNSCHWEIG

GERMANY

E-mail address: a.hackmann@tu-bs.de

ARNFRIED KEMNITZ

DISKRETE MATHEMATIK

TECHNISCHE UNIVERSITAT BRAUNSCHWEIG
POCKELSSTR. 14

D-38106 BRAUNSCHWEIG

GERMANY

E-mail address: a.kemnitz@tu-bs.de

185



