On the Chromatic Uniqueness of Edge-Gluing of Complete Bipartite Graphs and Cycles

G.L. Chia and Chee-Kit Ho

Institute of Mathematical Sciences University of Malaya 50603 Kuala Lumpur Malaysia

Abstract

In this paper, we give an alternative proof for the fact that the graph obtained by overlapping the cycle C_m $(m \ge 3)$ and the complete bipartite graph $K_{2,s}$ $(s \ge 1)$ at an edge is uniquely determined by its chromatic polynomial. This result provides a partial solution to a question raised in [7].

Let $P(G; \lambda)$ denote the chromatic polynomial of a graph G. Then G is said to be *chromatically unique* if it is uniquely determined by its chromatic polynomial. A graph is *vertex-transitive* (respectively *edge-transitive*) if its group of automorphisms acts transitively on the vertex-set (respectively edge-set).

A graph is G quasi-separable if it contains a complete subgraph K_n such that $G - K_n$ is disconnected (see [1]). A quasi-block Q of G is a maximal subgraph of G that is not quasi-separable.

Suppose G consists of two quasi-blocks Q_1 and Q_2 with $Q_1 \cap Q_2 = K_n$. Then G is said to have property \mathcal{P} if for every i = 1, 2, there exists $x_i \in Q_i$ such that x_i is adjacent to all the vertices of $Q_1 \cap Q_2 = K_n$ and that $N(x_i) - K_n$ is nonempty, where N(x) denotes the neighborhood of x.

Theorem 1 (/5/, /11/)

Let G be a graph consisting of two quasi-blocks Q_1 and Q_2 with $Q_1 \cap Q_2 = K_2$. Suppose G is chromatically unique. Then

- (i) G does not have property P;
- (ii) Q_1 and Q_2 are chromatically unique;
- (iii) Q_1 and Q_2 are edge-transitive. Further, at least one of Q_1 or Q_2 is vertex-transitive.

Question 5 in [7] asks whether or not the converse of Theorem 1 is true. No counter-examples to this question are found. An example of a family of graphs that satisfies the necessary conditions of Theorem 1 is the edge-gluing of $K_{r,s}$ and C_m denoted $K_{r,s} \cup_2 C_m$. In this paper, we show that $K_{2,s} \cup_2 C_m$ is chromatically unique for all $s \geq 1$ and all $m \geq 3$. This result is also obtained by Xu, Liu and Peng [12] independently by different method.

We need to make use of the following result of Chao and Zhao [3]. By a $K_4 - homeomorph$ we mean a subdivision of K_4 .

Theorem 2 ([3])

Let G be a connected graph and let $P(G; \lambda) = (\lambda - 1)T(G; \lambda)$. Then

- (i) |T(G;1)| = 1 if and only if G is a 2-connected graph and contains no K_4 -homeomorph as a subgraph, and
- (ii) $|T(G;1)| \ge 2$ if and only if G is a 2-connected graph and contains at least one K_4 -homeomorph as a subgraph.

The following lemma is a consequence of Theorem 2 of [8]. Let G be a graph and let A be a subgraph of G. Let n(A, G) denote the number of subgraphs A in G.

Lemma 1 Let G and Y be two graphs such that $P(G;\lambda) = P(Y;\lambda)$. Then G and Y have the same number of vertices, edges and triangles. Moreover, in the event that G has at most one triangle, then $n(C_4^*,G) = n(C_4^*,Y)$ and

$$-n(C_5^*,G)+n(K_{2,3},G)=-n(C_5^*,Y)+n(K_{2,3},Y).$$

Let G be a connected graph on p vertices and q edges. Then the cyclomatic number of G is q - p + 1.

Lemma 2 Let G be a connected graph with cyclomatic number c. Then the number of $K_{2,3}$ in G is at most $\binom{c+1}{3}$.

Proof: By induction on c.

If $c \le 2$, the result is trivially true. Suppose the result is true for all connected graphs with cyclomatic number c where $c \ge 2$.

Let G be a connected graph with cyclomatic number c+1. Then G contains a cycle C. Delete an edge e from C. The resulting graph G-e is connected and has cyclomatic number c. By the induction hypothesis, the number of $K_{2,3}$ in G-e is at most $\binom{c+1}{3}$.

Let $\{K_{2,s_1},\ldots,K_{2,s_t}\}$ denote the set of all subgraphs (which are complete bipartite graphs) in G containing the edge e. Here $s_i \geq 3$ for $i=1,\ldots,t$. Notice that $(s_1-1)+\cdots+(s_t-1)\leq c+1$. Then the number of $K_{2,3}$ in G containing the edge e is $\sum_{i=1}^t \binom{s_i-1}{2}$. It is a routine exercise to show that this number is no more than $\binom{c+1}{2}$. Consequently, the number of $K_{2,3}$ in G is at most $\binom{c+1}{3}+\binom{c+1}{2}=\binom{c+2}{3}$ and this furnishes the proof. \square

Lemma 3 Suppose $m_i \geq 3$ is an integer for i = 1, ...t. Then

$$\sum_{i=1}^{t} {m_i \choose 3} \le {\left(\sum_{i=1}^{t} m_i\right) - 2(t-1) \choose 3} - 2(t-1).$$

Proof: The lemma is trivially true if t = 1. It is routine to verify that

$$\binom{m_1}{3}+\binom{m_2}{3}\leq \binom{m_1+m_2-2}{3}-2.$$

By repeatedly applying the above inequality, the lemma follows. \Box

Let H be a graph containing a subgraph of the form $K_{2,l}$ for some $l \geq 2$. Let x be a vertex in $H - K_{2,l}$. Then x is called a *t-vertex* to $K_{2,l}$ if x is adjacent to only two vertices of $K_{2,l}$ so that the resulting subgraph $K_{2,l} \cup \{x\}$ is isomorphic to $K_{2,l+1}$.

Theorem 3 For any $s \ge 1$ and $m \ge 3$, the graph $G = K_{2,s} \cup_2 C_m$ is uniquely determined by its chromatic polynomial.

Proof: Let Y be a graph such that $P(Y;\lambda) = P(G;\lambda)$. Then Y is a 2-connected graph on s+m vertices and 2s+m-1 edges. By Theorem 2, Y contains no K_4 -homeomorph as a subgraph because G contains no such subgraph.

When s = 1, $K_{2,s} \cup_2 C_m$ is the vertex-gluing of K_2 and C_m . It is chromatically unique (see [4]).

When s=2, $K_{2,s} \cup_2 C_m$ is the θ -graph and is chromatically unique (see [2] and [10]). The case s=3 has been treated in [6] where it is shown that $K_{2,3} \cup_2 C_m$ is chromatically unique. So we may assume that $s \geq 4$.

Since G has at most one triangle and $n(K_{2,3}, G) = \binom{s}{3}$, by Lemma 1, $n(K_{2,3}, Y) \ge \binom{s}{3}$ if $m \ne 5$ and $n(K_{2,3}, Y) \ge \binom{s}{3} - 1$ if m = 5. In either case, we see that Y contains a subgraph $K_{2,3}$. Let K denote this subgraph.

Let J be the graph Y-K and assume that there are e edges joining K to J. Now note that J has s+m-5 vertices and 2s+m-7-e edges and so

$$|E(J)| - |V(J)| = s - e - 2.$$

Let J_1, \ldots, J_k be the connected components of $J, k \geq 1$. Suppose there are e_i edges joining K and $J_i, i = 1, \ldots, k$.

We make the following observations:

- (O1): Each J_i contains at most one t-vertex to K. This is because if there are two t-vertices x_1 and x_2 from J_i to K, then there is a path in J_i connecting x_1 and x_2 . This path together with K contains a K_4 -homeomorph as a subgraph which is impossible.
- (O2): If $e_i = 2$, then J_i contains a t-vertex only if J_i is an isolated vertex because Y is 2-connected.

Let c_i denote the cyclomatic number of J_i , $i=1,\ldots,k$. Then $\sum_{i=1}^k c_i = s-e-2+k$. Consequently, $e \leq s-2+k$. Since $e \geq 2k$, it follows that $1 \leq k \leq s-2$. Let β denote the number of J_i 's that are isolated vertices. Then clearly, $\beta \leq k-1$.

There are two cases that we need to consider.

Case (1): All the J_i 's are trees.

Assume that $e_i = 2$ for i = 1, ..., k. Then k = s - 2. From (O2), each isolated vertex of J could be a t-vertex to K and so

$$n(K_{2,3},Y) \leq {3+\beta \choose 3} \leq {s \choose 3}.$$

Clearly, the second inequality holds if $\beta = k - 1$. When $\beta \le k - 2$, $\binom{3+\beta}{3} < \binom{s}{3} - 1$.

Suppose $\beta = k - 1$. Then one of the J_i , say J_k , is the path on m - 2 vertices and J_1, \ldots, J_{k-1} are t-vertices to K. Now, the two edges joining J_k

and K are not incident to a common vertex in K or in J_k . Moreover, these two edges must join the two end vertices of J_k to two adjacent vertices in K. This is because otherwise either Y contains a K_4 -homeomorph as a subgraph or $P(Y; \lambda) \neq P(G; \lambda)$. But then $Y \cong G$.

Assume that $e_i \geq 3$ for some i. Then $k \leq s-3$. Since each isolated vertex in J contributes at most one t-vertex to K, we have

$$n(K_{2,3},Y) \le \binom{3+\beta+1}{3} \le \binom{s}{3}.$$

Clearly, the second inequality holds if $\beta = k - 1$ and k = s - 3. When $\beta \le k - 2$, $\binom{4+\beta}{3} < \binom{s}{3} - 1$.

Suppose $\beta = s - 4 = k - 1$. Then one of the J_i , say J_k , is a tree on m-2 vertices and J_1, \ldots, J_{k-1} are t-vertices to K. Since one of the end vertices of J_k is a t-vertex to K, J_k is a path. Now, the other end vertex of J_k must be adjacent to a vertex in K which is not of degree 2 because otherwise Y contains a K_4 -homeomorph as a subgraph. But then $Y \cong G$.

Case (2): Not all the J_i 's are trees.

Assume that J_1, \ldots, J_t are not trees and J_{t+1}, \ldots, J_k are trees so that $c_1, \ldots, c_t \ge 1$ and $c_{t+1}, \ldots, c_k = 0$ for some $t \ge 1$.

Consider the subgraph induced by the vertices of $J_i \cup K$. For each i, let H_i denote the graph obtained from $J_i \cup K$ by deleting all the edges in K. Let α_i denote the number of isolated vertices in H_i . Then $\alpha_i \leq 3$.

Let H_i' denote the graph obtained from H_i by deleting all the α_i isolated vertices. Then H_i' is a connected graph with cyclomatic number $c_i + e_i - 5 + \alpha_i \le c_i + e_i - 2$. By Lemma 2, $n(K_{2,3}, H_i') \le {c_i + e_i - 1 \choose 3}$.

By (O1), since each J_i contributes at most one t-vertex, we have

$$n(K_{2,3},Y) \leq {k+3 \choose 3} + \sum_{i=1}^t {c_i + e_i - 1 \choose 3}$$

$$\leq {k+3 \choose 3} + {\sum_{i=1}^t (c_i + e_i - 1) - 2(t-1) \choose 3} - 2(t-1)$$

by Lemma 3.

Now observe that

$$\sum_{i=1}^{t} (c_i + e_i - 1) - 2(t-1) = \sum_{i=1}^{k} c_i + \sum_{i=1}^{t} e_i - 3t + 2$$

$$= (s - e - 2 + k) + e - \sum_{i=t+1}^{k} e_i - 3t + 2$$

$$\leq (s - 2 + k) - 2(k - t) - 3t + 2$$

$$= s - t - k$$

$$\leq s - k - 1.$$

Thus we have

$$n(K_{2,3},Y) \le {k+3 \choose 3} + {s-k-1 \choose 3} - 2(t-1)$$

 $\le {s \choose 3} - 2t$ by Lemma 3
 $\le {s \choose 3} - 2$ because $t \ge 1$.

This completes the proof of the theorem.

References

- [1] N.L. Biggs, Algebraic Graph Theory, Cambridge University Press, London, New York (1994) (Second Edition).
- [2] C.Y. Chao and E.G. Whitehead Jr., On chromatic equivalence of graphs, Theory and Applications of Graphs, Lecture Notes in Math. 642 Springer, Berlin (1978) 121-131.
- [3] C.Y. Chao and L.-C. Zhao, Chromatic polynomials of connected graphs, Arch. Math. (Basel) 43 (1984) 187-192.
- [4] G.L. Chia, A note on chromatic uniqueness of graphs, J. Graph Theory 10 (1986) 541-543.
- [5] G.L. Chia, Some remarks on the chromatic uniqueness of graphs, Ars Combinat. 26A (1988) 65-72.
- [6] G.L. Chia, On the chromatic uniqueness of graphs with connectivity two, Malaysian J. Science 16B (1995) 61-65.
- [7] G.L. Chia, Some problems on chromatic polynomials, *Discrete Math.* 172 (1997) 39-44.

- [8] E.J. Farrell, On chromatic coefficients, Discrete Math. 29 (1980) 257-264.
- [9] K.M. Koh and K.L. Teo, The search for chromatically unique graphs, Graphs and Combin. 6 (1990) 259-285.
- [10] B. Loerinc, Chromatic uniqueness of the generalized θ -graphs, Discrete Math. 23 (1978) 313-316.
- [11] R.C. Read, Connectivity and chromatic uniqueness, Ars Combinat. 23 (1987) 209-218.
- [12] S.-J. Xu, J.J. Liu and Y.H. Peng, The chromaticity of s-bridge graphs and related graphs, *Discrete Math.* 135 (1994) 349-358.