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Abstract

In this paper, we give an alternative proof for the fact that the
graph obtained by overlapping the cycle Cyn (m > 3) and the com-
plete bipartite graph K2, (s > 1) at an edge is uniquely determined
by its chromatic polynomial. This result provides a partial solution
to a question raised in [7].

Let P(G; ) denote the chromatic polynomial of a graph G. Then G is
said to be chromatically unique if it is uniquely determined by its chromatic
polynomial. A graph is vertez-transitive (respectively edge-transitive) if its
group of automorphisms acts transitively on the vertex-set (respectively
edge-set).

A graph is G quasi-separable if it contains a complete subgraph K, such
that G — K, is disconnected (see [1]). A quasi-block Q of G is a maximal
subgraph of G that is not quasi-separable.

Suppose G consists of two quasi-blocks Q1 and Q2 with @1 N Q2 = K.
Then G is said to have property P if for every i = 1,2, there exists z; € Q;
such that z; is adjacent to all the vertices of @; N Q2 = K, and that
N(z;) = K, is nonempty, where N (z) denotes the neighborhood of z.
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Theorem 1 ({5}, {11])

Let G be a graph consisting of two quasi-blocks Q1 and Q2 with Q1NQ2 =
K. Suppose G is chromatically unique. Then

(i) G does not have property P;

(ii) @1 and Q2 are chromatically unique;

(iii) @1 and Q2 are edge-transitive. Further, at least one of Q1 or Q2
is vertez-lransitive.

Question 5 in [7] asks whether or not the converse of Theorem 1 is true.
No counter-examples to this question are found. An example of a family
of graphs that satisfies the necessary conditions of Theorem 1 is the edge-
gluing of K, and C,, denoted K, ; Uz Cry. In this paper, we show that
K2 Ug Cpy is chromatically unique for all s > 1 and all m > 3. This
result is also obtained by Xu, Liu and Peng [12] independently by different
method.

We need to make use of the following result of Chao and Zhao (3]. By
a K4 — homeomorph we mean a subdivision of K.

Theorem 2 ({3])

Let G be a connected graph and let P(G;A) = (A — 1)T(G;)). Then

(i) |[T(G;1)] = 1 if and only if G is a 2-connected graph and contains
no K4-homeomorph as a subgraph, and

(i) |T(G;1)| > 2 if and only if G is a 2-connected graph and contains
at least one K4-homeomorph as a subgraph.

The following lemma is a consequence of Theorem 2 of [8]. Let G be
a graph and let A be a subgraph of G. Let n(A, G) denote the number of
subgraphs A in G.

Lemma 1 Let G endY be two graphs such that P(G;)) = P(Y;)\). Then
G and Y have the same number of vertices, edges and triangles. Moreover,
in the event that G has at most one triangle, then n(Cy,G) = n(C},Y)
and

—n(C3,G) + n(K23,G) = —n(C3,Y) + n(Ka23,Y).

Let G be a connected graph on p vertices and g edges. Then the cyclo-
matic number of Gisqg—p +1.

Lemma 2 Let G be a connected graph with cyclomatic number c. Then
the number of Ko 3 in G is at most (°§1).
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Proof: By induction on c.

If ¢ < 2, the result is trivially true. Suppose the result is true for all
connected graphs with cyclomatic number ¢ where ¢ > 2.

Let G be a connected graph with cyclomatic number ¢ + 1. Then G
contains a cycle C. Delete an edge e from C. The resulting graph G — e is
connected and has cyclomatic number ¢. By the induction hypothesis, the
number of K33 in G — e is at most (c'gl).

Let {K2,,,...,K2,;,} denote the set of all subgraphs (which are com-
plete bipartite graphs) in G containing the edge e. Here s; > 3 for i =
1,...,t. Notice that (s; —1)+---+ (st — 1) < ¢ + 1. Then the number of
K33 in G containing the edge e is Ef=1 (5 1). It is 2 routine exercise to
show that this number is no more than (°+1). Consequently, the number
(E]f K23 in G is at most (c‘gl) + (c'gl) = (c-gz) and this furnishes the proof.

Lemma 3 Suppose m; > 3 is an integer fori =1,...t. Then

> (n;) < ((ELI m) = 2t - 1)) _a(-1)

i=1

Proof: The lemma is trivially true if ¢ = 1. It is routine to verify that

my ma mi +mo—2
< -2
(3)*(3)-( )
By repeatedly applying the above inequality, the lemma follows. a

Let H be a graph containing a subgraph of the form Kj; for some
I > 2. Let z be a vertex in H — Ko1. Then z is called a t-verter to Ko
if z is adjacent to only two vertices of K2 so that the resulting subgraph
K21 U {z} is isomorphic to K3 141.

Theorem 3 For any s > 1 end m > 3, the graph G = Kp5 Uz Cpy is
uniquely determined by its chromatic polynomial.

Proof: Let Y be a graph such that P(Y;)\) = P(G;A). Then Y is a 2-
connected graph on s + m vertices and 2s + m — 1 edges. By Theorem 2,
Y contains no K4-homeomorph as a subgraph because G contains no such -
subgraph.
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When s = 1, Ky Up Cp, is the vertex-gluing of K7 and Cp,. It is
chromatically unique (see [4]). '

When s = 2, K3 ;U Cr, is the §-graph and is chromatically unique (see
[2] and [10]). The case s = 3 has been treated in [6] where it is shown that
K33 Uz Cp, is chromatically unique. So we may assume that s > 4.

Since G has at most one triangle and n(K23,G) = (3), by Lemma 1,
n(K23,Y) > (3) if m # 5 and n(K23,Y) > (}) — 1 if m = 5. In either
case, we see that Y contains a subgraph K3 3. Let K denote this subgraph.

Let J be the graph Y — K and assume that there are e edges joining K
to J. Now note that J has s + m — 5 vertices and 2s +m — 7 — e edges and
so

EW)| - V() =s—e-2.

Let Jy,...,Ji be the connected components of J, k > 1. Suppose there
are e; edges joining K and J;,i=1,...,k.

We make the following observations:

(01) : Each J; contains at most one t-vertex to K. This is because
if there are two t-vertices z; and zo from J; to K, then there is a path
in J; connecting z; and z5. This path together with K contains a K-
homeomorph as a subgraph which is impossible.

(02) : If e; = 2, then J; contains a t-vertex only if J; is an isolated
vertex because Y is 2-connected.

Let ¢; denote the cyclomatic number of J;,i = 1,...,k. Then Z:;l c; =

s —e~—2+ k. Consequently, e < s — 2 + k. Since e > 2k, it follows that
1 < k < s—2. Let 8 denote the number of J;’s that are isolated vertices.
Then clearly, 8 < k — 1.

There are two cases that we need to consider.
Case (1): All the J;’s are trees.

Assume that e; =2 for i = 1,...,k. Then k = s — 2. From (02), each
isolated vertex of J could be a t-vertex to X and so

n(K23,Y) < (3?6) < (;)

Clearly, the second inequality holds if 3 = k— 1. When 8 < k—2, (3§ﬁ) <
(G -1

Suppose 8 = k — 1. Then one of the J;, say Ji, is the path on m — 2
vertices and Ji, ..., Jy—1 are t-vertices to K. Now, the two edges joining Jy.
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and K are not incident to a common vertex in K or in J;. Moreover, these
two edges must join the two end vertices of Jj. to two adjacent vertices in
K. This is because otherwise either Y contains a K4-homeomorph as a
subgraph or P(Y;)) # P(G;)). But thenY & G.

Assume that e; > 3 for some i. Then & < s — 3. Since each isolated
vertex in J contributes at most one ¢-vertex to K, we have

n(K23,Y) < (3”; “) < (;)

Clearly, the segond inequality holds if 8 = k— 1 and k = s — 3. When
4+
B<k-2 ()< () -1
Suppose 8 = s —4 = k — 1. Then one of the J;, say Ji, is a tree on
m — 2 vertices and Jy,...,Jg—1 are t-vertices to K. Since one of the end
vertices of J is a t-vertex to K, Ji is a path. Now, the other end vertex

of Jx must be adjacent to a vertex in X which is not of degree 2 because
otherwise Y contains a K4-homeomorph as a subgraph. But then Y = G.

Case (2): Not all the J;’s are trees.

Assume that Jj,...,J; are not trees and Ji4,,...,Ji are trees so that
¢ty...,c¢ 2 1and ¢pqq,...,c = 0 for some ¢t > 1.

Consider the subgraph induced by the vertices of J; UK. For each i, let
H; denote the graph obtained from J; U K by deleting all the edges in K.
Let a; denote the number of isolated vertices in H;. Then o; < 3.

Let H] denote the graph obtained from H; by deleting all the «; isolated
vertices. Then H] is a connected graph with cyclomatic number ¢; + e; —
54+ a; <c¢;+e —2 By Lemma 2, n(Ka23,H) < (°‘+§‘"1).

By (O1), since each J; contributes at most one t-vertex, we have

n(K23,Y) < (";3)+X‘:(ci+§i—1)

i=1

() ()

IA

by Lemma 3.
Now observe that

t k t

D lcitei—1)=2(t-1) = > i+ ) ei—~3t+2

i=1 i=1 i=1
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k
= (s—e—2+k)+e— Y e;—3t+2

i=t+41
< (s—24k)—-2(k—t)—3t+2
= s—t—k
< s—k-1
Thus we have
k
n(K23,Y) < ( ;3) ( ) -2(t-1)
L3
< (3) by Lemma 3
< (;) —2 becauset > 1.
This completes the proof of the theorem. a
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