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Abstract

In 1970, Behzad, Chartrand and Wall conjectured that the girth
of every r-regular digraph G of order n is at most [n/r]. The con-
Jjecture follows from a theorem of Menger and Dirac if G has strong
connectivity k¥ = r. We show that any digraph with minimum inde-
gree and outdegree at least r has girth at most [n/r] if Kk = r — 1.
We also find from the literature a family of counterexamples to a
conjecture of Seymour.

Let G = (V, E) denote a digraph on n vertices. Loops are permitted
but no multiple arcs. If G has at least one (directed) cycle, the minimum
length of a cycle in G is called the girth of G, denoted ¢(G). G is said to
be r-regular if the indegree and outdegree of each vertex both equal ».

Various authors (e.g. [1], [2] and [3]) have considered the problem of
determining the minimum number of vertices f(r, g) in an r-regular digraph
with girth g. In [1], M. Behzad, G. Chartrand and C. Wall showed that
f(r,g) < r(g — 1) + 1 by taking G to be the digraph with vertices v;,
1< i< r(g—1)+1, where v; — v; ifand only if j = i+1,i+2,...,i+r, and
addition is taken modulo 7(g — 1) + 1. In the same paper, they conjectured
that f(r,g) = r(g — 1) + 1. This is equivalent to the following conjecture:

Conjecture 1 ([1]) Let G be en r-regular digraph of order n. Then
g < [n/r]. ”
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If we let 6%(G) (resp. 6=(G)) denote the minimum outdegree (resp.
indegree) of G, then each of the following conjectures implies Conjecture 1.

Conjecture 2 Let G be a digraph of order n with min{6*(G), 6~ (G)} > r.
Then g < [n/r].

Conjecture 3 ([5]) Let G be a digraph of order n with §%(G) > r. Then
g < [n/r].

Some partial results have been obtained. For example, the strongest of
the conjectures (Conjecture 3) has been established for » < 5 in a series
of papers [5], [8], [9). If n > 2r? — 3r + 1, then Conjecture 3 follows
from a recent result of Shen [12]. It can also be shown to hold when
n < (3 + v/7)/2 [13]. Thus the remaining cases in which Conjecture 3 is
open are when (3 + v/7)/2 < n < 2r? — 3r, where r > 6.

Suppose G is strongly connected. A proper subset T' C V is said to be
a cutset of G if Gy\r, the subdigraph induced by V \ T, is not strongly
connected. G is said to be strongly h-connected (h > 1) if |V| > h +1 and
Gv\s is strongly connected for every S C V such that |S| < k. The strong
connectivity of G is £(G) = max{h : G is strongly h-connected}. If there
is no arc u — v for some pair of distinct vertices u,v, then «(G) is the
minimum cardinality of a cutset of G.

Using a theorem of Menger and Dirac, Hamidoune [7, Lemma 4.1] has
shown that if G has strong connectivity &, then n — 1 > k(g — 1) or g <
[n/k]. Consequently, if £ = r (so, necessarily, min{§+(G),6~(G)} > r),
then Conjectures 1 and 2 hold. Recently Seymour [11] proved that Conjec-
ture 1is true if K = r—1 and [n/r] = 3. By modifying Seymour’s argument,
we show in Theorem 1 that Conjecture 2 holds whenever & = r — 1.

For a subset S C V, let D;(S) denote the set of vertices whose distance
from S is equal to i. Thus, Do(S) = S, and, if i > 1, then v € D;(S) if
and only if 7 is the smallest integer such that there is a walk of length ¢ to
v from some u € S. Similarly, let D}(S) denote the set of vertices whose
distance to S equals i.
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Following Hamidoune (7], we call a subset F' of a strongly connected
digraph G a positive fragment if D,(F) is a minimum cutset, that is, if
|D1(F)] = £(G) and FUD;(F) is a proper subset of V. A negative fragment
of G is a positive fragment of the digraph obtained by reversing the direction
ofallarcs in G. A positive (resp. negative) fragment of minimum cardinality
among all the positive and negative fragments is said to be a positive (resp.

negative) atom.

Lemma 1 Suppose G is a digraph with girth g and strong connectivity
k > 1. Suppose that G has a positive atom A and let r = min{6*(G), s+1}.
Ifuc A, then |Di(u)|>r foralll1<i<g-—1.

Proof. We may assume that g > 2. If |4] = 1, then §(G) = £ < §~(G)
as A is a positive atom. Thus k = r. Let u be any vertex in G. Whenever
Diq1(u) # 0, its predecessor D;(u) must be a cutset and so |D;(u)| > & = r.
Because G has girth g, Dy_1(u) # 0. Thus we need only consider the case
where Dy(u) = 0. But, in that case, all in-arcs at u must originate in
Dy_1(u) and so |Dy_y(u)| > |Di(u)| = 6=(G) > r. Consequently, the
statement of the lemma actually holds for all vertices u in G if [A| = 1.

Now suppose |A| > 2. Then £ < min{6*(G), §~(G)} by the definition of
an atom. Thus r = k+ 1. Since A is an atom, the subdigraph of G induced
by A is strongly connected with girth at least g. Let C be the minimum
cutset Dy(A) andlet B=V \ (AUC). Letu€ A. For0<i<g—1,let
A; = AND;(u), B; = BND;(u) and C; = CND;(u). We abuse our notation
slightly and define A, = A\U{Zg Ai, B, = B\U{Z) B; and C, = C\U{Z}C:.
Let ¢t = max{i : B; # 0}.

Claim 1: |4; UU;_oCj| > k+ 1 for all 1 <i< g — 1. Since there is no
arc from A to B, we have Dl(U;:-:]éAj) C AiUU;_oC;j. Also Uj-;l AjU(A;U
U§=OCj) CV\B#V. Thus Dl(U;:;%,Aj) is a cutset of G. Since U;_:](')Aj c
A\ Ay_1 # A, the definition of an atom implies | D; (U};hA,-)I >k+1and
Claim 1 follows.

Claim 2: |B; UU{_;C;| > x for all 1 <i <t - 1. Since no arc into B
originates in A, we have D{(Uj_;,,B;) C Bi UUI_,C;. Also (U{_;,,B;)U
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(Bi UU{_;C;) S V\ A# V. Thus Dj(U{_;,,B;) is a cutset of G, and so
|B: UUI_;Cj| > | D} (Uf=iy1 Bj)| 2 &.

Claim 3: |Di(u)] > k+1foralll1<i<g-1. If1<i<t-1, by
Claims 1 and 2,

IDi(u)| = |4l + | Bi| + |Ci| = | A UU;Cj| + |Bs UUI_;Cj| - C] > 6 + 1.

Thus it may be supposed that t < 7 < g — 1. The proof of Claim 3 now
reduces to the following two cases:

Case 1: i = g — 1. If Dy(u) = 0, then, as before, Dy_;(u) 2 Di(u)
and so |Dy_1(u)| > 67(G) 2 £+ 1. On the other hand, if D,(u) # 0,
then Dgy_;(u) is a cutset, which separates U;>4D;(u) from the remaining
vertices of G. Since t < g — 1, we have By = 0. Thus 0 < |Uj>4 D;(u)| =
gl +1Col = 14g]+ 5 — [USZE Gl < |4l +14g1] - 1 < |4] - 1, where the
second last inequality follows from Claim 1. By the definition of an atom,
|Dg—1(u)| 2 £+ 1.

Case 2: t < i < g—2. Since D,y # 0, we know that D;(u) is a
cutset, which separates U;j>;41D;(u) from the remaining vertices of G. Also
0.< [ Ujzian Dy ()] = [Ul_ipy A5 (@) + Uiy Co)] = Uiy Aj(u)] +
£ —|U; o Cjl < |Ui_; Aj(u)| - 1 < |A| - 1, where the second last inequality
follows from Claim 1. The definition of an atom implies |D;(u)| > & + 1.

When |A| > 2, Lemma 1 follows from Claim 3, since r = k + 1. O

Theorem 1 Suppose G is a digraph with strong connectivity k > r — 1
where r = min{6*(G), 6~ (G)}. Then g < [n/r].

Proof. We may suppose that « > 1. By reversing the directions of
all arcs if necessary, we may suppose that G has a positive atom. Then,
because the sets D;(u), 0 < i < g—1, are disjoint and Dy(u) = u, Lemma 1
implies that n = |V| > 1+ r(g — 1). Thus g < [n/r]. 0

Remark. In proving the bound n—1 > x(g—1) in [7], Hamidoune uses the
Menger-Dirac theorem to show that, for each vertex u in a digraph G with
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strong connectivity «, there are « (directed) cycles C; through u such that
CiNCj = {u} for all 1 <i < j < . This leads to the following conjecture
of Seymour that is quoted in [4].

Conjecture 4 Any digraph has a vertez u and deg* (u) cycles C; such that
CinCj={u},1<i<j< deg* (u).

Thomassen [14] used the following construction to disprove a conjecture
of Hamidoune and another conjecture of Seymour. In Lemma 2, we see that
his construction also disproves Conjecture 4.

Lemma 2 ([14]) For each natural number r, there exists a digraph H, of
minimum outdegree v such that, for any vertez u, H, does not contain three

cycles having precisely u in common pair by pair.

Proof. H; can be any cycle. Suppose H, (r > 1) exists. Form a digraph
H, 41 having H, as an induced subdigraph as follows. For each vertex v in
H,, create three new vertices v, vg, v3 and arcs v — vy, v — va, v2 — V3,
vz — v; as well as arcs v; — w for each w € D;(v) and each i = 1,2,3.
Then the minimum outdegree of Hy4y is 7+ 1. If H,4; contained a vertex
u and three cycles having precisely v in common pair by pair, then « would
appear in H, and so H, would have contained three cycles having precisely
u in common pair by pair. Thus Lemma 2 follows by using induction. 0O

In the first paragraph of the proof of Lemma 1, we showed that |D;(u)| >
# for all u and all 1 < i < g — 1. This implies that n — 1 > k(g — 1) and so
gives a direct proof of the inequality ¢ < [n/x] without using the Menger-
Dirac theorem. It also suggests the following conjecture:

Conjecture 5 Any digraph G has a vertez u such that, for alll1 < i < g-1,
i

> IDj()| 2i-6*(G).

i=1
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We note that Conjecture 5 holds for tournaments [6] (¢ = 3 for any
non-transitive tournament [10]). Conjecture 5, if true, would imply Con-
jecture 3.

It is also natural to ask about the girths of digraphs with low strong
connectivities. We are able to prove that Conjecture 2 holds for all digraphs
with k = 1. However, as the following lemma indicates, proving the stronger
Conjecture 3 for the case £ = 1 would be as difficult as proving it for all
digraphs.

Lemma 3 Suppose Conjecture 3 holds for digraphs with strong connectivity
k=1. Then g < [(n+1)/r] for every digraph G of order n with §+(G) > r.

Proof. Without loss of generality, it may be supposed that G is strongly
connected; otherwise, we could replace G by a strong component with min-
imum outdegree at least ». Suppose u — v is an arc in G. Form a digraph
G’ having G as an induced subdigraph as follows. Create a new vertex v’
and arcs u — v as well as v/ — w for each w € Dy(v). Then G’ is strongly
connected, g(G') = g(G) and 6*(G’) = §*(G). Since deg™(v') =1in G,
we have k(G') = 1. Therefore the inequality g(G) = ¢g(G’) < [(n + 1)/r]
follows from the assumption that Conjecture 3 holds for G’. n}
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