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Abstract

For loopless multigraphs G, the total choice number is asymptotically
its fractional counterpart as the latter invariant tends to infinity. If
G is embedded in the plane, then the edge-face and entire choice
numbers exhibit the same “asymptotically good” behaviour. These
results are based mainly on an analogous theorem of Kahn [5] for the
list-chromatic index. Together with work of Kahn and others, our
three results give a complete answer to a natural question: which
of the seven invariants associated with list-colouring the nonempty
subsets of {V, E, F'} are asymptotically good?

1 Introduction

We consider the asymptotic behaviour of various list-colouring parameters
associated with loopless multigraphs G. The vertex and edge sets of G are
denoted by V and F respectively. If G is embedded in the plane, then its
face set is denoted by F. Each nonempty subset of {V, E, F'} corresponds
to a list-colouring invariant of G for example, { E} corresponds to the list-
chromatic index ¥, {V, E} to the total choice number % _ and {V,E, F}
to the entire choice number X . We define these numbers more carefully
below.

Since each of the seven resulting list-colouring invariants has a frac-
tional analogue, a natural question presents itself: which of the seven inte-
gral invariants are asymptotic to their fractional counterparts, as the latter
invariants tend to infinity? The corresponding question for ordinary (i.e.
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not list) colouring was answered in a short sequence of papers: [4, 6, 7].
The answer to the list version of our question begins with a result of Jeff
Kahn [5] placing x, on the affirmative side; see Theorem 4.

Kahn’s positive result also turns out to be the key to establishing this
“asymptotically good” behaviour for three of the other six list-colouring
invariants presently under consideration: X, , X, and x . The remaining
three invariants, X , X , and )“Cv!, are immediately classified by Thomassen’s
5-choosability theorem [10] as uninteresting for our question because each
is bounded by a constant (hence so is its fractional version). In this paper
we complete the answer to our question by proving that x_, X, and X
are asymptotically good.

vef

Terminology etc.

With brevity in mind, we point to the references for any omitted notation
or terminology: {1, 12] for general graph theory; [2] for graph colouring and
related history; [9] for LP/IP background; [8] for fractional concepts. By
multigraph, we mean loopless finite multigraph. We use A for maximum
degree.

The entire chromatic and choice numbers are representative parameters
starting with which the reader can easily infer definitions of other (list-)
colouring invariants and concepts. An entire colouring of a plane multi-
graph Gisamapo: VUEUF — § — where § is a set of “colours” —
such that o(X) # o(Y') whenever X, Y are incident or adjacent elements,
i.e. a pair of adjacent vertices, a vertex-edge pair with the edge incident on
the vertex, an edge-face pair with the edge on the boundary of the face,
etc.; a face touching either another face or an edge only in a vertex is not
considered an adjacency. The entire chromatic number, X, 18 the least
size of an & admitting such a colouring. For example, if G consists of two
copies of K3 joined at a single common vertex, then x _ (G) = 6. The entire
choice number, X, is the least integer k such that if L(A) is a set (list) of
size k for each A € VU EUF, then there exists an entire colouring o of G
with o(A) € L(A) for each such A. In this case we call o an L-colouring.
Following {12], we use hats to distinguish between a colouring parameter
x and its list version ¥. We hope the subscript notation to indicate which
entities of a graph are being coloured is clear; in any case, it is consistent
with [11] and other articles.

Two non-asymptotic conjectures

Though our focus is on asymptotic estimates, we take a short digression in
an attempt to place some of our results into the context of other research
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on restricted graph colouring. Considering the case when all the lists L(A)
are identical shows that X, > x,, X, > Xx_, X,. > X,., and so on. Some of
these bounds can be far from sharp (see [2]), but the one for edge colouring
seems to be tight.

Conjecture 1 Every multigraph satisfies X, = x, .

Establishing Conjecture 1, the so-called “List-colouring Conjecture”, is
Problem 12.20 in [2], to which the reader should turn for details. The
problem dates at least to 1975 and has stimulated vigorous activity, espe-
cially in recent years, which have witnessed the proofs of several special
cases. More recently, Juvan et al. [3] proposed a total colouring cousin to
LCC:

Conjecture 2 Every multigraph satisfies X, = x._.

Corollary 5 below shows that Conjecture 2 is at least asymptotically correct.

Fractional colouring

As mentioned above, all of these colouring and list-colouring invariants
have fractional counterparts, their linear relaxations. We use asterisks to
denote fractional parameters, so, e.g., x* denotes the fractional chromatic
index and x” the fractional list-chromatic index. A few concepts underlying
detailed definitions of x*, x* and X;, are needed. Writing 91 for the set of
matchings in G, we call an f : 9 — [0, 1] satisfying

> f(M)=1 foreachA€E
AeMem

a fractional edge colouring of G. Note that an ordinary (integral) edge
colouring arises if we restrict the range of f to {0,1}. Now

X} (G) = min { Z f(M) : f is a fractional edge colouring of G } (1)
Mem

makes the LP defining x* explicit.

Likewise we may define x* and X_;» but the generalizations of 9t are
more complicated. For I C V, let §(I) denote the set of edges of G with
exactly one end in I. A total stable set of G is a subset of E UV of the
form M U I, where M C E is a matching, I C V is a stable (independent)
set, and M N4(I) = @. We write T for the family of total stable sets of G
and call an f: T — [0, 1] satisfying

Y f(T)=1 foreach Aec EUV
AeTex
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a fractional total colouring of G. Then

X:.(G) = min {Z f(T) : f is a fractional total colouring of G } . (2
TeT

For & C F, let 8.(®) denote the set of edges of G on the boundary of some
face in ®. An edge-face stable set of G is a subset of E U F of the form
M U &, where M C E is a matching, ® C F is a collection of faces, no two
sharing a common boundary edge, and M N3, (®) = @. Writing & for the
family of edge-face stable sets of G, we callan f: & — [0, 1] satisfying

3> f(S)=1 foreachA€EUF
AESES

a fractional edge-face colouring of G, and

x.,(G) = min { Z f(S) : f is a fractional edge-face colouring of G } .

Se6
)
We often abbreviate the objective functions in (1)-(3) to f(G)-
If the reader wonders why we have strayed from our main topic, list-
colouring, it is because of the following fact.

Lemma 3 Every multigraph satisfies x* = X_.
Proof. See, e.g., [8, Theorem 3.8.1]. |

By considering line graphs, total graphs and the like, it is easy to check
the validity of Lemma 3 for edge colouring, total colouring, and so on.

2 Results: one old, three new

The model and main tool for our three results was proved by Kahn in
1995 [5], though at this writing the proof is yet to appear in published
form:

Theorem 4 For multigraphs,
R.~% s Koo (4)

Since X* < X, always holds — the left side is the optimal value of the linear
relaxation of the integer program defining the right — one should read (4)
as: for each v > 0 there exists B = B(7) such that every multigraph G
with ¥*(G) > B satisfies X, (G) < (1 +7)X2(G).

Our first result is an analogue of Theorem 4 for the total choice number.
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Theorem 5 For multigraphs,
Xoe ~ X:: as X:e — 00. (5)
The convergence in (5) is in the same sense as that in (4), but we spell
out the quantifiers for reference in the proof: for each £ > 0 there exists
D = D(g) such that every multigraph G with ¥* (G) > D satisfies
X..(G) < (1 + )%, (G). (6)
Using Theorem 5, we can prove an asymptotic version of Conjecture 2.

Corollary 5 For multigraphs,
X VX, 88X, 00

Notice that the analogous corollary of Theorem 4, which we have not stated,
shows that Conjecture 1 is also asymptotically correct.

Although we are always careful to specify the condition upon which our
asymptotic estimates depend, such care is really unnecessary. The chain
of inequalities A +1 < x,, < %, < 2A +1 shows that ¥, and x, never
differ in ratio by more than a factor of (about) 2, so, e.g., an equ1valent
formulation of Corollary 5 could replace x,, — oo by %, — 0. Similar
remarks apply to each of our main results and their corollaries.

We are getting a little ahead of ourselves, but here is the
Proof of Corollary 5. The main result of [6] is that x, ~ x* as x* — oco.
This fact, together with Lemma 3 and Theorem 5, proves the assertion. W

The rest of our results concern plane multigraphs. First we see that the
edge-face choice number is asymptotically good.

Theorem 6 For plane multigraphs,

*

X, ~X, os )2:/ —* 0o.
Using Lemma 3 and a theorem from [7], we obtain
Corollary 6 For plane multigraphs,
)2°I~xd as x, — . |
We also establish that the entire choice number is asymptotically good.
Theorem 7 For plane multigraphs,

Koy ~Xoy 68 X, — 0.
Of course, we have an analogue of Corollaries 5, 6 for entire colouring:
Corollary 7 For plane multigraphs,

Xog ~ Xoyy 85 X, = 0. N
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3 Proofs

Since we indicated how to prove Corollaries 5-7, it remains to prove their
sibling theorems.

Proof of Theorem 5

Together with Theorem 4, we need the following elementary connections
between the total choice numbers and the list-chromatic indices (in (7), k
is a positive constant and the multigraph must be non-empty):

X < kX (7)
X. £ Xx+2% (8)
X < x. 9

Proof of (7). We have no need to optimize &, so we do not attempt to do
8so. Greedy colouring yields ¥, < 2A + 1, which, along with the obvious
X, <X, and A < x7, gives (7). |

Proof of (8). Easy, and well-known; see e.g. [3]. |

Proof of (9). By Lemma 3, x* = X* holds for the relevant colouring
parameters, so it suffices to prove

X. <X, (10)

instead of the list-colouring version. From an optimal fractional total
colouring f : ¥ — [0, 1], we may obtain a fractional edge colouring A : 90t —
[0,1] by shifting the weight f(T") from each total stable set T = M U I to
the matching M in the natural way. This yields an h with A(G) = f(G) =
X_.(G), and (10) follows since x*(G) < h(G). ]

To prove Theorem 5, we need to establish (6) for arbitrary € > 0 and
sufficiently large x> . Given € > 0, let v = ¢/2, and choose B so large
(according to Theorem 4) that

%* > B implies % <(1+7)%". (11)

With k as in (7), if X, > D := max{kB,4k/c}, then X* exceeds both B
and 4/¢ = 2/v. Thus, provided §* > D, we have

~

X SX, A2<A+MX +7XI = (1+)% < QL +e)X],

(justifying the inequalities, respectively, by: (8); the preceding sentence
and (11); and (9)), as desired. n
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Proof of Theorem 6

Again we lean on Theorem 4, now augmented by three easy relationships
between the edge-face choice numbers and the list-chromatic indices:

X, < X +5; (12)
X, < X +5 (13)
X < X (14)

Proof of (12). Again invoking Lemma 3 (x* = ¥*), we prove the superfi-
cially simpler
X, < X! +5. (15)

We may obtain a fractional colouring h of EUF by fractionally x*-colouring
E and (integrally) colouring F' with a set C of additional colours. The five
colour theorem guarantees that |C| need not exceed 5; of course, the trivial
- six colour theorem (or the less-trivial four colour theorem) would serve
equally well for our purposes below. Since 2(G) < x* + 5, (15) follows, and
therefore so does (12).

Proof of (13). Though the proof is similar to that of (8), it differs enough
to warrant providing the details. Given lists L(A), for A € EU F, of size
X, + 5, start by L-colouring the faces. The dual form of Thomassen’s 5-
choosability theorem [10] guarantees that this is possible. If A € E, then
remove from L(A) the colour(s) assigned to the face(s) separated by A.
This yields modified edge lists of size at least x_+ 3, so the face colouring
may be extended to an L-colouring of EU F. |

Proof of (14). Similar to the proof of (9). |

To complete the proof, we need to show that X, < (1+¢)x, holds
for any given € > 0, provided X, is sufficiently large Gwen s > 0 again
let ¥ = ¢/2, and choose B large enough to give (11). X, >D:=
max{B + 5,10¢~" + 5}, then, since x* > X% — 5 (by (12)), we see that x*
exceeds both B and 10/e = 5/. Thus, as long as X;, > D, we have

Xy SX, +5<(@+7)X +7X7 =1 +e)X < (1+e)X],

(justifying the inequalities, respectively, by: (13); the preceding clause and
(11); and (14)). |
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Proof of Theorem 7

Since this proof mirrors that of Theorem 6, we simply provide a sketch.
The following inequalities are analogous to (12)—(14) and may be proved
similarly (in (16) and (17), C is any constant upper bound on X, ):

%, < G (16)
X < X +C; (17)
X < X, (18)

To prove Theorem 7, one may now use the proof of Theorem 6 with the
following replacements:

()‘(d, X, constant 5, (12)-(14)) » ()‘(M,)‘(;,,constant C,(16)-(18)). ®

4 Closing remarks

Our results shed light on the asymptotic behaviour of three list-colouring
parameters for multigraphs. We have chosen to present these results from
a perspective highlighting asymptotically good behaviour — integral /frac-
tional pairs of invariants agreeing asymptotically. A different angle would
be to establish that each of ¥, X, and X, , is asymptotic to X, or to
X: = X" (say, as x* — 00). These facts are easily deduced from our results,
and vice versa. :

Knowing that X, X,., X,, and X are asymptotically good makes one
wonder just which choice numbers enjoy this property. Though we have
given a complete answer to this question in the case of plane multigraphs,
still unsettled is the general (non-planar) case. Thus, it is natural to pose
the following

Problem 8 Determine conditions on a multigraph G to ensure that
X, (G) ~xX:(G) as X —oco. (19)

Several partial solutions to Problem 8 have appeared in this paper. The-
orem 4 shows that “G is the line graph of a multigraph” suffices for (19),
while Theorem 5 gives the sufficient condition “G is the total graph of a
multigraph”. Theorems 6, 7 can also be stated in this language. A complete
characterization of which graphs enjoy the property (19) remains elusive.
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