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Let G be a connected graph and V* set of all the spanning trees except
stars in G. An edge in a spanning tree is called ‘inner’ if the edge is not
incident to endvertices. Define an adjacency relation in V* as follows;
two spanning trees t; and t2 € V* are called to be adjacent if there
exist inner edges e; € E(t;) such that t; — e; = t2 — e2. The resultant
graph is a subgraph of the tree graph, and we call it simply a trunk
graph. The purpose of this paper is to show that if a 2-connected graph
with at least five vertices is k-edge connected, then its trunk graph is
(k — 1)-connected .

1. INTRODUCTION

Let G = (V, E) be a connected simple graph. A tree graph of G is defined
on the set V of all the spanning trees of G as follows; two spanning trees
t, and t are said to be adjacent if and only if there exist edges e; € E(t;)
such that

(1) t; —e; =ty —es.

Cummings showed that a tree graph is Hamiltonian in [2]. Connectivities
of a tree graph was shown by Liu [5].

Theorem 1 (Liu). The tree graph of a connected graph G = (V,E) is
2(|E| — [V] + 1)-connected.

We can consider two subgraphs of a tree graph which are determined by
a kind of edges in the equation (1). If an edge is incident to endvertices in
a spanning tree t, then we call it an outer edge. An edge is not outer is
called inner. It is a plain fact that, in the equation (1), the edge e; is an
outer edge in t, if and only if e; is also outer in t;. A leaf graph is defined
as follows; t; and t2 € V are said to be adjacent if there exist outer edges
e; € E(t;) which satisfy the equation (1). The following fact is well-known.
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Theorem 2. The leaf graph of any 2-connected graph is connected.

Broersma and Li Xueliang characterized the graphs of which the leaf
graph is connected in [1]. If e; and e; are outer, then they have a common
endvertex u. Therefore we can define a natural map from the edge set of
the leaf graph to the vertex set of G by p : t 1t — u. A lemma found in
an unpublished paper by Bondy and Lovasz can be stated as follows.

Theorem 3 (Bondy and Lovész). Let G be a 2-connected graph and u any
vertez in G. Then the induced subgraph of p=*(V — u) of the leaf graph is
connected.

Furthermore Kaneko and Yoshimoto showed the following theorem in [4].

Theorem 4 (Kaneko and Yoshimoto). Let G be a 2-connected graph of
minimum degree 6. Then the leaf graph of G is (26 — 2)-connected.

They conjecture that if given a graph G is 2-connected graph with min-
imum degree three, then the leaf graph is Hamiltonian. A spanning tree
does not contain always an inner edge. A trunk graph is defined on the
set V* of all the spanning trees except stars as follows; t; and t» € V* are
called to be adjacent if there exist inner edges e; € E(t;) which satisfy the
equation (1). The connectivity of a trunk graph is shown in [7].

Theorem 5 (Nakamura and Yoshimoto). If G is a 2-connected graph with
at least five vertices, then the trunk graph of G is connected.

They also characterized the graphs of which the trunk graph is con-
nected. In this paper, we shall show the following theorem.

Theorem 6. Let G be a 2-connected graph with at least five vertices. If G
is k-edge connected, then the trunk graph of G is (k — 1)-connected.

The lower bound of the theorem is best possible. See Figure 1. It is a
natural question to ask whether the trunk graph of a 2-connected graph has
a Hamiltonian cycle or not. However, in the previous example, if there are
exactly two edges between two complete graphs, then the trunk graph is not
Hamiltonian. Thus the author conjectures that if a 2-connected graph G
with |V (G)| > 5 is 3-edge connected, then the trunk graph is Hamiltonian.

Finally, we introduce notations used in the subsequent arguments. Let
t be a spanning tree of a connected graph G. Because a spanning tree does
not include a cycle, there exists exactly one path between any vertices u
and v € V. We denote the path by P;(u,v) and the number of the edges
in this path by d¢(u,v). The degree of u in t is denoted by deg,(u). The
set of all the edges between subgraphs A and B is denoted by Eg(A, B).
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FIGURE 1

2. THE PROOF OF THE THEOREM

If k = 2, then the statement holds by Theorem 5. Therefore we suppose
k > 3. Assume for contradiction that there exists a cut set S of the trunk
graph 7 which contains at most k — 2 vertices, and let D and D’ be the
connected components of 7 — S. Let t be a vertex in S and t € D and
t’ € D’ be adjacent tot in 7. By the definition of a trunk graph, there exist
inner edges e € E(t) and ¢’ € E(t) such that t —e+¢’ =1t. Similarly there
are inner edges f € E(t) and f' € E(t') such that t— f+ f' = t’. If the edge
f coincides with €', then it holds that t —e+e' — f+ f'=t—e+ f' =1t'.
Because this is contrary to the hypothesis, we have that f € E(t) and
the subgraph t — e — f contains three connected components. Let A,B,C
be these components such that e € Eg(A, B) and f € Eg(B,C). In the
following, we shall find out k£ — 1 internally disjoint paths from t to t’ in
the trunk graph. Since the edge e is an inner edge in t, the connected
component A contains at least two vertices.

Now we divide the argument into the following three cases.
Case 1. B and C contain at least two vertices.
Case 2. B is one vertex w.
Case 3. C is one vertex v.

Case 1. B and C contain at least two vertices.
Let us denote Eg(A, B) = {e;} and Eg(B,C) = {f;} and Eg(A,C) = {a:}.
Without loosing generality we may label the index of edges so that e = ¢
and f = f) and

o if e’ € Eg(A, B), then ¢’ = €|Eg(A,B)| and

e ife’ € Eg(A,C), then & = 9 Ec(A.C)

Let us find out fundamental paths. The edge f is an inner edge in t,
two spanning trees t and p; =t — f + f; are adjacent in the trunk graph.
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Similarly, since e is an inner edge in p;, this spanning tree is adjacent to
p; = pi —e+¢€'. Because p; — f; =t’ — f’, we found out the path

Pi=(t,pi=t—f+fi,p,=pi—e+e,t' =p; - fi+f)
between t and t’ for any edge f; € Eg(B,C). Especially we have P, =

(t,€,t'). It is a plain fact that P; and P;s are internally disjoint if ¢ # 3’.
Similarly if f' ¢ Eg(A, B), then there is the path

Qj=(t,Qj=t—e+ejaq_f,'=q1—f+f’,t'=q,j_ej+e')

for any e; € Eg(A, B). Furthermore if f' ¢ Eg(A,C), then we can find
out the path

Ri=(t,n=t—e+g,ri=r—f+f,t'=rj—g+¢)

for any g; € Eg(A, C) in the trunk graph.

At first we consider the case when e’ € Eg(4, B) and f’' € Eg(4,C).
Then there exist the paths P; and Q; for any i < |Eg(A,B)| and j <
|Ec(B,C)| since f' ¢ Eg(A, B). The paths P; and Q; are not internally
disjoint if and only if p} = qj. Thus we have p} =t = q|Ec(A,B)| When
this happens. Now we found out |Eg(A4, B)| + |Eg(A,C)| — 1 internally
disjoint paths

{P1, P2y, PiEg(B,C)» @1, Q2s -+ » QEc(a,B)| | Pt = QiEs(a.B)}

between t and t'. Since G is k-edge connected, it holds that |[Eq(B,C)| +
|Ec(A, B)| 2 k. Thus there are more paths than is allowed by our hypoth-
esis. A contradiction.

By symmetry, the case when e’ € Eg(A,C) and f' € Eg(B, C) is same
as the previous case. If ¢’ € Eg(A, B) and f' € Eg(B,C), then there ex-
ist the paths {Ql, Qaye Q|E0(A,B)|le, Ra,:-- 1R|E'G(A,C)|}- Since g; €
Eg(A, C), these paths are internally disjoint from each other, and this case
is shown. If ¢’ € Eg(A,C) and f' € Eg(A, B), then there exist the paths
R; and P;. The paths R; and P; are not internally disjoint if and only if
r; = p;. Because we have r|g;(a,c)| = P1 when this happens, there are at
least k£ — 1 internally disjoint paths in

{R1,R2,-++ ,RiEg(A.C)» P1y P2y -+ s PiEg(B.CY | RiEc(AC) = P1}-

Now Case 1 is shown.

Case 2. B is one vertex w.
Because the edge f is an inner edge in t, the edge €’ is contained in Eg(A, B)
and the connected component C contains at least two vertices. Furthermore
since f' ¢ Eg(A, B), there is the path P; for any i <! = |Eg(B,C)|. If
! > k — 1, then there are more paths than is allowed by our hypothesis.
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Therefore we assume that ! < k — 2, and we shall find out k¥ — ! — 1 paths
between t and t’ which is internally disjoint from P;. In the following, let
e =uw and ¢ = v'w and f = vw. Notice that |[Eg(A4,C)| > k — 1, and let
g = UU be any edge in Eg(A4,C).

1. At first, we shall find out a path when deg,(u) > 3 and @ # u. If
P(u,u') N Pe(u,T) # @, then, for an edge h € P, (u,u’) N P.(u, %), there is
the path

Go=(tgi=t-f+ge=g—h+e gs=gi~et+ht =gi—g+f)
See Figure 2. If P;(u,u’) N Pi(u, %) = @, then there exists the path

gy ot

FIGURE 2

Gi=(t,gl=t-—f+gegi=81-h+figi=gi—e+¢,

g=g—f+ht'=gi-g+f)
for an edge h € P,(u,u). See Figure 3. Conversely, if degy(v) > 3 and
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FIGURE 3

T # v, then there exists the path
Hg=(t,hy=t—e+g,hp=h;—h+e’ ,hg=hy— f+h,t' =hz—g+f')

for an edge h € Py(v,7). See Figure 4. Since g, or h; contains the edge g,
the paths G} and H, are internally disjoint from P;. Thus, if deg,(u) > 3
and deg, (v) > 3, then we can find out k — ! — 1 internally disjoint paths in
{G1,62, 1, | g € Eg(A,C) — uv}. See Table 1.
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FIGURE 4
g=weEAC)|v=v |T#v
H-:u Hg
TFu_ |OLOI|OLEE
TABLE 1

2. Next we shall find out a path when deg,(u) = 2 and % is neither u
nor u'. If Py(u,u’) N P(v', @) = 0, then there exists the path

L=@l=t—f+gh=0-h+fli=l-ec+¢,

L=h-f+ht'=lj-g+f)
for an edge h € P(u',@). See Figure 5. Similarly, if P;(u, uw')NP;(u',%) # 0,

w — p &/ —» ; —
® t @ @ I,
FIGURE 5

then there is the path
LC=tB=t-f+gB=P—h+e,B=2—K +h,

B=B-e+h t'=L-g+f)

for edges h € Pi(u,a) N Pe(u,v’') and b' € Pe(v/, %) N Po(v',u). See Fig-
ure 6. Since £; is internally disjoint from P;, there are k — [ — 1 internally
disjoint paths in {Hg,E;,Kg | 9 € Eg(A,C) — {uv,u'v}} if deg,(u) = 2
and deg, (v) > 3 and G does not contain either uv or u'v. See Table 2. If G

230



contains both of the edges, then one path is not enough. But there exists
the following path for h € Py(u, ).

M =(t,m{ =t-f+u'v,m}=m} - h+e,m}=m}—u'v+uv,
m} =m} -e+h,t' =m} —uv+ f).

See Figure 7. Since m} contains the edges w'v or uwv, the path M! is

£
), &

FIGURE 7
internally disjoint from P;, H, and £_f,. Thus we supplied a deficiency.
Conversely, if deg,(v) = 2 and 7 is not v and @ # u’, then there exists
the path

Mg=(t,m =t—e+gme=m;—h+e ,m3=my—h'+h,

my =mg ~ f+h't' =my —g+f’)
for edges h € Pi(v,7) and A’ € Py(T,u’). See Figure 8. Since M, is
internally disjoint from P;, there are k — I — 1 internally disjoint paths in
{G;,62, My | g € Eg(A,C) — uwv} when deg,(u) > 3 and deg,(v) = 2.
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FIGURE 8

3. Assume that deg,(u) = 2 and deg,(v) = 2. Let v’ € V(C) such that
de(v.v') = 1. If di(u,u’) > 2, then, for any g € E(A, C) which is incident
to v/, there exists the path

Ny = (¢, n%=t_f+g9n%=nl h+e€,nj=n3—e+ht'=nj—g+f')
for an edge h € P;(u,%’) which is not incident to u. See Figure 9. Thus

SEey

FIGURE 9

we can find out k¥ —! — 1 internally disjoint paths in {£}, £, Mg, N} | g €
Eg(A,C) — uv}.
Suppose that dy(u,u’) = 1. If d¢(v,7) > 2, then there is the path

N;l =(t,nl=t-e+gni=nl-ht+eni=nl-f+ht'=n2-g+f)
for an edge /1 € P;(v,¥) which is not incident to v. See Figure 10. Thus if G

(7% (A
A
oy,

FIGURE 10
contains at most one edge in {uv, u'v, u'v'}, then there are k—!—1 internally
disjoint paths in {[l‘ Cg,Mg,N'l | g € E(A,C) — {wv,u'v,u'v')}}. See
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g=wEeEAC)|T=v |T=0|d(v,v) >2
T=1u NZ
U # u,u L, L: J C},,Lﬁ
TABLE 3

Table 3. If G contains both of the edges uv and u/v, then there exists the
path M!. Similarly if G contains both of the edges uv and u'v’, then there
is the path
M =(t,ml =t — f+u'v',m} =m? —uu +¢,m? =m? - v +uy,
m? =m? - e+ uv,t' = m? —wv + f).
See Figure 11. Because M? is internally disjoint from P;, L%, M, and

& @

FIGURE 11

./\fg2 , we supplied a deficiency when G does not contain either u'v or u'v'.
Suppose that G contains both of the edges. If there is an edge h in
Eg(v,C —v) — vv/, then there exists the path
M=@nd=t—v'+hnd=nd-e+e nd=n}-f+u,
nd=nd-h+o,t'=ni -vv+f).
See Figure 12. Because nj contains k or u'v, the path A/® is internally

[
— — —
% %
v
h
t

disjoint from Pj, £}, My, M? and NZ, and we supplied a deficiency. If

e

FIGURE 12
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Eg(v,C—v) = {vv'}, then |Eg(AUw, C—v)—u'v'| > k—2 and there are k—
2 internally disjoint paths in {P;, £}, L2, M4, N2 |2 < j < |E(B,C)|,g €
Eg(A,C —v) —u'v'}. Since P, is internally disjoint from the above paths,
there are more paths than is allowed by our hypothesis. We showed Case
2.

Case 8. C is one vertex v.

In this case, we have that ¢’ € FEg(A,C) and f' ¢ Eg(A,C). Because
the case when f' € Eg(B, C) is same as Case 2 by symmetry, we assume
that f' € Eg(A, B). In the following, let e = e; and f = fi = vw and
e/ = g, = u'v. For any i <! = min{|Eg(B,C)|,|Ec(A,C)|}, there exists
the path

Xi=(t,x) =t—e+gi, X2 =x1— f+ fi,x3a=xp—gi+e',t' =x3— fi+f')
for any g; € Eg(A,C) in the trunk graph. Especially, we have A} =
(t,t,t’). Because there are more paths than is allowed by our hypothesis
if | > k — 1, we suppose that [ < k — 2 and shall find out &k — ! — 1 paths
between t and t’ which is internally disjoint from X;.

For any edge € = ww in Eg(A, B), the subgraph t +  contains exactly
one cycle Cs. We shall find out a path when Cs contains at least five edges.
If Cz N A contains at least two edges, then there exists the following path
for an edge h € P,(u',u) which is incident to @.

V& = (t,yf =t—e+e,yy =yf —h+e,y{ =yf - f+ht' =yi —E+f).
Similarly if Cz N B contains at least two edges, then there is the path
VP =(t,yf =t-e+8,yf =yP ~h+e,y7 =y; —f+h,t' =y§ -+f)

for an edge h € Py (w,w) which is incident to . Otherwise, there exists
the following path for the edges h =CzN B and h' = CsN A.
W =(ty)=t-e+eyd =yl ~h+e,yi=y3 —h'+h,
Yi=Y3-f+H .t =y] -8+ f)

Since € € Eg(A, B), the above paths are internally disjoint from &;. As-
sume that Oz contains four edges. If degg(u’) > 3 and dg(v',@) = 1, then
there exists the path J2. Similarly, there is the path Y2 when degg(w) > 3
and dg(w, @) = 1.

1. If degg(u') > 3 and degg(w) > 3, then there are k — I — 1 internally
disjoint paths in {34, V8,39 | € € Eg(A, B) — w'w}. See Table 4.

2. Suppose that degg(v') = 2 and degg(w) > 3. Let u” € V(A) be
the vertex such that dg(u',u"”) = 1. If A = v'u”, then it holds that
|[Ec(A,B)| 2 2k — 4. If k > 4, then |Eg(4, B) — {v'w,u"w}| > k-2
and there exist k — 2 internally disjoint paths in {}.2,)2 | € € Eg(A, B) -
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e=uw € Eg(A,B) | w=w | dg(w,w) =1 | dg(w,w) >2
ﬁ = ! EB y_B
di(w,u') = y¢ ye Ve
dg(T,u') >2 Z g iz
TABLE 4

{v'w,u"w}}. Assume that k = 3. If Eg(A, B—w) contains an edge €, then
there is y.e? or yg for this edge. Otherwise there exists an edge f2 joining
B — w and v because G is 2-connected. Furthermore since degq(u") > 3,
the vertex u” is adjacent to w. Thus there is the path X, for f and
g2 = u"w which is internally disjoint from X;.

Suppose that A contains at least three vertices. If G contains at most
one edge in {v'w, u"w}, then there exist k —I—1 internally disjoint paths in
{Y2,¥B,)2 | g € Eg(A, B)—{v/w,u"w}}. If G contains both of the edges,
then one path is not enough. If there is an edge h € Eg(A — ¢/, u') — v'u”
or h' € Eg(A — o', v), then there exists the path

=(t,2 =t —e+v'w,z} = 2] —u'u" + h,z} =z} —vw+¢,

7} =2} - f+u'w,zi =z} —h+u'u" v =2} —vw+ f)

or

=@tz =t—e+uwz=22—vwu" +h,22=2}-f+¢,
z2 =22 — b +uu" t' =22 —dw+ f),
respectively. See Figure 13. Because zg, contains the edge u'w or h, the
path 27 is internally disjoint from &;, V2,2 and )2. Thus we supplied a
deficiency. If Eg(A—v/,u'v) = {u"u'}, then |Eg(A—v',B) —u"w| 2 k-2
and there are k — 2 internally disjoint paths in {32,Y2,)2 |€ € Eg(A —
u’, B) —u"w} which are more paths than is allowed by our hypothesis. The
case when degg(u’) > 3 and degg(w) = 2 is same as the previous case by
symmetry.

3. Suppose that degg(u') = 2 and degg(w) = 2. Let v’ be the vertexin B
such that dg(w,w’) = 1. Suppose that A = u'u”. If k > 4, then |Eg(A,G —
A)| > k+2. I Eg(A,C) = {«/'v}, then |Eg(A, B) - {u'w, uw'w',u"w}| > k—
2 and there exist k—2 internally disjoint paths in {}2,)2 | € € Eg(4, B)—
{v'w, v'w',u"w}}. Assume that Eg(A,C) = {«/v,u"v}. Since Eg(B,C)
contains at least two edges because degg(v) > 4, there exist two paths A}
and A2 which supply a deficiency. Suppose k = 3, and we shall find out a
path which is internally disjoint from X;. If Eg(v’, B—ww')UEg(u”, B—w)
contains an edge €, then there exists Y2 or J2. Otherwise Eg(B — w,C)
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FIGURE 13

contains an edge because G is 3-edge connected. Since degg(u”) > 3, the
vertex u” is adjacent to v. Therefore there are the paths A} and A, for
these edges.The case when B contains two vertices is same as the previous
case by symmetry. "

Suppose that A and B contains at least three vertices. If G contains
at most one edge in {v'w,u'w’,u"w}, then there are k — ! — 1 inter-
nally disjoint paths in {Y£,V2,)2 | € € Eg(4, B) — {v'w,v'w’,v"w}}. If
Eg(A-v',u'v) = {u'v"}, then |Eg(A—v', B—w)| > k—2 and there are k—2
internally disjoint paths in {¥2,V2,)? | € € Eg(A—v/, B—w)} which are
internally disjoint from &;. Thus we assume that Eg(A—u/,u’'v)—u/u" # 0.
If w'w € E, then there exists the path Z! or Z2. Therefore we supplied
a deficiency when Eg(A, B) does not contain either u'w’ or v'w. If G
contains both of the edges, then there exists the following path

B =(t,zgd=t—e+u'v,z} =2 —ww +uv"w, 23 =25 —vu" +¢,

73 = 73 — f +ww', 28 = 23 — v'w' + v\t =2 —u"w+ f).
1= 23 5 = %4 5

See Figure 14. Since 2z contains u'w’ or u"w, the path 23 is internally
disjoint from X;, Y&, V2,32 Z! and Z2. Now we find out the paths which
are more path than is allowed by our hypothesis, and the proof is complete.
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FIGURE 14
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