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ABSTRACT. The toughness ¢(G) of a noncomplete graph G is
defined as :

t(G) = min{|S|/w(G - 5) | § C V(G),w(G ~ 8) 2 2},

where w(G — S) is the number of components of G — S. We also
define ¢(K,) = +oo for every n.

The middle graph M(G) of a graph G is the graph obtained
from G by inserting a new vertex into every edge of G and by
joining by edges those pairs of these new vertices which lie on
adjacent edges of G.

In this article, we give the toughness of the middle graph of
a graph, and using this result we also give a sufficient condition
for the middle graph to have k-factor.

1 Introduction and Preliminaries

In this article, all graphs are finite, undirected, without loops or multiple
edges. The toughness of a graph is an invariant first introduced by Chvétal
(1]. He observed some relationships between this parameter and the exis-
tence of hamiltonian cycles or k-factors. The toughness is an interesting
invariant in graph theory.

Let G be a graph. We denote by V(G) and E(G) the set of vertices and
the set of edges, respectively.

We denote the order of G by |G| and the number of connected components
of G by w(G). If S is a subset of G with w(G — S) > 2, we call it a cutset
of G. If S C V(G), (S) is the subgraph of G induced by S. We write G—S
for (V(G) - S).
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A graph G is t-tough if the implication
wG-8)>1-|S|>2t-w(G-S)

holds for any S C V(G).

A complete graph is ¢-tough for any real number ¢. If G is not complete,
there exists the largest ¢ such that G is {-tough. This number is denoted
by ¢(G) and is called the toughness of G. We define ¢(K,) = +oo for every
n. If G is not complete,

#(G) = min{|S|/w(G - 5) | S C V(G),w(G — S) > 2}.

The middle graph M(G) of a graph G is the graph obtained from G by
inserting a new vertex into every edge of G and by joining by edges those
pairs of these new vertices which lie on adjacent edges of G. Terms not
defined here can be found in [2].

The main purpose of this article is to give the toughness of the middle
graph of a graph.

Here, in order to prove our results in the section 2, we describe some
well-known results. We first give the definition of the endline graph of a
graph. Let G be a graph and V(G) = {v1,v2,...,v,}. We add to G n new
vertices and n edges {u;,v;} (i = 1,2,...,n), where u; are different from
any vertex of G and from each other. Then we obtain a new graph G’ with
2n vertices, called the endline graph of G.

Let us denote the line graph of a graph G by L(G). Then, from the
definition of the endline graph and the middle graph of a graph G, we
have, L(G’) 2 M(G), which is proven in [3]. This fact will be used for the
proof our Theorem 1. Moreover, we need the following theorems for the
proofs of Theorem 1, Corollaries 1 and 2 in the next section.

Theorem A. [3]. If a graph G is n-edge connected, then the middle graph
M(G) is n-connected.

Theorem B. [3]. Let G be a graph, then the middle M(G) of G is
hamiltonian if and only if G contains a closed spanning trail.

Theorem C. [4]. Let G be graph. If G is k-tough, |G| 2 k+1, and k |G|
is even, then G has a k-factor.

2 Results

We proved in [5] that if a connected graph has a bridge, then ¢{(M(G)) =
1/2. In general, the following theorem holds;

Theorem 1. Let G be a graph. Then t(M(G)) = M(G)/2, where A\(G) is
the edge-connectivity of G.
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Proof: Let A be the edge-connectivity of graph G. If A = 0, there is nothing
to show. Hence we may assume that A is a positive integer. Then there
exists an edge-set F' C E(G) such that |F| = X and G — F is disconnected.

Let F = {e;,ez,...,ex} and let v; be a new vertex inserted into an edge
e; of G. Then S = {v;,v2,...,v,} would be a cutset of M(G). Let us set
w(M(G) — S) = k, then we have

H{M(G)) < ISI/k < M2. (1)

Hence we may prove that ¢{(M(G)) > A/2.

Let S be a cutset such that ¢(M(G)) = |S|/w(M(G) — S), and let
Cy,Ca,...,Cy be the components of M(G) - S.

From the assumption that the edge-connectivity of G is A, G becomes a
A-edge-connected graph. Hence, we see that M(G) is a A-connected graph
from Theorem A.

Therefore there exist A disjoint paths from u; € C; to u; € Cj (¢ # j).
Each of these paths contain a vertex of S. Hence for each ¢ there are at
least A edges coming from C; to distinct vertices of S. Hence in all there
are at least k A edges from M(G) — S to S.

By the way, Since L(G’) & M(G) and L(G’) is a K, 3-free graph, M(G)
becomes a K 3-free graph.

Therefore any vertex of S is adjacent to at most two components of
M(G) — S. Hence there are at most 2 |S| edges coming from M(G) — S to
vertices of S. This implies that k A < 2|S|. Therefore we have

M2 < |S|/k = ¢ M(G)). (2)

Combining (1) with (2), we obtain that ¢(M(G)) = A(G)/2. This com-
pletes the proof. ]

Corollary 1. Let G be a 2k-edge-connected graph and |V (G)| + |E(G)| is
even, then M(G) has a k-factor.

Proof: From Theorem 1 we have that t{(M(G)) = AG)/2 > k. Hence
M(G) is a k-tough graph. Obviously |V(M(G))| = |V(G)| + |E(G)| >
2k +1 > k+ 1. Hence, from Theorem C, we see that M(G) has a k-
factor. O

Corollary 2. Let G be a 3-edge-connected graph which does not contain
a closed spanning trail, then the middle graph M(G) is a 3/2-tough graph
which is not Hamiltonian.

Proof: Let G be a 3-edge-connected graph, then t(M(G)) = A\(G)/2 > 3/2.
On the other hand, from Theorem B, M(G) is not Hamiltonian. This
completes the proof. O
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For example, since the Petersen graph O; is 3-edge-connected graph
which does not contain a closed spanning, from Corollary 2 we see that
the middle graph M(O3) is toughness 3/2 and not Hamiltonian.
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