FAMILIES OF 4-SETS WITHOUT PROPERTY B

H.L. ABBOTT AND D.R. HARE

ABSTRACT. A family F of finite sets is said to have property B if there exists
aset S such that 0 < |S N F| < |F| for all F € F. Denote by my (n) the
least integer m for which there exists a family F of m n-clement subsects of a
set V of size N such that{J F = V and which does not have property B. We
give constructions which yield upper bounds for mw (4) for certain values of
N.

A family F of finite sets is said to have property B if there exists a set S such
that 0 < |[SN F| < |F|forall F € F. The set S is called a B-set for F. Let
n and N be positive integers, n > 3 and N > 2n — 1. Denote by m y(n) the
least integer m for which there exists a family F of m n-element subsets of a set
V of size N such that | JF = V and which does not have property B but every
proper sub-collection of F has property B. In the language of hypergraph theory,
mp(n) is the least possible number of edges a critically 3-chromatic n-uniform
hypergraph of order N may have. Observe that m n(2) makes sense when N is
odd and, in fact, mg.41(2) = 2¢ + 1. This is just the statement that the only
3-critical 2-graphs are the cycles of odd length.

A large number of papers have been published giving bounds for m n(n). See
[1] and some of the references given there. We are concerned in this paper with a
rather special problem having its roots in papers of Burstein[4], Seymour{10] and
Woodall[12]. Seymour and Woodall proved that foralln > 3andall N > 2n—1,
mpy(n) > N. Burstein showed that there exists a least integer B (n) such that for
all N > B(n) one has my(n) = N. Liu [8] showed that B(3) = 10. No other
value of B(n) has been determined. Burstein described a general construction
from which it follows that

) B(n) < %(n+ 1! +n(n +1)?

and showed that my(n) = N for several other values of N less than the right
member in (1). (1) implies that B(4) < 135. In [2] we showed by a refinement of
techniques of Burstein and Liu that the term n(n + 1)2 can be replaced by n. — 1.
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For large n, the improvement over (1) is slight, but for small n it gives something
significant. It shows, for example, that B(4) < 38. This, together with a result
from Burstein’s paper shows thatm y(4) = N when N = 350r V > 38.

The question we consider in this paper is that of cbtaining upper bounds for
my(4) for the remaining values of N. Some results in this direction have been
obtained by Abbott and Liu[3], Exoo[6], Goldberg and Russell[7], Seymour{9]
and Toft[11]. It was pointed out by Erd8s[5] that m 95,1 (n) = may(n) = (2"”‘ 1
so that m7(4) = mg(4) = 35. For9 < N < 15 the known upper bounds are
given in Table 1.

N Upper bound Reference
onmy (4)
9 26 Abbott and Liu[3]
10 25 Exool6]
11 23 Seymour{9], Toft[11]
12 26 Goldberg and Russell [7]
13 26 Goldberg and Russell [7]
14 26 Goldberg and Russell [7]
15 27 Burstein[4] and Liu[8]
TABLE 1

The results in the table for N = 12,13, 14 are attributed by Goldberg and
Russell in [7] to a referee of that paper. The last entry is obtained from the
following general inequality of Burstein and Liu

V) my4n(n) Smy(n) +n

and the result 77111 (4) < 23 of Seymour and Toft.

It is often the case in combinatorics that the hard part of about showing the
existence of an object with certain specified properties is the actual finding of the
object. Once it is found, the independent verification that it has all of the desired
properties is fairly straightforward, although it may be time consuming. This is
the case here. Because of this, we leave many such verifications to the reader.

We shall give three special constructions. The first is a special case of a con-
tsruction of Burstein which establishes m35(4) = 35. The second is a slight
modification of the first. It will show that mg7(4) < 38. The third will show
that mas(4) < 29. We shall make frequent use of the following easily established
theorem.

Theorem 1. Let F be a family of sets without property B. Let a and b be elements
of |J F such that {a,b} € F foreach F € F. Then the family F' obtained from
F by identifying b with a does not have property B. O
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If F is critical in the sense that every proper subfamily of F has property B,
it may not be the case that F' is critical. However, when we apply the theorem
to a specific family F we may, by making an appropriate choice for e and b, take
advantage of properties of 7 which may not be available in general and, in so
doing, obtain an F’ which is critical.

We shall also make frequent use of (2) and the fact that the family {{1, 2, 3},
{1,4,5},{1,6,7},{2,4,6},{2,5,7},{3,4,7}, {3, 5,6} } does not have property
B and is critical. The sets are the lines in the Fano plane PG(2,2). It is the
example showing m+(3) = 7.

We now describe the three special families. To save space, in much of what
follows we drop brackets and commas in describing sets so that, for example,
{1,2,3} will be written 123. It will also be convenient if we denote by Fy a
family which establishes an upper bound for m x (4).

Construction 2. Fygg is the family of 4-element sets obtained from the Fano plane
by replacing each set ijk by the five sets ijka, 1jkb, ijke, ijkd, abed. This is the
example which shows that m35(4) = 35 and is a special case of the construction
given in [4]. Its members are

123q, 145a; 167a3 246a4 257as 347ag 356a7

123b, 1455, 167bs 246b4 257bs 347bg 356b7

123¢, 145c¢, 167¢3 246¢4 257cs 347¢cq 356¢7

1234, 145d, 167d; 246d, 257ds 347dg 356dy
a) bl (&} d1 (lzbgc-)dg a3 b3(:3d3 24 b4 C4d4 ag b565d5 Qg be(!sde a7b7(:7d7
O

Construction 3. F37 is obtained from the Fano plane by replacing each set ijk
other than 356 as in Construction 2 and replacing 356 by the eight sets 356a+,
356b7, 356¢7, lazbrer, 356as, 356bg, 356¢s, 2a3bgcs. The members of F37 are

12301 14502 1670.3 2460.4 2570,5 347(10
1236, 1456, 167by 246b, 257bs 347bg
123¢, 145¢, 167¢c3 246¢, 257¢s 347¢cg
123d, 145d, 167d3 246d, 257dy 347dg
aibicidy  axbacody  azbsczdy  asbscads asbscsds  agbecsds

3560.7 35608
356b7 356b3
356¢7 356¢5
1 a7b7c7 203 bng
This is the example which shows that mg7(4) < 38. It will be instructive if
we sketch an argument showing that it does not have property B and is critical.
Suppose that .S meets each member of F37. We need to show that .S contains a
member.
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Case 1: S hits 356.

‘We may suppose that S does not contain any set of the type a ;b;c;d; since
otherwise we have finished. Also S hits each set of this type. Without loss
of generality, we may suppose that S misses {a1, a2, a3, a4,a5,as} and
contains {by, by, b3, by, b5, bg}. S must then hit each of 123, 145, 167, 246,
257, 347, 356. Since the Fano plane does not have property B, S contains
one of these sets. If it contains one of the first six sets then we are done
because S D {h,be,...,bg}. We may therefore suppose that S contains
356. Since S doesn’t contain 123, S doesn’tcontain1 or2,say 1 ¢ S. Then,
since S hits 1azbrcz, we must have, without loss of generality, a7 € S. But
then S contains 356a+.

Case 2: S misses 356.

Then S contains av, by, ¢, ag, bg, cg. If S hits {1, 2} we are done. Thus
we suppose 1, 2 ¢ S. Thus S misses 123. It then follows that S contains
5] b] €y d] .

In order to show that F37 is critical we must exhibit, for each member F, a
B-set for the family F37 — {F'}. One may, of course, take advantage of various
symmetries so that not all members F' need to be checked.The essentially different
cases and a B-set in each case are shown in Table 2. 0O

Set F deleted | B-set for F37; — {F}

123a, FU{as,a3,04,a5,06}

nlblc‘ldl FU+L41 5’ 63 7: 12, a3, 0'4:”5'“81“'7,‘18}
145a; FU{a1,a3,a4,as,a6,as}

02”2(:2{22 FuU 21 376s 71 M, a3, (14,(15,(15,(27}
347a¢ FU{a1,as,0a3,04,05,0a7, as}

ﬂsbscsds Fu{ 132951 6,(1],(12, a3, a4,a5}
356!17 FU+2,(11,02,(13,G4,05,06}

lazbser FU+4,6’ 7,(1],02,03,04,05,06,08}

TABLE 2

Construction 4. Fo5 consists of the following sets:

abl2 acl2 bcl2 135a; 146a» 245a3 236a4
ab34 ac34 bc34  135h; 146b, 245b4 236b4
abb6 acb6 bchH6  135¢ 146¢, 245¢3 236¢4
135d; 1464, 245d3 236d,

arbieidi  azbcedy;  agbscads  agbgcad,

This is an example which shows that m,5(4) < 29.

In order to show that Fa5 doesn’t have property B we must show that any S

which hits each member must contain a member.
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Case 1: S misses one of ab, ac, be.
Then S must hit each of 12, 34, 56, and must therefore contain one of 135,
146, 245, 236, 246, 235, 136, 145. If .S contains 135 then, since S must
hit ayb;¢1dy, it must contain 135a;, say. We may therefore suppose that
S doesn’t contain 135 and, by the same reasoning, doesn’t contain 146,
245 or 236. If S contains 246, then we may suppose that S misses 135
since, otherwise, we arrive at a situation already discussed. However, it
then follows that S must contain a5 ¢;d,. The same argument applies to
235, 136 and 145.

Case 2: S hits each of ab, ac, be.
Then S must contain one of ab, ac, bc. Observe now that S is a B-set if and
only if S is a B-set and the argument used in Case 1 applies.

It follows that Fa5 doesn’t have property B.

In order to see that every proper subfamily of F 5 has property B, note that if
we delete abl2 then abl2a, azazay is a B-set, if we delete 1354, then 13501 a2a30a4
is a B-set, and if we delete a1 byc1d; then aybicidiazasa 246 is a B-set. These
are the only essentially different possibilities. (]}

We now use (2) and the Theorem to obtain upper bounds for 7 x(4) for the
remaining values of N, 16 < N < 36. Whenever it is convenient to do so we
make the identification described in the Theorem so that two identical sets result,
one copy of which may then be discarded. How this is done is described in Table 3.

The Theorem ensures that the families constructed via its use do not have prop-
erty B. It does not, however, guarantee that the families are critical. This has to be
verified directly by showing that the deletion of a set results in a family with a B-
set. One may, of course, appeal to various symmetries so as to reduce the number
of cases that need to be considered. We give the details only for the family F 3.
Details for the remaining cases are available from the first author. The members
of Fao are listed below.

123a, 145a; 167a3 246a3 257a5 347a¢ 356a;
1235, 145h, 167b3 246b, 257bs 347bg 356b;
123¢, 143¢y 167¢3 246¢c4 257¢s 347cq 356¢7
123d, 1454, 167d3 246d, 257dys 347d, 356d;
arbycidy agbsesds  asbscads asbscsds agbscsds azbrerdy

The essentially different cases and a B-set in each case are given in Table 4.

It would be of interest to settle the cases N = 34 and N = 37 since from
the general inequality my(n) > N and the results obtained here we know that
m34(4) = 34 or 35 and m37(4) = 37 or 38.
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Upper bound

N onm(4) Fn obtained from
Faz by identifying a7 and ag
36 37 .
and removing a copy of 356a3
34 35 Fgg by identifying a; and as
33 35 Faq by identifying by and b
32 35 JF33 by identifying ¢; and c,
Faa by identifying dy and d»
31 34 .
and removing a copy of a1 b,¢;d;
30 34 JF31 by identifying a; and a4
24 29 JFag by identifying a; and ap
23 29 .7:24 by identifying by and by
22 29 .7'-23 by ldenufymg c and C2
21 28 Faz by identifying d, and d3
and removing a copy of a1b1¢1dy
20 28 Foy by identifying a3 and a4
19 28 Fap by identifying bs and by
18 28 Fig by 1denufymg czandcy
17 27 fm by identifying d3 and d4
and removing a copy of agbszcads
16 27 F+ by identifying ay and a3
26 33 .7'-22 and (2)
27 33 Faz and (2)
28 33 Foq and (2)
29 33 Fas and (2)
TABLE 3
Set F deleted B-set for Fyy — {F}
123a, F U {a3, a3, ag, a.7}
3] b1C|d1 Fu +|,4, 5s6’ 71 a3, a5, 0g, a'7}
167ag FU{al,as,as,a-,}
167hs FuU{m,a3,as,a¢,a7}
a8b363d3 Fu 21 3s 4) 5:05106, 07}
25705 | FU {a1, 03,0607}
a5b505d5 FuU { 1,3,4,6,01,03,03,07}

TABLE 4
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